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Abstract 
This thesis explores Centralised Demand Information Sharing (CDIS) in supply 
chains. CDIS is an information sharing approach where supply chain members 
forecast based on the downstream member?s demand.  
The Bullwhip Effect is a demand variance amplification phenomenon: as the demand 
moves upstream in supply chains, its variability increases. Many papers in the 
literature show that, if supply chain members forecast using the less variable 
downstream member?s demand, this amplification can be reduced leading to a 
reduction in inventory cost. These papers, using strict model assumptions, discuss 
three demand information sharing approaches: No Information Sharing (NIS), 
Downstream Demand Inference (DDI) and Demand Information Sharing (DIS). The 
mathematical analysis in this stream of research is restricted to the Minimum Mean 
Squared Error (MMSE) forecasting method.  
A major motivation for this PhD research is to improve the above approaches, and 
assess those using less restrictive supply chain assumptions. In this research, apart 
from using the MMSE forecasting method, we also utilise two non-optimal 
forecasting methods, Simple Moving Averages (SMA) and Single Exponential 
Smoothing (SES). The reason for their inclusion is the empirical evidence of their 
high usage, familiarity and satisfaction in practice. 
We first fill some gaps in the literature by extending results on upstream demand 
translation for ARMA (p, q) processes to SMA and SES. Then, by using less 
restrictive assumptions, we show that the DDI approach is not feasible, while the NIS 
and DIS approaches can be improved. The two new improved approaches are No 
Information Sharing ? Estimation (NIS-Est) and Centralised Demand Information 
Sharing (CDIS). It is argued in this thesis that if the supply chain strategy is not to 
share demand information, NIS-Est results in less inventory cost than NIS for an 
Order Up To policy. On the other hand, if the strategy is to share demand 
information, the CDIS approach may be used, resulting in lower inventory cost than 
DIS.  
These new approaches are then compared to the traditional approaches on 
theoretically generated data. NIS-Est improves on NIS, while CDIS improves on the 
DIS approach in terms of the bullwhip ratio, forecast error (as measured by Mean 
Squared Error), inventory holding and inventory cost. The results of simulation show 
that the performance of CDIS is the best among all four approaches in terms of these 
performance metrics. 
Finally, the empirical validity of the new approaches is assessed on weekly sales data 
of a European superstore. Empirical findings and theoretical results are consistent 
regarding the performance of CDIS. 
Thus, this research concludes that the inventory cost of an upstream member is 
reduced when their forecasts are based on a Centralised Demand Information Sharing 
(CDIS) approach.       
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1. Introduction 
1.1. Business Context 
Changes in the economic environment have led organisations to re-evaluate their 
business models and focus their attention towards better ways of providing products 
and services to their customers across complex networks of suppliers. Effective co-
 ordination of decisions across the supply chain has been recognised as a major source 
of competitive advantage. Cross-industry collaboration initiatives for formal 
coordination of decisions, such as Collaborative Planning, Forecasting and 
Replenishment (CPFR) and Vendor Managed Inventory (VMI), have been successful 
in terms of inventory reductions and service level improvements. Results from recent 
research (Kulp et al, 2004; Ernst and Young, 2007) have shown that supply chain 
collaboration activities may have a significantly greater effect on profit margins than 
other improvements in the supply chain. 
The benefits of supply chain collaboration are leading many companies to re-model 
their supply chains. Examples include the collaboration programmes between Wal-
 Mart and Sara Lee, Schering-Plough Health Care with all their retail partners, and 
Marks and Spencer with Gunstones (Ireland and Crum, 2006). Seifert (2003) 
discusses more than 26 such initiatives in Europe alone. European retailers such as 
Carrefour in France, Metro in Germany and Tesco in the UK are working towards 
the improvement in efficiency that can result from supply chain collaboration. 
Findings from AMR research (Suleski, 2001) on the financial impacts of CPFR in 
the retail industry, based on 94 companies, reveal the benefits of supply chain 
collaborations. The results show that sales increased by up to 20%, with reduced 
inventory of up to 40% for retailers. In terms of benefits to the suppliers, inventory 
reductions of up to 40% and more frequent replenishment cycles were found in these 
companies.  
Information sharing is an integral part and an enabler of collaborative partnerships. 
The development of web-enabled technologies provides a platform for exchange of 
real-time information with increased quantity and velocity and at less cost. Such 
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cheaper information exchange technologies have made information sharing more 
achievable in recent years. Companies are leveraging information integration by 
forming collaborations, and visibility is proving to be a key ingredient in realising 
value chain excellence. In the last decade, some authors have argued that supply 
chain information sharing is one of the most rewarding applications of information 
technology (e.g. Edwards et al, 2001; Barut et al, 2002).  
Sharing of consumer demand information has been extensively studied in the 
literature, specifically in terms of the reduction of the Bullwhip Effect. The Bullwhip 
Effect is a well-known phenomenon in supply chain management. It occurs when the 
demand variability amplifies as one moves up the supply chain. Empirical evidence 
and mathematical models, to be reviewed later in this thesis, show that the orders 
placed by a retailer on its supplier tend to be much more variable than the consumer 
demand seen by the retailer. This amplification in the variability of demand 
propagates upstream in the supply chain. Information sharing can counter this effect.  
How it does so is the subject of this research.   
1.2. Theoretical Background and Research Motivations 
Various demand information sharing approaches have been discussed extensively in 
the literature, mainly from a theoretical perspective. A substantial part of the demand 
information sharing literature has been devoted to discussions on the reduction of the 
Bullwhip Effect, which leads to reductions in inventory cost.  
Research papers analysing the value of sharing demand information present two 
strategies that may be adopted by a supply chain. The first strategy is not to share the 
consumer demand information, in which case the forecasts will be based only on the 
orders received by the downstream members in the supply chain. On the other hand, 
a strategy of sharing consumer demand information can be adopted through some 
formal information sharing mechanism. In this case, the forecasts will be based on 
the consumer demand information. We argue in section 5.4 that the forecasting 
approaches used in the literature can be improved and present two new approaches, 
NIS-Estimation (NIS-Est) and Centralised Demand Information Sharing (CDIS). The 
NIS-Est approach is used when the consumer demand is not shared and the upstream 
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member forecasts by using the orders received from the downstream member. The 
CDIS approach is used when the upstream member forecasts using the shared 
consumer demand information.  
Based on a survey of various surveys of forecasting practices (see section 3.3), we 
find that practitioners? choice of forecasting methods is based not on optimality but 
rather on simplicity, ease of use and familiarity with methods. The literature on 
demand information sharing is dominated by papers that are restricted to the use of 
optimal forecasting methods. There is a gap in the literature on the analysis of the 
value of demand information sharing when non-optimal forecasting methods are 
utilised. Analysis of upstream demand translation plays a major role in investigating 
the value of information sharing and the literature is limited to upstream translation 
of an AR (1) demand process for non-optimal forecasting methods (Chen et al, 
2000a; Chen et al, 2000b; Alwan et al, 2003; Zhang, 2004a). No other demand 
process has been examined. Thus, there is a need to extend the analysis of upstream 
demand translation for non-optimal methods to more general ARMA processes.  
Some authors (e.g. Lee et al, 1997a; Chen et al, 2000a; Lee et al, 2000; Yu et al, 
2002; Raghunathan, 2003; Cheng and Wu, 2005; Hosoda et al, 2008) have argued 
that demand information sharing is vital to reduce inventory costs. On the other hand, 
other authors (Graves, 1999; Raghunathan, 2001; Zhang, 2004b; Gaur et al, 2005; 
Gilbert, 2005) have argued that the orders from the downstream member to the 
upstream member already contain information about the market demand process. By 
using their order history, the upstream member can infer the demand at the 
downstream member. This is known as Downstream Demand Inference (DDI). 
According to the DDI approach, the savings in inventory costs from demand 
information sharing could be obtained without any formal information sharing with 
the downstream member. In this thesis, we analyse the supply chain models 
presented in previous papers, particularly with respect to their assumptions. We 
observe that the difference in conclusions of the above papers is due to the strict 
model assumptions made by authors advocating DDI. Specifically, we argue that in 
real life supply chains, the demand process and demand parameters are not known to 
the supply chain members. Thus, we analyse the value of sharing demand 
information by relaxing the assumption that these are known to all members in the 
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mathematical model, and in the simulation and empirical analysis. More realistic 
assumptions in this thesis have led to a more realistic evaluation of the benefits of 
sharing demand information.  
In this thesis, we compare demand information sharing approaches using four 
performance metrics, namely forecast error, bullwhip ratio, inventory holdings and 
inventory cost. The forecast error is measured using the Mean Squared Error and the 
Mean Absolute Percentage Error. In Chapter 3, we find that it is very complicated to 
derive mathematical expressions for the bullwhip ratio and forecast error. In the same 
chapter, we also show that the mathematical derivation for inventory holdings results 
in an approximate equation, yielding approximate values of inventory holdings and 
inventory costs. We use simulation to estimate the bullwhip ratio and forecast error 
and to assess the accuracy of the approximate values of inventory holdings and 
inventory costs. Research studies, to be reviewed in Chapter 3, have found the 
following factors to affect the value of sharing demand information: lead time, 
demand process parameters, demand variance, cost ratio and forecasting method 
parameters. Using simulation will also help to evaluate the sensitivity of the value of 
demand information sharing to these factors. 
There is a lack of empirical research in the papers modelling the value of demand 
information sharing. Only two such papers (Wong et al, 2007; Hosoda et al, 2008) 
provide empirical evidence on the value of information sharing. Hosoda et al (2008) 
analyse the sales data of a cold drink supply chain and show that there is value in 
sharing demand information. However, they consider only three data series. Wong et 
al (2007) explore 46 series in a toy supply chain but restrict their analysis to 
calculation of the Bullwhip Effect. There is no examination of inventory costs, as in 
papers that theoretically quantify the value of demand information sharing, e.g. Lee 
et al (2000), Yu et al (2002). There is a need for a more comprehensive empirical 
analysis to evaluate demand information sharing models.  
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1.3. Research Aims and Objectives 
The overall research aim of this thesis is to analyse the value of demand information 
sharing in supply chains, based on more realistic assumptions than in previous 
research. 
There are two supply chain strategies for sharing demand information: either to share 
downstream demand or not to do so. If the supply chain members decide to share this 
demand information, there are different approaches to utilising this shared demand in 
their forecasts. A Centralised Demand Information Sharing (CDIS) approach is 
presented in this thesis.  The value of this approach is quantified based on various 
performance metrics such as amplification of demand variance, forecast error, 
inventory holdings and inventory cost.   
Based on the theoretical background and research motivations, six objectives have 
been formulated for this research: 
1. To critically analyse and improve the current demand information sharing 
approaches discussed in the literature. 
2. To extend the upstream translation of demand to a general ARMA (p, q) 
process for non-optimal forecasting methods.  
3. To analyse the Downstream Demand Inference (DDI) approach and reflect on 
the implications for the value of sharing demand information.  
4. To evaluate the performance of demand information sharing approaches with 
the help of simulation experiments, in the light of relaxed model assumptions.  
5. To analyse the effect of lead time, demand variance, autoregressive parameters, 
moving average parameters, cost ratio and forecasting method parameters on 
the value of demand information sharing approaches.  
6. To test the empirical validity and utility of the theoretical and simulation results 
on a large set of real world data.  
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1.4. Methodology 
The research follows three research methods, namely mathematical analysis, 
simulation and testing on empirical data. The relationship between the three methods 
is illustrated in Figure 1-1:  
 
Figure 1-1 Methodology of the Research 
We take a purely deductive approach in this thesis. The research will follow by 
developing a theoretical structure based upon well specified assumptions. These are 
then expressed in operational terms in the mathematical analysis stage. This 
mathematical model will be tested on empirical data as well as being simulated. 
Simulation is required as some approximate equations are used in the mathematical 
analysis. Simulation will also be used in order to gain a better understanding of the 
performance of CDIS and the factors that affect its value. The results attained from 
the simulation will also be tested on empirical data. Results of mathematical analysis 
will be tested on empirical data in order to ensure the applicability of the theory in 
real world situations.  
1.5. Thesis Structure 
In Chapter 2, an overview of the Bullwhip Effect is presented. Discussions are 
structured around the evidence, causes, control and mathematical analysis of the 
Bullwhip Effect. 
Mathematical 
Analysis 
Simulation Testing on 
Empirical Data 
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In Chapter 3, the supply chain model is presented, concentrating on the demand 
process, forecasting methods, inventory policy and performance metrics used in this 
research. 
A literature review on the upstream translation of demand is presented in Chapter 4 
and results are extended for multi-stage ARMA (p, q) processes for non-optimal 
forecasting methods.   
In Chapter 5, we review and analyse the demand information sharing approaches in 
the literature and present two new approaches. 
Chapter 6 starts with a literature review of Downstream Demand Inference. We 
analyse this approach and show that it is not feasible for some forecasting methods. 
In Chapter 7, the design of the simulation experiment is discussed and the results of 
the experiment are presented in Chapter 8. 
Chapter 9 assesses the empirical validity and utility of the analytical and simulation 
results on a set of data from a European superstore. 
Finally, in Chapter 10, we summarise the findings from each chapter and discuss the 
conclusions of this thesis. Managerial implications and limitations of the research are 
discussed, along with opportunities for future research.  
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2. The Bullwhip Effect 
2.1. Introduction 
In supply chains, in addition to the physical flow of products downstream, there is a 
flow of information from downstream to upstream members, such as placement of 
orders.  
The demand seen by upstream members is not the consumer demand of products, as 
each member in the supply chain adjusts their orders according to forecasting 
methods and inventory policies. It has been observed in many supply chains (Lee et 
al, 1997a) that orders placed in this fashion have a tendency to become more variable 
as they move upstream in the supply chain or further away from the consumer. As 
this demand variability amplifies as one moves up the supply chain, the orders seen 
by the upstream stages of a supply chain have more variability than the orders seen 
by the downstream stages. This phenomenon of increasing demand variability in 
supply chains is known as the Bullwhip Effect.  
 
Figure 2-1 Amplification of Demand Variability in Supply Chains 
         (Lee et al, 1997a) 
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The Bullwhip Effect results in huge operating costs for upstream suppliers in supply 
chains. Because of higher variability, these members either incur high inefficiencies 
or lack of customer responsiveness (Ouyang et al, 2006). Lee et al (1997a) estimated 
an increase of 12 ? 25 percent operating cost due to the Bullwhip Effect. Other 
studies (e.g. Lee et al, 1997b; Cooke, 1999) have estimated that, by eliminating the 
Bullwhip Effect, the US grocery industry alone would save $30 billion each year. 
Ireland and Bruce (2000) studied the financial impact of the Bullwhip Effect in the 
retail industry in the USA and found that it lost between $7 and $12 billion in sales 
annually because of out-of-stock situations. Sterman (2006) remarked that the 
Bullwhip Effect was the most significant factor in the inventory write-off of  $2.25 
billion of obsolete inventory by Cisco Systems.   
In this chapter, we present a literature overview of the Bullwhip Effect, before 
proceeding to a more detailed critique in subsequent chapters.  
2.2. Early Research on the Bullwhip Effect 
The Bullwhip Effect, introduced in section 2.1, is a term first used by Lee et al 
(1997a). The term is new, but the phenomenon is well-established. Forrester (1958, 
1961) was the first to analyse amplification of demand variability. Forrester 
discussed its causes and remedies in the context of industrial dynamics by modelling 
the linkages between business activities in terms of flow of information, materials, 
money, manpower and capital equipment. In acknowledgement of this contribution, 
the phenomenon is also known as Forrester?s Effect.  
Burbidge (1991) reported the phenomenon of increase in demand variations in the 
context of controlling production and inventory. Various other studies regarding 
inventory volatility (Blinder, 1982; Blanchard, 1983; Blinder, 1986; Kahn, 1987) 
discussed effects similar to the Bullwhip Effect. The phenomenon was also 
experienced by players in the inventory management experimental beer game 
introduced by Sterman (1989), also known as the Beer Distribution Game. This is 
one of the most popular simulation games used to introduce students and managers to 
demand variance amplification in supply chains. The game involves independent 
inventory decision making by players. The players rely only on the orders from their 
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neighbouring players. Sterman (1989) discusses the amplification in demand 
variability upstream and the systematic irrational behaviour of the players that causes 
this amplification.  
2.3. Literature Overview of the Bullwhip Effect 
Miragliotta (2006) divides the literature on the Bullwhip Effect into three streams: 
measurement and empirical assessment, causes, and remedies for the Bullwhip 
Effect. We use the same grouping except that we divide the first stream of 
Miragliotta (2006) into empirical evidence and mathematical analysis. As one of the 
objectives of this research is the quantification of the Bullwhip Effect, this further 
classification helps us clarify the contributions of papers providing empirical results 
and those offering theoretical insights into the Bullwhip Effect, based on 
mathematical models. As noted in section 1.2, there are very few papers that 
combine mathematical and empirical analyses. 
The literature review in this section is thus divided into four streams: empirical 
evidence, causes, control and mathematical analysis. We start the review by looking 
at papers that provide empirical evidence of the bullwhip phenomenon in real life 
supply chains. After discussion of these empirical findings, we discuss the second 
stream in the literature, concerning the causes of the Bullwhip Effect. The third 
stream reviews the papers suggesting ways to control the Bullwhip Effect. Finally, 
we look at the papers that mathematically analyse the amplification of demand 
variability. 
2.3.1. Empirical Evidence 
We mentioned in sub-section 2.2 that Lee et al (1997a) first coined the term 
?Bullwhip Effect?. This term originated from an examination of the order patterns at 
Procter and Gamble for their product ?Pampers?. Lee et al (1997a) report that, 
although the consumer demand for the product was steady, there was a high degree 
of variability in the orders to the distributors and even higher variability was 
observed at the raw material provider. Lee et al (1997a, 1997b) detail the occurrence 
of the Bullwhip Effect in other products such as noodles, soups and printers. 
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There is certainly no lack of evidence of the Bullwhip Effect from real world supply 
chains. Phenomena similar to those discussed in the above paragraph have been 
observed in empirical data in various other industries. Table 2-1 (page 14) lists 
papers providing empirical evidence of the Bullwhip Effect published in the last 
twenty years. Many earlier studies (e.g. Forrester, 1961) have provided examples of 
amplification of demand variability from real life and the literature is full of such 
examples. This review of the past twenty years is not necessarily exhaustive, but 
includes six papers that were not identified by Miragliotta (2006) who presented a 
similar literature review on empirical evidence of the Bullwhip Effect. 
Many papers have analysed demand variance amplification in the grocery industry. 
Holmstrom (1997) reported a grocery supply chain where variability, as measured by 
the standard deviation of weekly demand relative to average weekly demand, 
increases from 9 to 29 for two different product groups going from consumer 
demand to plant supply. Gill and Abend (1997) presented the case study of Wal-Mart 
and how the demand variability amplifies when Wal-Mart places orders on their 
suppliers. Fransoo and Wouters (2000) observed ten weeks of daily demand data of 
two supply chains for ready-made pasteurised meals. Using the ratio of the 
coefficient of variation of production demand to consumer demand to calculate the 
Bullwhip Effect, they found an average amplification of 1.78 in both chains. 
Hammond (1994) reported a case study of the product, Barilla, and found 
amplification of demand variance in the supply chains for pasta. A similar effect has 
been observed in the dry grocery industry (Kurt Salmon Associates, 1993). 
Dejonkheere et al (2003) graphically display the order data at a retailer and its 
manufacturer for a product in the fast moving consumer goods sector. The graph 
clearly indicates that the order at the manufacturer is more variable than the order at 
the retailer. Disney (2007) analysed the sales pattern of Tesco, a major UK retailer, 
and found that Tesco had a bullwhip problem. The store replenishment system 
unnecessarily amplified the daily variability of workload by 185% in the distribution 
systems.  
Evidence has also been presented in other retail sectors. Hameri (1996) has analysed 
the sales pattern of A4 size paper compared to the demand at the paper mill. He 
found that 75% of the orders from the paper wholesaler to the mill were never 
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required by the final consumer. He suggested that the retailer should share the 
consumer demand information with the sales office, wholesaler and the paper mill. 
Wong et al (2007) measured the Bullwhip Effect of multiple toy products in a supply 
chain with high demand volatility, seasonality and high risk of inventory 
obsolescence. Utilising the ratio of the coefficient of variation, Wong et al (2007) 
showed that high demand variance amplification exists in nearly all 46 products 
considered. Lee et al (1997a) graphically displayed a retailer store?s sales of a 
product and their orders to the suppliers. While the variation of sales was very low, 
the orders placed on the supplier for the same product had very high variability. 
Similar data were exhibited in Lee et al (1997b) for a soup manufacturer, whose 
leading brand had highly seasonal sales. When the order data in the supply chain 
were observed, the shipments from the manufacturer to the distributor varied highly 
compared to the retailer?s sales. 
Terwiesch et al (2005) explored demand variance amplification in the semiconductor 
and computer industry. They compared the ratio of demand variance at the retailer to 
the manufacturer, between the two industries, and concluded that the computer sector 
is less volatile than the semi-conductor sector. The amplification of demand variance 
in the semi-conductor industry has also been illustrated by Greek (2000). Lee et al 
(2004) observed that data from various computer and computer accessory companies 
such as Hewlett Packard, Xilinx, Canon, 3Com, Raychem and Intel, clearly indicated 
the existence of the Bullwhip Effect. Hejazi and Hilmola (2006) presented two case 
studies in the furniture and international electronics sectors and observed the 
Bullwhip Effect in both supply chains.  
Sterman (2006) graphically presented US oil production data from  1950 to 2005. 
The data shows that the oil and gas drilling activities fluctuates about three times 
more than the production. 
Edgehill and Olsmats (1988) presented a case study from the automotive industry 
and discussed the order variance amplification of a close-coupled production 
distribution system. Using examples ranging from the automotive industry to camera 
manufacturers, Blackburn (1991) argued that the time delay between supply chain 
links is a major source of the Bullwhip Effect. He showed that, by using time 
compression tactics, the mean squared error could be halved. Avery et al (1993) 
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discussed the case of an automotive assembler which procures wire harness from a 
manufacturer. They illustrate the presence of the Bullwhip Effect in the automotive 
market as the order variability increases from the automobile assembler to the 
manufacturer of wire harness. The manufacturer procures ?steel tubes? to produce 
wire harness and the order variability of the tube supplier is higher than the order 
variability of the wire harness manufacturer. Fine (1998) discussed the effect of 
Gross Domestic Product on the machine tool industry. According to his research, 
from 1961 ? 1991, the Gross Domestic Product of the USA had a variability of 2 to 3 
percent. This affected the sales of automobiles in the USA, which had a variability of 
around 20%. The orders placed by automotive component suppliers on the machine 
tool industry resulted in variability of between 60 to 80 percent. However, the 
measure of variability was not specified by the author. Taylor (1999) analysed an 
automotive supply chain and found that the standard deviation of daily order sizes 
increases as the order moves upstream. The standard deviation of OEM demand is 
0.88, then 1.63 at final assembly, 2.17 at pressing, 3.64 at blanking, 3.05 at the 
service centre and 13.76 at the steel mill for the order of raw materials. McCullen 
and Towill (2002) discussed bullwhip in a global supply chain for mechanical 
products. A study of the complex mechanical systems manufacturer, with three 
factories in the UK, showed that when the sales of a certain product ranged from 70 ? 
150, the production orders were ranging between 20 ? 270.  
In the following table (Table 2-1) the studies providing empirical evidence are listed 
along with the type of evidence provided. The type of evidence is divided into two 
categories: example and case study. When a paper only reports summary empirical 
evidence of demand variance amplification, we term such evidence as an ?example?. 
On the other hand, if a paper undertakes detailed analysis of a specific case of the 
Bullwhip Effect, such empirical evidence is called a ?case study?.  
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Paper Industry Evidence Type 
Edgehill and Olsmats 
(1988) 
Automotive Case Study 
Blackburn (1991) Various from Automotive to 
Cameras 
Examples 
Avery et al (1993) Automotive Examples 
Kurt Salmon Ass. (1993) Grocery Case Study 
Hammond (1994) Grocery Case Study 
Hameri (1996) Paper Making Case Study 
Gill and Abend (1997) Retail Case Study 
Holmstrom (1997) Grocery Examples 
Lee et al (1997a) Home & Personal Care Examples 
Lee et al (1997b) Soups, Printers Case Study 
Fine (1998) Machine Tools Examples 
Taylor (1999) Automotive Case Study 
Fransoo and Wouters 
(2000) 
Perishable Food Case Study 
Greek (2000) Semi Conductor  Examples 
McCullen and Towill 
(2002) 
Mechanical Parts Case Study 
Dejonkheere et al (2003) FMCG Examples 
Lee et al  (2004) Computer & Computer 
Accessory  
Examples 
Terwiesch et al (2005) Computer and Semi-
 conductor 
Case Study 
Hejazi and Hilmola (2006) Electronics and Furniture Case Studies 
Sterman (2006) Oil Industry Examples 
Disney (2007) Retail Supermarket Case Study 
Wong et al (2007) Toys Case Study 
Table 2-1 Empirical Evidence of the Bullwhip Effect  
(Adapted from Miragliotta (2006)) 
 
In this sub-section, we provided an overview of empirical evidence of the Bullwhip 
Effect. We observe that the literature contains many examples of the demand 
variance amplification phenomenon. The empirical evidence is spread across many 
industries including groceries, automotive, electronics, computers and food. Some 
studies offer detailed analysis of a specific case; others are limited to short examples.  
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Although the quality of evidence is variable, it all points towards the existence of the 
Bullwhip Effect. 
The existence of the phenomenon has led to research into the causes of demand 
variance amplification, which we discuss in the next sub-section. 
2.3.2. Causes of the Bullwhip Effect 
Another important stream of research focuses on evaluating the causes of the 
Bullwhip Effect. Lee et al (1997a) presented four causes of the Bullwhip Effect. The 
four causes are Demand Signal Processing, Rationing and Shortage Gaming, Batch 
Ordering and Price Fluctuations. 
2.3.2.1. Demand Signal Processing 
Lee et al (1997a) mathematically identified that the Bullwhip Effect will naturally 
occur when forecasting is performed by multiple stages in a supply chain using an 
Order-up-to (OUT) policy. An OUT policy is where the inventory is reviewed at 
regular intervals and, at each of these intervals, an order is placed to bring the 
inventory to a pre-defined level. The upstream member will place the order based on 
the demand it receives, which is not the actual consumer demand of the products. 
The upstream member adjusts their orders according to the forecasting method, OUT 
inventory policy and lead time, and this results in an increase in the demand 
variance. Graves (1999) mathematically showed that the variability of an ARIMA (0, 
1, 1) demand process at the retailer will amplify even when Single Exponential 
Smoothing (SES), which is the optimal forecasting method for such demand, is 
utilised. Chen et al (2000a, 2000b) showed that demand variance is amplified when 
the Simple Moving Averages (SMA) or SES method is employed, assuming an AR 
(1) demand process and an OUT inventory policy. Dejonkheere et al (2003) 
investigated the effect of inventory policies on demand variance amplification and 
confirmed that the Order-up-to inventory policy (OUT) is a contributor to the 
Bullwhip Effect. They mathematically showed that the OUT policy will always 
result in demand variance amplification, irrespective of the forecasting method 
employed. Other papers (e.g. Chen, 1998; Hanssens, 1998; Lee et al, 2000; Wong et 
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al, 2007) have mathematically shown that demand signal processing is a major 
contributor to the Bullwhip Effect.  
The literature on mathematical analysis of demand signal processing is reviewed 
more extensively in sub-section 2.3.4. 
2.3.2.2. Rationing and Shortage Gaming 
Lee et al (1997a, 1997b) argued that rationing and shortage gaming is a major cause 
of the Bullwhip Effect and occurs in situations where the demand exceeds the 
production capacity. In these situations, the manufacturer may ration or allocate 
supplies to the retailers. On recognising the rationing criteria, the retailer may place 
orders exceeding the required quantity, to secure a greater share of the supplies from 
the manufacturer. This gives the manufacturer a false impression of the true demand 
and they in turn place large orders on their suppliers.  This results in increased 
variability of the demand as it moves upwards in the supply chain. Cachon and 
Lariviere (1999) examined how the choice of allocation mechanism impacts retailer 
actions and supply chain performance and produces the Bullwhip Effect. Cheung and 
Zhang (1999) explored cases where, due to rationing, the retailer places a large order 
and then cancels the remaining balance when the required quantity has been 
received. They show that such order cancellations cause the Bullwhip Effect. Paik 
and Bagchi (2007) use simulation to show how rationing and shortage gaming results 
in the amplification of demand variability.  
2.3.2.3. Batch Ordering 
A common practice in industry is not to place orders on the upstream link as soon as 
demand arises. Instead, the individual demands are batched or accumulated before 
placing the orders and thus, instead of frequent orders, weekly, biweekly or monthly 
orders are placed. This is done for various reasons including economies of scale, 
distribution efficiencies, and MRP or similar calculations.  
Lee et al (1997a) identified that order batching is a major contributor to demand 
variance amplification. If the retailer is using batch ordering, the manufacturer would 
observe large orders in some periods and no orders in other periods. This results in 
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amplifying the variability in demand and contributes to the Bullwhip Effect, as these 
activities destroy the connection between the actual demand patterns of the 
customers and the upstream links of the supply chain. Cachon (1999) showed that 
when a retailer orders in fixed periodic cycles and in multiples of fixed batch sizes, 
the Bullwhip Effect occurs naturally. Jung et al (1999) investigated the correlation of 
suppliers? demand and capacity utilisation when buyers? orders are impacted by 
batching and concluded that suppliers prefer infrequent large orders, which results in 
demand variance amplification. Moinzadeh and Nahmias (2000) argued that batch 
ordering results in variance amplification and suggested correlated ordering to reduce 
this amplification. Riddalls and Bennett (2001) examined the effect of batch 
production costs on the Bullwhip Effect. They found that the amplification of 
variability is related to the remainder of the ratio between the batch size and average 
demand. Holland and Sodhi (2003) quantified the Bullwhip Effect that occurs due to 
order batching. They assume orders to be an integer multiple of the batch size and 
they model demand noise as random identically and independently distributed (i.i.d.) 
errors or deviations from the optimal order size. Simulations were run for five 
different batch sizes and the results were analysed statistically. They concluded that 
the increase in order variance is directly proportional to the square of the batch size 
and to the variance of the order deviations. 
Pujawan (2004) compared the mean and variance of two lot sizing rules: Silver Meal 
and Least Unit Cost. With the help of mathematical models, he examined the order 
quantity and interval produced by the two rules under low demand variability. The 
study reveals that addition of an appropriate amount to an order may significantly 
reduce order variability. The results provide insights on the choice of lot sizing rules 
to be applied by a channel of a supply chain in determining ordering policies. 
Potter and Disney (2006) extended the above study by considering a full range of 
batch sizes, both greater and lesser than the average demand. They derive an 
expression for the bullwhip ratio when the consumer demand is deterministic. With 
the help of simulation, they looked at the impact of changing batch size on the 
Bullwhip Effect in a production control system. They show that the Bullwhip Effect 
from batching can be reduced if the batch size is a multiple of average demand.  
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In this section, we have found that batch ordering results in demand variance 
amplification. All the above papers show that when supply chain links resort to order 
batching, the Bullwhip Effect will take place.  
2.3.2.4. Price Fluctuations 
It has been observed as a common practice of retailers that they offer discounts and 
clearance prices. For price-elastic products, when the price of an item changes, the 
customer demand will also change. Customers buy in bulk quantities when the price 
of the product is low. Then, customers stop buying when the price returns to normal, 
until they have exhausted their inventory. Thus, the actual customer sales do not 
match the true demand for the product when there are price variations. This results in 
the Bullwhip Effect, as the variance of the order quantities amplifies upstream 
because of the temporary price reductions. Reiner and Fichtinger (2006) 
mathematically, and with the help of simulation, show that price fluctuations lead to 
the Bullwhip Effect. Iyer and Ye (2000) and Gavirneni (2006) show that supply 
chain performance is affected if information on discounts is not passed on to the 
upstream link.  
A summary of the papers discussing the causes of the Bullwhip Effect is presented in 
tabular form in Table 2-2. 
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Causes of the Bullwhip Effect Papers 
Demand Signal Processing Lee et al (1997a, 1997b); Chen (1998); 
Hanssens (1998); Graves (1999); Chen et 
al (2000a, 2000b); Lee et al (2000); 
Wong et al (2007) 
Rationing and Shortage Gaming Lee et al (1997a, 1997b), Cachon and 
Lariviere (1999); Cheung and Zhang 
(1999); Paik and Bagchi (2007) 
Batch Ordering Lee et al (1997a, 1997b); Cachon (1999); 
Jung et al (1999); Moinzadeh and 
Nahimas (2000); Riddalls and Bennett 
(2001); Holland and Sodhi (2003); 
Pujawan (2004); Potter and Disney 
(2006) 
Price Fluctuations Lee et al (1997a, 1997b); Iyer and Ye 
(2000); Gavirneni (2006); Reiner and 
Fichtinger (2006)  
Table 2-2 Causes of the Bullwhip Effect 
It is noticeable that few of the papers shown in Table 2-2 are listed under more than 
one cause. The interaction between the four causes has yet to receive serious and 
sustained attention in the academic literature. 
Some papers have identified factors such as time delays (Blackburn, 1991), demand 
uncertainty (Naish, 1994), lead time (Lee et al, 2000), machine breakdown (Paik and 
Bagchi, 2007), and behavioural factors (Croson and Donohue, 2006) that influence 
the above causes. In the following table (Table 2-3), we list some papers discussing 
various factors resulting in the four causes (as listed in Table 2-2) that lead to the 
Bullwhip Effect.  
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Factors Papers 
Lead Times / Time Delay Blackburn (1991); Chen et al (2000b); 
Lee et al (2000); Paik and Bagchi (2007); 
Lee et al (2000); Cachon and Fisher, 
2000) 
Behavioural Factors Kahn (1987); Eichenbaum (1989); Naish 
(1994); Lee et al (1997a); Croson and 
Donohue (2006) 
Demand Uncertainty Naish (1994) 
Machine Breakdown Taylor (1999); Paik and Bagchi (2007) 
Number of Echelons Paik and Bagchi (2007) 
Table 2-3 Factors Contributing to the Causes of the Bullwhip Effect 
The factors shown in Table 2-3 contribute to the causes of the Bullwhip Effect 
discussed earlier. For example, lead time/time delay, demand uncertainty and number 
of echelons affect demand signal processing, which in turns results in the Bullwhip 
Effect. Similarly, machine breakdowns, behavioural factors and demand uncertainty 
are some factors that can give rise to rationing and shortage gaming in supply chains. 
Identification of these causes aids the development of strategies to alleviate variance 
amplification.  
2.3.3. Control of the Bullwhip Effect 
Another important stream in the literature on the Bullwhip Effect identifies ways to 
control or reduce the Bullwhip Effect.  
In sub-section 2.3.2, we considered the forces that lead to systematic distortion and 
amplification of demand variance or the Bullwhip Effect. In this sub-section, we 
briefly present the combination of activities proposed in the literature to control this 
phenomenon. Lee et al (1997b) group the approaches on the basis of system 
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coordination, namely: Information Sharing, Channel Alignment and Operational 
Efficiency. Information Sharing is the transmission of various kinds of information 
from a downstream site in a timely fashion. Channel Alignment is the coordination 
of pricing, transportation, inventory planning, and ownership between the upstream 
and downstream sites in a supply chain. Operational Efficiency refers to other 
activities that improve performance, such as reduced costs and lead time.  
 
 
Figure 2-2 Ways to Control the Bullwhip Effect (Lee et al, 1997b) 
 
In the following table (Table 2-4), we list various papers investigating the control of 
the Bullwhip Effect. These papers have been grouped according to the causes of the 
Bullwhip Effect discussed in sub-section 2.3.2 and the methods of controlling the 
Bullwhip Effect summarised in this sub-section. 
 
 
 
Information Sharing 
Channel Alignment 
Operational Efficiency 
 
 
 
Ways to Control 
the Bullwhip 
Effect 
M. Ali, 2008, Chapter 2  22 
 
Information Sharing Channel Alignment  Operational Efficiency 
Demand Signal Processing 
Sharing inventory and 
inventory rule data 
(Cachon and Fisher, 2000) 
Demand Information 
Sharing (Bourland et al, 
1996; Gavirneni et al , 
1999; Lee et al, 2000) 
Single Supply Chain 
Forecast (Chen et al, 
2000a) 
Sharing Explanatory 
variables (Aviv, 2002) 
Future order information 
(Zhao et al, 2002) 
Synchronisation in supply 
chain members (Cachon, 
1999) 
Vendor Managed 
Inventory (VMI) (Waller 
et al, 1999, Yu et al, 2002) 
Same Ordering Policy 
(Hieber and Hartel, 2003) 
 
 
Lead Time and Time 
Delay Reductions (Chen et 
al, 2000b; Cachon and 
Fisher, 2000; Lee et al, 
2000; Boute et al, 2007) 
Use of Optimal Time-
 Series Forecasting Models 
(Alwan et al, 2003) 
Multi-echelon Inventory 
Control System 
(Warburton, 2004) 
Use of proportional   
controllers (Disney et al, 
2006) 
 
Rationing and Shortage Gaming 
Demand Information 
Sharing (Bourland et al, 
1996; Gavirneni et al , 
1999; Lee et al, 2000)  
Sharing of Capacity and 
Inventory Data (Gavirneni 
et al, 1999, Gavirneni, 
2002) 
Inventory Balancing and 
Better Return Policies 
using Vendor Managed 
Inventory (VMI) (Waller 
et al, 1999) 
 
 
Batch Ordering 
Demand Information 
Sharing (Bourland et al, 
1996; Gavirneni et al , 
1999; Lee et al, 2000) 
Future order information 
(Zhao et al, 2002) 
 
Vendor Managed 
Inventory (VMI) (Waller 
et al, 1999) 
Correlated ordering 
(Moinzadeh and Nahmias, 
2000) 
Resort to different 
Batching Rules (Kelle and 
Milne, 1999; Riddalls and 
Bennett, 2001) 
Batch size multiple of 
average demand (Potter 
and Disney, 2006) 
 
Price Fluctuations 
Sharing data on prices & 
price changes (Iyer and 
Ye, 2000) 
 
Every Day Low Price  
(Kristofferson and Lal, 
1996) 
Link promotional 
allowances to demand data 
(Dreze and Bell, 2004) 
 
Activity Based Costing 
(Lee et al, 1997b) 
Incorporation of reference 
price in the Forecasting 
Model (Reiner and 
Fitchinger, 2006) 
Table 2-4 Framework to Control the Bullwhip Effect. 
       (Adapted from Lee et al, 1997a; Miragliotta, 2006) 
There are numerous papers showing that the Bullwhip Effect can be controlled by 
sharing information among the supply chain members. Cachon and Fisher (2000) 
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mathematically analyse a single manufacturer, multiple retailer supply chain with 
stationary stochastic consumer demand. Their simulation experiment shows that 
sharing information on the inventory rule and inventory data reduces the supply 
chain costs by between 2.2% and 12.1%, by reducing the distortion from Demand 
Signal Processing. Sharing demand data has been advocated by many authors to 
reduce the effect of demand signal processing and rationing and shortage gaming 
(e.g. Bourland et al, 1996; Gavirneni et al, 1999; Lee et al, 2000). These papers have 
shown that the Bullwhip Effect will be reduced if the demand data is shared with the 
upstream member. Zhao et al (2002) investigated sharing of future orders, while 
Aviv (2002) argued that using shared values of explanatory variables or any such 
advance information will reduce the effect of demand signal processing. Aviv (2002) 
and Chen et al (2000a) have shown that the Bullwhip Effect can be reduced if a 
single forecast is produced for the whole supply chain. 
Gavirneni et al (1999) mathematically showed that sharing data on inventory will 
reduce the variability amplification due to the effects of rationing and shortage 
gaming. Gavirneni (2002) extended this study by exploring how capacity information 
will help in the reduction of the Bullwhip Effect. Iyer and Ye (2000) investigated the 
effect of price fluctuations on grocery supply chains. Their mathematical analysis 
concludes that the supplier may improve his performance by sharing information on 
price fluctuations with the retailer. 
Various papers have discussed the issue of channel alignment to control the four 
causes of the Bullwhip Effect. Yu et al (2002) have investigated Vendor Managed 
Inventory (VMI) to reduce the amplification of demand variance. The study 
concludes that part echelon elimination, as in VMI, will help reduce the effects of 
demand signal processing.  Hieber and Hartel (2003) argued that different inventory 
and ordering policies at different stages of supply chains are a source of the Bullwhip 
Effect. Their mathematical analysis concludes that amplification in variability can be 
dampened if all links in the supply chain use a single ordering policy. Cachon (1999) 
argued that not only the inventory policies but also the forecasting method should be 
synchronised between all members of the supply chain. They mathematically show 
that if all members of the supply chain use the same inventory policy and forecasting 
method, it will result in reduced bullwhip. 
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Waller et al (1999) investigates how a channel alignment programme such as Vendor 
Managed Inventory (VMI) can help reduce the effects of rationing and shortage 
gaming and batch ordering. They discussed the case of a retail supply chain where 
the manufacturer is involved in a VMI programme with many retailers. Firstly, they 
discuss that in the case of inventory shortages, it is easier to ration the supplies as the 
manufacturer can see the widespread disposition of inventory at the retailers. 
Secondly, if the manufacturer is not managing inventory of a major retailer and the 
retailer produces batch orders, this creates chaos in manufacturing. More inventory is 
required by the manufacturer to counter this uncertainty. They argue that the 
uncertainty can be reduced by bringing such major customers into a VMI 
programme. Moinzadeh and Nahmias (2000) recommended that the links should 
submit their orders with the same frequency to take into account the batching effect. 
Both supply chain links place orders with the same frequency in the same periods. 
Kristofferson and Lal (1996) recommended instituting systems that create a more 
demand driven environment. They argue that it is beneficial for the whole supply 
chain to offer ?Every Day Low Price? instead of frequent promotional activities that 
take the supply chain away from the actual consumer demand. ?Every Day Low 
Price? has been used frequently in the grocery industry (Schiller, 1994). Dreze and 
Bell (2003) argue that manufacturers lose money on trade promotions as a result of 
forward buying by retailers. They discuss the concept of scan-back where the 
discount is given to the retailers on the units sold rather than the units bought. Using 
scan-backs will reduce the trade promotional offers, making the manufacturer more 
aware of the actual consumer demand. 
Other papers have explored how increasing operational efficiency will result in 
reduction of the Bullwhip Effect. Alwan et al (2003), using an AR (1) demand 
process, mathematically compared the Minimum Mean Squared Error (MMSE) 
forecasting method (optimal) with Simple Moving Averages (SMA) and Single 
Exponential Smoothing (SES), which are non-optimal for the AR (1) demand 
process. They show that optimal forecasting methods result in less amplification of 
demand variance compared to non-optimal methods. Thus, they conclude that 
practitioners should resort to more operationally efficient forecasting methods to 
reduce the Bullwhip Effect. Warburton (2004) discussed centralising inventory to 
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reduce demand variance amplification. He shows that a multi-echelon inventory 
control system will result in inducing lower variability in the demand upstream 
compared to individually controlled inventory systems. Disney et al (2006) analysed 
a supply chain using Proportional Controller methods. Proportional Controllers are 
based on a control engineering technique used to dampen the response of dynamic 
systems. The authors assume that the supply chain uses an OUT inventory policy. 
They discuss that the orders placed under such an inventory policy have two 
feedback loops: net stock and work in progress (WIP). They introduce the idea of 
using two proportional feedback controllers: one for regulating the net stock error 
feedback and the other for WIP error. They mathematically show that allowing such 
independent feedback loops will result in reduction of the Bullwhip Effect as the 
natural frequency and damping ratio of the OUT policy are decoupled from each 
other. Riddalls and Bennett (2001) examined the effect of batch production costs on 
the Bullwhip Effect. They find a relationship between the Bullwhip Effect and the 
remainder of the ratio between the batch size and average demand. For two links in 
the supply chain, Potter and Disney (2006), with the help of simulation, analyse the 
impact of changing batch sizes on the Bullwhip Effect in a production control 
system. They show that the Bullwhip Effect from batching can be reduced if the 
batch size is a multiple of average demand.  
Several authors (Chen et al, 2000b; Cachon and Fisher, 2000; Lee et al, 2000; Boute 
et al, 2007) have shown that lead times and time delays are major contributors to 
amplification of demand variance. These authors recommend that the supply chain 
members should work towards reduction of lead times and time delays in order to 
reduce this effect. 
Lee et al (1997b) have argued that conventional accounting systems do not enable 
companies to recognise the excessive cost incurred due to forward buying and 
promotions. They recommend that companies should use Activity-Based Costing 
which will reveal various hidden costs such as inventory, storage, special handling 
and premium transportation that offset the benefits of price promotions. Reiner and 
Fitchinger (2006) develop a model where reference prices of a product are used to 
optimise forecasts and inventory decisions. They conclude that incorporating pricing 
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information in forecasting and inventory models will reduce the Bullwhip Effect and 
the average on-hand inventory.  
In this sub-section, we have presented an overview of studies that have investigated 
controlling the Bullwhip Effect by three means: Information Sharing, Channel 
Alignment and Operational Efficiency. Although many of these studies 
mathematically analyse their models, in the next sub-section (sub-section 2.3.4) we 
will specifically discuss studies that quantify the Bullwhip Effect analytically. 
2.3.4. Mathematical Analysis of the Bullwhip Effect 
Many papers have mathematically investigated the existence of the Bullwhip Effect 
and quantified the increase in demand variability. As we use the bullwhip ratio as 
one of the performance metrics (see section 3.7), the papers mathematically 
quantifying demand variance amplification are highly relevant to this research. The 
literature review of these papers has thus become an important issue in this thesis. 
We present an overview of the papers in this sub-section and critically evaluate some 
important papers in this stream of research in Chapters 4 and 5. 
On reviewing the literature, we observe that the supply chain models in these papers 
differ in four respects: demand process, inventory policy, forecasting method and 
bullwhip measure. Kim et al (2006) assume an i.i.d. consumer demand process, while 
Alwan et al (2003) assume AR (1) and Luong and Phien (2007) assume an AR (p) 
process. In terms of inventory policy, papers assume different rules, e.g. Caplin 
(1985) assumes a (s,S) policy, Metters (1997) assumes a cost minimisation model 
while Kahn (1987) assumes an OUT policy. The Bullwhip Effect has been quantified 
using different forecasting methods, e.g. Single Exponential Smoothing (Xu et al, 
2001), Simple Moving Averages (Chen et al, 2000a), Minimum Mean Squared Error 
(Lee et al, 2000). Similarly, different measures have been adopted to quantify the 
Bullwhip Effect, e.g. variance ratio (Chen et al, 2000a), variance difference (Zhang, 
2004a), standard deviation ratio (Wong et al, 2007), and coefficient of variation 
(Fransoo and Wouters, 2000). We list papers in this stream of research in the 
following table and summarise the demand process, inventory policy, forecasting 
method and bullwhip measure used in each paper (Table 2-5). 
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Paper Demand Process Inventory 
Policy 
Forecasting 
Method 
Bullwhip 
Measure 
Metters (1997) Probability 
distribution 
Cost 
minimisation 
model 
Seasonality 
adjusted 
averages 
Ratio of 
Variance / 
Mean 
Graves (1999) ARIMA (0, 1, 1) Base Stock SES Variance ratio 
Chen et al 
(2000a) 
AR (1) OUT SMA Variance ratio 
Chen et al 
(2000b) 
AR (1) OUT SMA, SES Variance ratio 
Xu et al (2001) AR (1) OUT SES Variance ratio 
Alwan et al 
(2003) 
AR (1) OUT MMSE, SMA, 
SES 
Variance ratio 
Dejonckheere 
et al (2003) 
i.i.d. OUT, 
smoothing 
replenish-
 ment  
MMSE, SMA, 
SES 
Coefficient of 
variation 
Zhang (2004a) AR (1) OUT SES, SMA, 
MMSE 
Variance ratio, 
Variance 
difference 
Chandra and 
Grabis (2005) 
AR (p) OUT, MRP MMSE Variance ratio 
Li et al (2005) ARIMA (p, d, q) OUT MMSE Comparison of 
variance of 
sample points 
Disney et al 
(2006) 
i.i.d., ARMA OUT MMSE Variance ratio 
Gaalman and 
Disney (2006) 
ARMA (1, 1) OUT MMSE Variance ratio 
Kim et al 
(2006) 
i.i.d. OUT SMA Variance ratio 
Stamatopolous 
et al (2006) 
AR (1) OUT SES Variance ratio 
Sucky (2006) AR (1) OUT SMA Variance ratio 
Luong (2007) AR (1) OUT MMSE Variance ratio 
Luong and 
Phien (2007) 
AR(p) OUT MMSE Variance ratio 
Table 2-5 Assumptions in Papers Quantifying the Bullwhip Effect 
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Dejonkheere et al (2003) and Kim et al (2006) investigated the Bullwhip Effect by 
assuming independently and identically distributed demand while Metters (1997) 
showed the existence of demand variance amplification by assuming that the 
consumer demand is stochastic and time dependent and has a known  probability 
distribution. Graves (1999) and Lee et al (2000) argued that demand over 
consecutive time periods is rarely statistically independent and that the assumption of 
correlated demand is more appropriate to study the Bullwhip Effect. A common 
assumption in the mathematical analysis of the Bullwhip effect is of an AR(1) 
demand process (e.g. Chen et al, 2000a; Chen et al, 2000b; Alwan et al, 2003; 
Luong, 2007). Other papers analyse the Bullwhip Effect by considering more 
complex demand processes, by assuming ARIMA (0, 1, 1) (Graves, 1999) and by 
simulating ARIMA (p, d, q) processes (Li et al, 2005). As many other supply chain 
assumptions in these papers also vary, the results of these papers and thus the effect 
of demand process on the Bullwhip Effect cannot be directly compared. In this 
research, we assume nine different ARIMA processes (see sub-section 7.3.1). By 
keeping all other factors constant, we discuss the effect of demand processes on 
amplification of demand variability (see sub-section 8.4.1). 
Table 2-5 also shows that an OUT inventory policy is commonly assumed. Disney 
(2007) has found that products accounting for 65% of the sale value at a major UK 
retailer, Tesco, follow forms of an OUT inventory policy.  Dejonkheere et al (2003) 
have shown that an OUT policy will always result in demand variability 
amplification. They demonstrate the existence of the Bullwhip Effect for other 
replenishment rules but claim that smoothing replenishment rules may reduce 
demand variance amplification. Chandra and Grabis (2005) compared the OUT 
policy with a Material Replenishment Planning (MRP) scheme and show the 
existence of the Bullwhip Effect in both policies. Metters (1997) based their 
inventory policy on a cost minimisation model and show that demand variance 
amplification will occur in this model as well. In section 3.4, we discuss the adoption 
of the OUT policy in this research. This is consistent with the practice of 
organisations such as Tesco, and will facilitate critical comparison of this PhD 
research with earlier papers. However, in Chapter 10, we acknowledge that assuming 
one inventory policy (OUT) is one of the limitations of the supply chain model and 
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further research in required to analyse the effect of inventory policy on demand 
variability amplification. 
The third important assumption in mathematical analysis of the Bullwhip Effect is 
the forecasting method. Some authors assume non-optimal forecasting methods, e.g. 
Simple Moving Averages (SMA) (Chen et al, 2000a; Kim et al, 2006; Sucky, 2006) 
and Single Exponential Smoothing (SES) (Chen et al, 2000b; Xu et al, 2001; 
Stamatopolous et al, 2006). All these papers show that the Bullwhip Effect exists 
when non-optimal forecasting methods are employed by the supply chain members. 
Alwan et al (2003), Zhang (2004a) and Stamatopolous et al (2006) compare demand 
variance amplification of non-optimal methods with optimal methods. They show 
that the Bullwhip Effect is present, irrespective of the forecasting method employed. 
However, the mathematical analysis in these papers demonstrates that the 
amplification is more pronounced in the case of non-optimal methods (SMA and 
SES) compared to the optimal methods (Minimum Mean Squared Error (MMSE)). 
As is evident from the above table (Table 2-5), the analysis in the case of non-
 optimal methods is limited to i.i.d. and AR (1) demand processes. In this research, 
we assume three forecasting methods (SMA, SES and MMSE) (section 3.4) and 
calculate demand amplification for a more comprehensive range of nine ARIMA 
demand processes (see section 7.4). 
Finally, the papers mathematically investigating the Bullwhip Effect use different 
measures to quantify the effect. Because the Bullwhip Effect is defined as the 
amplification in demand variability, it has been argued (Zhang, 2004a, Sucky, 2006) 
that the difference or ratio of variance at the stages under consideration are 
appropriate measures. Zhang (2004a) argued that the above two measures are 
equivalent measures and linked by ( ) ( )tDifference Ratio Var d= ?1 . We use the 
variance or the bullwhip ratio in this research (section 3.7). The above table (Table 2-
 5) shows that this measure has been used by most of the papers. Thus, adopting the 
variance ratio will help in making comparisons with previous research. 
The papers discussed in this section have used different patterns to model consumer 
demand and all papers have shown an increase in demand variability. Similarly, 
papers using different inventory policies have shown the presence of the Bullwhip 
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Effect, although the amplification may vary with different policies. The papers show 
similar effects for forecasting methods, where optimal forecasting methods may 
result in lower demand variance amplification compared to non-optimal forecasting 
methods. However, demand variance increases along the supply chain in all cases. 
Finally, the literature review in this section shows that although the Bullwhip Effect 
can be quantified by using different measures, all measures will show its presence. 
Thus, the literature review shows that the Bullwhip Effect is present in supply chains 
for a wide range of model assumptions regarding demand process, inventory policy, 
forecasting methods and bullwhip measures.  
2.4. Anti-Bullwhip Effect 
In the previous sub-sections, we discussed the phenomenon of the Bullwhip Effect 
and presented a brief literature review of its empirical evidence, mathematical 
analysis, causes and control. Some papers (Lee et al, 2000; Li et al, 2005; Hosoda 
and Disney, 2006; Luong and Phien, 2007) have identified that the Bullwhip Effect 
does not take place for certain values of the demand parameters. Lee et al (2000) 
show mathematically that for an AR (1) demand process, the variability of the 
demand does not amplify when the value of the autocorrelation coefficient ( ? ) is 
negative. The same result is also given by Hosoda and Disney (2006) and Luong and 
Phien (2007), who show that for an AR (1) demand process, the Bullwhip Effect 
only occurs when ? is strictly positive. 
Li et al (2005) also demonstrate the existence of the inverse of the Bullwhip Effect 
(BE), the Anti-Bullwhip Effect (ABE), whereby the variability in the order is less 
than the variability in the demand itself. They show via simulation that for any 
ARIMA (p, d, q) demand process, there exists a transition surface for parameter 
vectors ( , )? ? where the vectors ( , )? ?  are defined as:  
),...,,( 21 pP ???= and ),...,,( 21 q???=? . 
When the transition surface is reached, there is information invariance and the 
variability in orders is equal to the variability in the demand. The Bullwhip Effect is 
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observed on one side of this transition surface and the Anti-Bullwhip Effect on the 
other side. 
They show the following transition points for the three cases when i) d, q = 0, ii) p, d 
= 0 and iii) d = 0 & p = q. 
ARIMA (p, 0, 0): The transition point is 0i =? . ( [1, ])i p?  
ARIMA (0, 0, q): The transition point is 0i =? . ( [1, ])i q?  
ARIMA (r, 0, r): The transition point is i i=? ? . ( [1, ])i r?  
The literature on the Anti-Bullwhip phenomenon is very limited. There are only a 
few papers that discuss its occurrence and only one paper (Li et al, 2005) uses the 
term ABE. Apart from the above transition points for certain stationary models, there 
is no mathematical derivation of the transition surface for demand parameter 
vectors ( , )? ? that indicates when a decrease in demand variability will take place. 
Luong and Phien (2007) have shown that, in addition to the demand parameters, the 
definition of the Bullwhip Effect region also depends on the value of the lead time. 
With the help of simulation, they show values of the Bullwhip Effect for some 
parameter regions and lead time ranges for an AR (2) process (Luong and Phien, 
2007). 
As mentioned in section 1.3, this research focuses on reducing the amplification of 
demand variability. Thus, in the subsequent chapters, we restrict attention to the 
cases and parameter regions where the Bullwhip Effect takes place. As discussed in 
the literature review above, the parameter regions for the Bullwhip Effect have not 
been established for non-stationary processes (Li et al, 2005). In the simulation 
experiment, we generate five stationary and four non-stationary ARIMA processes 
(see sub-section 7.3.1). For the non-stationary processes used in the simulation, we 
simulate the stationary and invertible range, and then choose parameters exhibiting 
the Bullwhip Effect (see sub-section 7.3.9). 
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2.5. Conclusions 
In this chapter, we have given an overview of the literature on the Bullwhip Effect. 
The overview has been presented by classifying the literature into four streams: 
empirical evidence, causes, control and mathematical analysis. 
The first stream of papers provides empirical evidence of the presence of the 
Bullwhip Effect in various industries such as groceries, automotive, electronics, and 
toys. The evidence is of variable quality, but all the papers demonstrate the existence 
of the Bullwhip Effect.  
The proof of the existence of the Bullwhip Effect has led various authors to look into 
the causes of the phenomenon. Four causes of the Bullwhip Effect have been 
discussed by Lee et al (1997a). These are Demand Signal Processing, Rationing and 
Shortage Gaming, Batch Ordering and Price Fluctuations. We present an overview of 
these causes and also discuss various factors that may lead to these four causes.  
Identification of the causes of the Bullwhip Effect has helped the development of 
strategies to control the amplification in variability. A review of papers discussing 
how to control the effect has been presented. The papers in this stream of research 
have been classified on the basis of three control elements: Information Sharing, 
Channel Alignment and Operational Efficiency.  
The fourth stream of research, mathematical analysis of the Bullwhip Effect, is 
particularly relevant to this Ph.D. research. The analyses in these papers are not 
directly comparable, owing to differences in model assumptions. The supply chain 
models in these papers differ according to four major assumptions: demand process, 
inventory policy, forecasting method and bullwhip measure. We first consider the 
assumption of demand process and observe that nearly all papers consider a single 
demand process. Thus, the effect of the demand process on the Bullwhip Effect has 
not been analysed in the literature. In order to fill this gap, we examine nine ARIMA 
demand processes and discuss the effect of demand processes on the amplification of 
demand variance. This effect is also discussed in the empirical analysis where 19 
demand processes have been identified in the empirical data. We analyse 12 out of 
19 ARIMA processes where there are a sufficient number of time series (see section 
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9.4 for details). Secondly, the OUT inventory policy has been employed in nearly all 
the papers. As inventory policy is not the focus of this Ph.D., we also assume an 
OUT policy so as to be able to compare this research with other papers. In terms of 
forecasting methods, we observe that three forecasting methods have been used in 
the literature, SMA, SES and MMSE. We use all three methods in this research. In 
previous research, the analysis of the Bullwhip Effect is limited to an AR (1) process 
for non-optimal forecasting methods. Using simulation, we calculate the Bullwhip 
Effect for two non-optimal forecasting methods, SMA and SES, for nine ARIMA 
processes.   
Finally, we discuss the inverse of the bullwhip phenomenon called the Anti-Bullwhip 
Effect. The literature review shows that for some values of demand parameters and 
lead times, the variability of orders is less than the demand variability. In Chapter 1, 
we stated that one of the objectives of this research is to investigate the reduction of 
the amplification of variability. Thus, in simulation and empirical analysis, we 
restrict the focus to the parameter regions and values of lead times where the 
Bullwhip Effect takes place. 
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3. Supply Chain Model  
3.1. Introduction 
In the previous chapter, we presented a literature review on the Bullwhip Effect and 
the Anti-Bullwhip Effect. In this chapter, we will give a brief overview of the supply 
chain model used in this research. 
We consider a two level supply chain having one upstream member, e.g. a 
manufacturer, and one downstream member, e.g. a retailer.  The upstream and 
downstream members may be other than a manufacturer and a retailer, e.g. 
warehouse and distributor, but this does not affect the results. We consider the flow 
of a single product from the manufacturer to the retailer. The flow of orders and 
demand information is from the retailer to the manufacturer, as shown in Figure 3-1: 
 
Figure 3-1 Flows in the Supply Chain Model 
We assume that the replenishment lead times are fixed, known and strictly positive, 
denoted by l from the manufacturer to the retailer and L from the supplier to the 
manufacturer. Throughout this thesis, time is treated as a discrete variable. In the 
following sub-sections, we will discuss the demand process, forecasting methods, 
inventory policy and the ordering decisions made by the supply chain links in the 
model shown in Figure 3-1.  
Manufacturer 
Retailer 
Flow of 
 Demand  
Information 
Consumer Demand 
Order to the Supplier 
Flow of 
Product 
Order to the 
Manufacturer 
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3.2. Demand Process 
We assume that the demand process at the retailer can be represented by a univariate 
ARIMA (p, d, q) model (Box et al, 1994). There are three major reasons for using the 
ARIMA representation of demand in this research. Firstly, evidence from the M1 and 
M3 forecasting competitions has shown the ARIMA methodology to be competitive 
in terms of forecast accuracy (Makridakis et al, 1982; Makridakis and Hibon, 2000) 
and, hence, provides support for the assumption of ARIMA processes. Secondly, as 
outlined in the research aims and objectives (see section 1.3), this research quantifies 
the value of information sharing in supply chains. Many papers (e.g. Graves, 1999; 
Raghunathan, 2001; Zhang, 2004b; Gilbert, 2005) have adopted univariate ARIMA 
models and claimed that there is no value in sharing demand information in supply 
chains. Thus, in order to undertake critical analysis of these papers, an ARIMA 
demand process is assumed. Thirdly, other papers (Chen et al, 2000a; Chen et al, 
2000b; Alwan et al, 2003; Zhang, 2004a) have analysed the value of sharing demand 
information using ARIMA models for non-optimal forecasting methods. But all these 
papers limit their analysis to an AR (1) demand process. Thus, on finding various 
gaps in the information sharing literature based on univariate ARIMA modelling, it is 
appropriate to resolve these issues before moving on to an alternative demand model, 
e.g. the state space representation. 
Supply chain modelling, based on the upstream translation of demand (discussed in 
detail in Chapter 4), shows that ARIMA demand at the retailer is translated into 
ARIMA demand at the manufacturer (Gilbert, 2005) if the retailer uses an OUT 
policy. Thus, if ARIMA demand at the retailer is estimated using an MMSE 
forecasting method, the order placed on the manufacturer will also follow an ARIMA 
process. We consider a single retailer ? single manufacturer supply chain. Various 
papers have used a similar supply chain model, but for a single manufacturer ? 
multiple retailer scenario. Simchi-Levi and Zhao (2003) and Cheng and Wu (2005) 
have modelled the cross-correlation of multiple demand streams by assuming an 
identical correlation coefficient between any two distinct demand streams. Zhang and 
Zhao (2004) used a similar supply chain model for a single manufacturer and all 
retailers, assuming a Vector Autoregressive (VAR (1)) demand process at the 
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retailers. Zhang (2006) has used a state space formulation to analyse multiple streams 
of demand in a similar supply chain model. 
Hamilton (1994) has shown that the sum of uncorrelated ARMA processes remains 
an ARMA process. It can easily be shown to be true for ARIMA processes. Now 
consider a supply chain having multiple retailers and a single manufacturer and 
assume that the demands at the retailers are uncorrelated ARIMA processes. 
According to the results on the upstream translation of demand, the retailer?s orders 
will also follow ARIMA processes. In this case, the sum of all the retailer?s orders, 
or the final order on the manufacturer, will also follow an ARIMA process if the 
retailers? orders are uncorrelated. Thus, keeping the assumptions discussed above, 
the results of this doctoral research can be applied to a single manufacturer ? 
multiple retailer supply chain model. However, further research is required to 
investigate correlated ARIMA processes. 
We assume that the time series of demand (dt), if stationary, can be represented by an 
ARMA (p, q) process given by: 
1 1 2 2 1 1 2 2... ...
 R R R
 t t t p t p t t t q t qd d d d? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ?= + + + + + ? ? ? ?             3-1 
where 1, ,...,t t t pd d d? ?  are the observed demands at time periods t, t-1,?, t-p and all 
time periods are treated as distinct variables. ?  is a constant and ? >0, 
1 2, ,..., p? ? ? are the autoregressive parameters, and 1 2, ,...,R R Rq? ? ?  are the moving 
average parameters at the retailer. 1, ,...,t t t q? ? ?? ? are the noise terms in the observed 
demands at time periods t, t-1, t-2, ?, t-q. The noise terms are i.i.d. i.e. independent 
and identically distributed, with mean zero and constant variance ??
 2 . Rewriting 
equation 3-1 using the backshift operator, B, and dropping the constant term (? ): 
( )( ) ( )Rt tB d B? ? ?=                                                                                      3-2 
where:  
= ? ? ? ?
 = ? ? ? ?
 2
 1 2
 2
 1 2
 ( ) 1 ...
 ( ) 1 ...
 p
 p
 R R R R q
 q
 B B B B
 B B B B
 ? ? ? ?
 ? ? ? ?
  
M. Ali, 2008, Chapter 3  37 
 
We assume that the above demand is invertible, i.e. the roots of the following 
characteristic equation lie outside the unit circle. 
? ? ? ? =
 2
 1 21 ... 0
 R R R q
 qx x x? ? ?                             3-3 
The assumption of invertibility is important here, as Gilbert (2005) has modelled an 
invertible demand process, whereas Gaur et al (2005) assumed non-invertibility. We 
argue that for any non-invertible representation of an ARMA (p, q) process, there 
exists an invertible representation of the process and vice versa. Thus, if a retailer 
uses a non-invertible ARMA (p, q) representation, they may instead use the 
invertible representation of the demand. Hamilton (1994) comments that, in order to 
calculate the noise terms associated with any time series, the current and past values 
of demands are required if an invertible representation is used. On the other hand, in 
order to calculate the noise terms for a non-invertible representation, the future 
values of demands are required. Thus, it is not feasible to use the non-invertible 
representation. 
We assume that the time series of demand (dt), if non-stationary, can be represented 
by an ARIMA (p, d, q) process given by: 
? ? ?? =( ) ( ) ( )d Rt tB d B                              3-4 
where B? = ?1 .   
Standard conditions for the stationarity and invertibility of the dth differenced series 
are assumed to apply (Box et al, 1994).  
3.3. Forecasting Methods 
In order to examine the effect of the forecasting method, we assume that the supply 
chain members employ three different methods to forecast the lead time demand: 
Minimum Mean Squared Error (MMSE), Simple Moving Averages (SMA) and 
Single Exponential Smoothing (SES). The MMSE forecast is the MSE-optimal 
forecasting method for a specified ARIMA demand process.  
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The inclusion of non-optimal forecasting methods in this research reflects practice in 
industry. Forecasting is seen as an increasingly critical organisational capability 
(Sanders and Manrodt, 2003) but relatively few studies have assessed the usage, 
familiarity and satisfaction of forecasting methods among practitioners. Table 3-1 
provides a summary of nine such surveys highlighting the methods that ranked first, 
according to these criteria. It shows that practitioners are more familiar, satisfied and 
more likely to use simpler forecasting methods compared to sophisticated 
quantitative methods. Thus, in the real world, a forecasting method is not always 
chosen on the basis of its optimality or accuracy but rather its simplicity and ease of 
use. 
 Year 
of 
Study 
Researcher(s) Familiarity 
(%) 
Satisfaction 
(%) 
Usage     
(%) 
1 2001 Klassen and Flores   27 (SMA) 
2 2000 Mady  67(SA)   40 (SA) 
3 1997 Sanders     32.9 (SMA) 
4 1995 Mentzer and Kahn 92 (SMA) 72 (SES) 92 (SES) 
5 1994 Sanders and Manrodt 96 (SMA) 45.8 (RA) 33.5 (SMA) 
6 1992 Sanders 96 (SLP)   37 (SMA) 
7 1987 Dalrymple     30.6 (Na?ve) 
8 1984 Mentzer and Cox 85 (SMA) 67 (RA) 36 (RA) 
9 1984 Sparkes and McHugh   58 (SMA) 
 
Table 3-1 Use of Forecasting Methods in Industry ? Survey Results 
Legend: 
SMA ? Simple Moving Average     SES ? Single Exponential Smoothing 
RA    ? Regression Analysis   SLP ? Single Line Projection 
SA    ? Simple Average of all data 
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The practitioners? choice of two non-optimal forecasting methods, SMA and SES, is 
quite rational (NB: SES is optimal only for an ARIMA (0, 1, 1) process and is a non-
 optimal method for all other ARIMA demand processes). They are more intuitive, 
especially for those with a limited mathematical background (Boylan and Johnston, 
2003). Difficult and sophisticated, but optimal, methods are seen as not worth the 
added effort (Sanders and Mandrot, 1994). Johnston et al (1999) compared the 
forecasting accuracy of combinations of SMA, a non-optimal forecasting method, 
with SES, the optimal forecasting method for an ARIMA (0, 1, 1) demand process. 
They showed that the variance of the forecast error for the non-optimal method was 
typically less than 3% higher than the optimal method. 
The three forecasting methods are briefly discussed below: 
3.3.1.  Minimum Mean Squared Error (MMSE) Forecast 
This is the expectation of the lead time demand, based on the known current demand 
and is given by: 
+
 =
 = ?
 1
 ? ( )
 L
 L
 t t i t
 i
 D E D D                                                         3-5 
The MMSE forecast follows the Box-Jenkins Methodology where the model is 
identified, followed by demand parameter estimation. Once a model with required 
parameters is selected, the calculation of the above conditional expectation is quite 
straightforward. This will be further discussed in Chapter 7.  
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3.3.2. Simple Moving Averages (SMA) 
The Simple Moving Average forecasting method is the arithmetic mean of the n most 
recent observations. Every forecasting period, the newest observation is included and 
the oldest is dropped out. Mathematically, 
?
 + ?
 =
 ? ?
 = = ? ?? ??
 1
 1
 0
 1? ?
 n
 L
 t t t i
 i
 D LD L d
 n
                  3-6 
where, 
+1
 ?
 tD = forecast value for next period 
n   = number of terms in the Simple Moving Average. 
Empirical results from the subset of 111 series from the M1 competition show that 
statistically sophisticated or complex methods do not necessarily provide more 
accurate forecasts than simpler methods like SMA (Makridakis and Hibon, 1979). 
3.3.3. Single Exponential Smoothing (SES) 
In the Simple Moving Average method discussed above, the past observations are 
weighted equally; SES assigns exponentially decreasing weights as the observations 
get older. Single Exponential Smoothing performed very well in the M1 and M3 
competitions and its results in M1 were generally better than those of Simple Moving 
Averages (Makridakis et al, 1982). 
There are two ways in which an SES forecast can be expressed. The first approach is 
to assume that an infinite data history ( , , ,...1 2? ?t t td d d ) is available. Then, the 
?infinite representation? of SES is as follows: 
? ?
 ?
 + ?
 =
 = = ??1
 0
 ? ? [ (1 ) ]L jt t t j
 j
 D LD L d                                    3-7 
This can also be expressed recursively: 
? ?+ = + ?1? ?(1 )t t tD d D  
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+= 1
 ? ?L
 t tD LD                     3-8           
where, 
+1
 ?
 tD is the forecast value for the next period, td   is the actual value of the observation 
in period t, ?  is the smoothing constant and L is the lead time from the supplier to 
the manufacturer. (The same method applies for the retailer.) 
The second approach is to assume a finite data history ( , , ,...,t t td d d d? ?1 2 0 ). Then the 
?finite representation? of SES is given by: 
( ) ( ) ( ) ( )? ? ? ? ? ? ? ??+ ? ?= + ? + ? + + ? + ?2 11 1 2 1 0? [ 1 1 ... 1 1 ]t tLt t t tD L d d d d d       3-9 
Although the ?infinite representation? is more convenient for some mathematical 
derivations, the ?finite representation? is clearly more realistic. 
In the following table (Table 3-2), we summarise the forecasting methods employed 
in this research. 
Forecasting Method Mathematical Representation 
Minimum Mean Squared Error 
(MMSE)  +
 =
 = ?
 1
 ? ( )
 L
 L
 t t i t
 i
 D E D D  
Simple Moving Averages 
(SMA) 
?
 + ?
 =
 ? ?
 = = ? ?? ??
 1
 1
 0
 1? ?
 n
 L
 t t t i
 i
 D LD L d
 n
  
Single Exponential Smoothing 
(SES) 
(Finite Representation) 
( ) ( )
 ( ) ( )
 ? ? ? ? ?
 ? ? ?
 ? ? ?
 ? ?
 = + ? + ? + +
 ? + ?
 2
 1 2 3
 2 1
 1 0
 ? [ 1 1 ...
 1 1 ]
 L
 t t t t
 t t
 D L d d d
 d d
  
Table 3-2 Supply Chain Model Forecasting Methods 
The choice of the two non-optimal forecasting methods is not comprehensive but 
reflects their popularity, as shown in Table 3-1. There is scope to extend this research 
by examining the other non-optimal forecasting methods highlighted in this table. 
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3.4. Inventory Policy 
We consider a periodic review inventory system where supply chain links review 
their inventory level every period. The links base their inventory replenishments on a 
simple order-up-to (OUT) policy.  Each link replenishes the demand during the last 
period plus the change being made in the order-up-to levels. 
We discussed in sub-section 2.3.4 that the assumption of an OUT policy is a 
common theme in nearly all the papers mathematically analysing the Bullwhip 
Effect. As the focus of this research is not to evaluate or compare inventory policies, 
we also assume an OUT inventory policy. This consistency with past papers will 
help facilitate critical analysis of the current literature. There is also some empirical 
evidence from Disney (2007) on the use of the OUT policy. As noted in sub-section 
2.3.4, he analysed the inventory policy of Tesco, a major UK retailer, and found that 
forms of OUT policy were being used in products accounting to 65% of the sales 
value.  
3.5. Ordering Decisions by the Retailer 
Demand (dt) is realised by the retailer, following an ARIMA (p, d, q) process given 
by equation 3-1 above. The retailer then forecasts its lead time demand and places an 
order Yt on the manufacturer. Now the order placed by the retailer on the 
manufacturer becomes the demand at the manufacturer: 
Yt = order placed by retailer on the manufacturer = demand at the manufacturer 
In an OUT inventory policy such an order would be calculated by: 
1( )t t t tY d S S ?= + ?                  3-10 
where -1 and t tS S  are the order up to levels for the periods t and t-1 respectively. 
These are calculated by: 
+ +
 + +
 = =
 = +? ?1 1
 1 1
 ( ) ( )
 L L
 t t i t t i t
 i i
 S E d d k Var d d                 3-11 
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where 1
 p
 k
 p h
 ?
 ? ?
 = ? ? ?+? ?  for the standard normal distribution function ? , p is the 
retailer?s shortage cost and h is the retailer?s holding cost. We assume the total lead 
time to be L+1, the replenishment lead time plus a review period, as recommended 
by Silver et al (1998). 
3.6. Ordering Decisions by the Manufacturer 
On realising its demand (Yt), the manufacturer now makes its lead-time forecast. 
Using the same inventory policy as the retailer, the manufacturer will then place an 
order Zt on its supplier. The sequence of events of ordering, receipt and shipment for 
the manufacturer are the same as assumed by Lee et al (2000:630). 
In this research, we will discuss various information sharing approaches that can be 
used by the manufacturer in making its lead-time forecast. These approaches are 
discussed in detail in Chapter 5.  
3.7. Performance Metrics 
In order to quantify the value of sharing demand information, we compare various 
performance metrics for the different approaches. In the following sub-sections, we 
briefly discuss these metrics. 
3.7.1. The Bullwhip Ratio 
One of the objectives of this thesis is to look at the amplification of variance 
upstream in supply chains, the Bullwhip Effect, and examine whether sharing 
demand information helps in reducing this variance. Thus, we quantify the Bullwhip 
Effect for each scenario in each stage. 
In Chapter 2 (Table 2-5), we listed various bullwhip measures used in the literature. 
In this research, the variance ratio or the Bullwhip Ratio is used to quantify the 
Bullwhip Effect. Mathematically, 
( )
 Bullwhip Ratio = B=
 ( )
 Var order
 Var demand
                                     3-12 
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We will use the ratio B, as most of the papers discussed in the literature overview 
(Table 2-5) adopt this as a measure of the Bullwhip Effect. Deriving an equation to 
calculate the Bullwhip Ratio for an ARIMA (p, d, q) process is mathematically very 
complex; therefore we compare this performance metric via simulation (discussed 
further in Chapter 7). 
3.7.2. Forecasting Accuracy 
Mean Squared Error (MSE) is used in this research to measure forecast error and to 
compare the results for each approach. Whereas the Bullwhip Ratio utilises the 
variance of orders and demands, it is quite natural to use MSE, as it incorporates the 
variance of the forecast error. Mathematically, 
( )2
 1
 1? ?
 n
 MSE L L
 t t t
 t
 f D D
 n
 =
 = ??                                                                                         3-13 
where ? MSEtf is the lead time mean squared error. 
The MSE approach has the disadvantage of heavily weighting outliers, as the errors 
are squared. In the simulation experiment (see Chapter 7), the theoretical demand is 
generated in a controlled environment and outliers are not expected. However, this is 
not necessarily the case when empirical data are addressed (see Chapter 9), where 
MSE may not prove to be a reliable measure of forecast error. Another problem with 
MSE is its scale dependency which does not allow comparison of the forecast error 
across multiple time series with different levels which may occur in the empirical 
data.  
Fildes (1992) and Armstrong and Fildes (1995) argue that no single forecast error 
measure will capture the necessary complexity of the error distribution (particularly 
for empirical data). Therefore, there is a need to examine more than one error 
measure. Further, they recommend using dimensionless error measures, i.e. those 
invariant to scalar transformations. In our empirical analysis, we also use the 
dimensionless Mean Absolute Percentage Error (MAPE) and compare the results of 
MSE with MAPE (see Chapter 9). 
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We use the following mathematical expression for MAPE. 
1
 ?1? 100
 L L
 n
 t tMAPE
 t L
 t t
 D D
 f
 n D
 =
 ?
 = ??                                    3-14 
where ?MAPEtf is the lead time mean absolute percentage error. 
A disadvantage of MAPE is the problem of division by zero. This will not be a 
problem in the empirical analysis of this research as we cleaned the data and one of 
the criteria for selection of time series was no periods of zero demand.  
Many other forecast error measures have been proposed in the literature such as 
Mean Error (ME), Symmetric Mean Absolute Percentage Error (sMAPE) and Mean 
Absolute Scaled Error (MASE). Mean Error (ME) will only be helpful when there is 
a systematic error or bias in the forecast, which is not the focus of this research. In 
terms of percentage errors, sMAPE resolves the issue of division by zero introducing 
the division of the error by the average of the actual observation and the forecast. 
However, although sMAPE is symmetric in the interchange of forecasts and actuals, 
it is asymmetric in its treatment of positive and negative errors (Goodwin and 
Lawton, 1999). Another percentage error, MASE, is based on the in-sample mean 
absolute error from a benchmark forecast method such as the na?ve method. A 
disadvantage of MASE is that the in-sample MAE may make MASE vulnerable to 
outliers in the historical time series (Kolassa and Sch?tz, 2007). This discussion 
shows that there is a potential of using more complex percentage error measures than 
MAPE but they are not without their problems. To satisfy the requirements of this 
research, MAPE is chosen as it is the simplest scale-independent measure.  
3.7.3. Inventory Holdings and Costs 
Boylan and Syntetos (2006) argue that if we fix the inventory rule, the inventory 
holdings and the inventory costs become accuracy-implication performance metrics 
for the forecasting process. Therefore, we quantify the benefits of sharing demand 
information by comparing the average inventory holdings and average inventory 
costs for various approaches (see Chapter 5) and assuming the OUT inventory policy 
in all cases. 
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3.7.3.1. Average Inventory Holdings  
The average inventory holdings can be approximated by the following equation (Lee 
et al, 2000, based on Silver and Peterson, 1985): 
1
 1
 ( )
 ( )
 2
 L
 t
 t t t i
 i
 E Y
 I T E Y
 +
 +
 =
 = ? +??                            3-15 
where ?tI  is the approximate average inventory and  tT is the order up to level of the 
manufacturer. 
As this is an approximate equation, we simulate average inventory holdings and 
compare the average inventory holdings for different scenarios. 
Lee et al (2000) assumed an AR (1) demand process at the retailer and used equation 
3-15 to derive the following equation (3-16) for the relative decrease in inventory 
due to sharing demand information (see detailed discussion on the paper in sub-
 section 5.3.1). They compare the inventory holdings for the No Information Sharing 
(NIS) approach, where supply chains do not share demand information, with 
Demand Information Sharing (DIS), where demand information is shared among the 
supply chain members. The relative decrease in the inventory holdings (?I = (I-I?)/I) 
of DIS (average inventory I?) and NIS (average inventory I) is mathematically shown 
to be:  
V'
 1-
 VI=
 1
 2k (1- ) V
 ?
 ? ?
 ?
 +
                                         3-16 
where V? and V are the variances of the lead time forecast in the case of DIS and 
NIS approaches respectively. ? is the autocorrelation coefficient and ? is the standard 
deviation of the noise term in the AR (1) process, while k is the safety factor. 
Based on the above equation, the authors present the following results: i) ?I is 
increasing in ?, ii) ?I is increasing in ?/? and iii) ?I is increasing in k. They also 
show that the percentage reduction in inventory is increasing in L, the lead time from 
the supplier to the manufacturer.  
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In this thesis we will also look at the impact of the four factors (demand parameters, 
noise in retailer?s demand, safety factor and lead time) on the percentage reduction in 
inventory and thus on the value of sharing demand information. 
3.7.3.2. Average Inventory Costs 
Lee et al (2000) derive an expression for the average inventory costs for the NIS and 
DIS approaches for an AR (1) demand process and show that: 
Inventory Cost (NIS) > Inventory Cost (DIS) 
Deriving an equation to calculate the average costs for an ARIMA (p, d, q) process is 
mathematically very complex; thus we compare this performance metric via 
simulation (discussed further in Chapter 7). 
In the simulation and empirical analysis, we simulate the inventory holdings and, 
based on this, subsequently calculate the inventory cost for each period. The 
inventory cost is then averaged across all the periods. This is further discussed in 
Chapter 7.  
3.8. Conclusions 
In Chapter 2, we discussed four major assumptions in the papers mathematically 
investigating the Bullwhip Effect: demand process, forecasting methods, inventory 
policy and performance metrics (bullwhip measures). In this chapter, we presented 
an overview of the supply chain model adopted in this research and discussed these 
four assumptions. 
The demand process in this research is modelled as an ARIMA (p, d, q) process. We 
argue that the existing literature of demand information sharing, assuming ARIMA 
models, has various problems and gaps. A stream of research papers, using restrictive 
assumptions, claims that there is no value in sharing demand information. Secondly, 
the mathematical analysis for non-optimal forecasting methods is limited to an AR 
(1) process. Finally, empirical evidence from the M1 and M3 competitions shows the 
competitive performance of the ARIMA methodology. Thus, it is appropriate to 
model the demand in terms of the ARIMA framework in this research.  
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Various papers assume only one demand process and thus the effect of the demand 
process on the value of demand information sharing has not been explored. In the 
simulation experiment conducted in this thesis, nine ARIMA (p, d, q) processes are 
assumed, enabling an investigation of the demand process dependent behaviour of 
the value of demand information sharing.  
In terms of forecasting methods, we assume MMSE, SMA and SES. The inclusion of 
non-optimal forecasting methods (SMA and SES) is based on the familiarity, use and 
satisfaction of these methods.  
The most restrictive assumption that is adopted in this thesis is the OUT inventory 
policy. An OUT inventory policy is a common theme in nearly all papers in this 
stream of research and thus consistency with them will facilitate critical analysis of 
the current literature. The aim and objectives, as given in Chapter 1, do not focus on 
the investigation of inventory policies. Therefore, looking at the effect of inventory 
policies on the value of demand information sharing has been left as a topic for 
further research. 
Finally, we present four performance metrics, namely Bullwhip Ratio, forecast error, 
inventory holdings and inventory costs, to be used in the research to quantify the 
value of information sharing. Forecast error is measured by Mean Squared Error 
(MSE) and Mean Absolute Percentage Error (MAPE). We compare these 
performance metrics for the different supply chain approaches discussed in Chapter 5 
and, based on the results, we assess the value of sharing demand information in 
supply chains. 
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4. Upstream Demand Translation 
4.1. Introduction 
Upstream demand translation is a term used to describe how a demand process at a 
supply chain member is mathematically translated to its upstream member. Studying 
the upstream translation of demand provides insights into the relationships between 
the order process and the original ARIMA demand process. The demand process at 
each stage contributes to the order process at the next stage of the chain, so upstream 
demand translation gives an entire depiction of the demand processes and their 
parameters.  
Upstream translation of demand is important in terms of recognising and evaluating 
the forecasting challenges faced by upstream nodes. By deriving mathematical 
relationships, various papers (e.g. Graves, 1999; Chen et al, 2000a; Hosoda and 
Disney, 2006) have analysed the Bullwhip Effect and the value of information 
sharing in supply chains.  
We first discuss upstream demand translation when supply chain links employ 
optimal forecasting methods. A method is said to be optimal if the forecasting 
method has minimum mean squared error (see section 3.3) and thus we also refer to 
an optimal forecast as an MMSE forecast in this thesis. In section 4.2, we present a 
literature review of papers discussing upstream demand translation using an ARIMA 
framework and an optimal forecasting method. Based on this framework, we discuss 
multi-stage demand translation. 
Next, we consider some non-optimal forecasting methods (see section 3.3 for details 
on the rationale for using non-optimal methods). Alwan et al (2003) is the only paper 
that considers upstream translation in the case of non-optimal forecasting methods. 
One of the limitations of their paper is the assumption of an AR (1) demand process. 
Secondly, their analysis is limited to two-echelon supply chains. Finally, when they 
discuss the upstream characterisation for SES, they assume that the supply chain 
links have an infinite data history.  
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In this chapter, we generalise upstream demand translation for non-optimal 
forecasting methods to ARMA (p, q) processes for a multi-stage supply chain. We 
assume a finite data history when we consider demand translation for the SES 
method as this ?finite representation? is a more realistic assumption than the 
alternative representation, which assumes an infinite data history.  
4.2. Optimal Forecasting Methods 
For optimal forecasting methods, we divide the literature review into stationary and 
non-stationary demand processes. 
4.2.1. Upstream Translation of Stationary Processes 
Various papers have analysed the mathematical relationship between demand and 
orders of a supply chain link using an optimal forecasting method. Lee et al (2000) is 
one of the first studies to examine the upstream translation of demand when an 
MMSE forecasting method is used by the supply chain members (see detailed 
discussion on the paper in sub-section 5.2.1). They assume that the demand at the 
retailer (downstream member) follows an AR (1) process and that the supply chain 
links employ an Order up to (OUT) inventory policy.  
The AR (1) demand process at the downstream member is:  
1t t td d? ? ??= + +                   4-1 
Lee et al (2000) show mathematically that this demand process will translate into the 
following demand process at the upstream member: 
? ? ?
 ? ? ? ?
 ? ?
 + +
 ? ?
 ? ?
 = + + ?
 ? ?
 2 1
 1 1
 1 (1 )
 1 1
 L L
 t t t tY Y                 4-2 
This is an ARMA (1, 1) process with L being the lead time from the upstream to the 
downstream member. The following figure illustrates the translation of demand 
processes, as shown by Lee el al (2000). 
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Figure 4-1 Demand Translation as shown by Lee et al (2000) 
Alwan et al (2003) and Hosoda and Disney (2006) consider a three echelon supply 
chain and make the same assumptions about the demand process and inventory 
policy. Alwan et al (2003) take a mathematical approach, while Hosoda and Disney 
(2006) adopt discrete control theory and simulation methodologies. Both papers, 
using these different methodologies, confirm the result of Lee et al (2000) that an AR 
(1) process will translate into an ARMA (1, 1) process. Moreover, both papers show 
that the orders placed further upstream in the supply chain will also follow an 
ARMA (1, 1) process. Thus, if the demand process at any supply chain member 
follows an ARMA (1, 1) process, the order placed by them will also follow the same 
process, as shown in the following figure: 
 
Figure 4-2 Multi-Stage Translation 
(Alwan et al, 2003; Hosoda and Disney, 2006) 
ARMA (1, 1) 
AR (1) 
ARMA (1, 1) 
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M. Ali, 2008, Chapter 4  52 
 
The papers then look at the upstream translation of the constant term, the 
autoregressive and the moving average terms of the demand process. They show that 
the constant term and autoregressive parameters keep their original values when 
translated upstream. On the other hand, the values of the moving average parameters 
change at every upstream echelon and are functions of the autoregressive parameters 
and the lead times. This is shown in the following figure (Figure 4-3) for ARMA (1, 
1) processes at both supply chain links where R? and M? are the moving average 
parameters for the retailer and the manufacturer respectively, L is the lead time from 
the supplier to the manufacturer and L? means ?  to the power of L. 
 
Figure 4-3 Upstream Translation of Demand Parameters for ARMA (1,1) 
(Alwan et al, 2003; Hosoda and Disney, 2006) 
Zhang (2004b) obtained general results on the upstream translation of demand for an 
ARMA (p, q) demand process. He showed the existence of an ARMA-In-ARMA-
 Out (AIAO) property linking the demand processes between any two stages of the 
supply chain. According to the AIAO property, ARMA demands at any supply chain 
link generate ARMA orders for the subsequent upstream link, when the ordering 
decisions are based on an OUT inventory policy and an MMSE forecasting method.   
Suppose the ARMA (p, qR) demand process can be represented as: 
( )( ) ( )Rt tB d B? ? ?=                  4-3 
?  
?  
Demand 
parameters 
at upstream 
member 
Demand 
parameters at 
downstream 
member 
?  
?  
( )(1 ) /(1 )
 ( )(1 ) /(1 ) 1
 R L R
 M
 R L
 ? ? ? ? ??
 ? ? ? ?
 ? ? ? +
 =
 ? ? ? +
  
R?  
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where qR denotes the number of moving average terms in the ARMA process at the 
retailer. 
According to the AIAO property, the order generated from such a demand will 
follow an ARMA (p, qM) process represented by: 
=( )( ) ( )Mt tB Y B a? ?                    4-4 
where qM = max (p, qR-L) and ta is the noise term, at time t, in the manufacturer?s 
demand and t ta ??= . ? is the factor by which all the noise parameters in the process 
increase and  
0
 L
 j
 j=
 =?? ?   where { }, , ,...? ? ?1 2 3 are weights in the Infinite Moving 
Average Representation 
0
 ? ?
 ?
 ? ?
 =
 =?t t j t j
 j
 d and 
1
 p
 R
 k j k j k
 j
 ?
 =
 = ??? ? ? ? . 
The upstream translation of demand for an ARMA (p, q) process is shown in the 
following figure: 
 
Figure 4-4 Upstream Demand Translation for ARMA (p, q) (Zhang, 2004b) 
The mathematical analysis by Zhang (2004b) agrees with the findings of Alwan et al 
(2003) and Hosoda and Disney (2006) that the constant term and the autoregressive 
parameter remain the same in the upstream members. Further, Zhang (2004b) 
generalises the upstream translation of the vector moving average parameter (? ) as 
shown in the following figure (Figure 4-5) where k? is the factor by which the kth 
p ? q ? L p > q ? L 
ARMA (p, q) 
ARMA (p, p) ARMA (p, q - L) 
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moving average parameter of the manufacturer increases and is given by 
1
 1
 ( )
 k
 j L k j L k
 j
 k
 ? ? ?
 ?
 ?
 ?
 + ? +
 =
 ?
 =
 ?
  
 
Figure 4-5 Upstream Demand Translation of Moving Average Parameters 
(Zhang, 2004b) 
The AIAO property identified by Zhang (2004b) is based on the assumption that the 
demand process is invertible. Gaur et al (2005) extended this analysis by discussing 
the retailer?s order translation when the retailer?s demand follows a non-invertible 
ARMA (p, q) process. We argued in section 3.2 that it is not feasible to use the non-
 invertible representation of ARMA (p, q) and the invertible representation should 
instead be used. Hence, for upstream demand translation of ARMA (p, q), we 
consider only the result of Zhang (2004b). 
4.2.2. Upstream Translation of Non-Stationary Processes 
Graves (1999) looked at the upstream translation of an ARIMA (0, 1, 1) process. He 
also assumed an OUT inventory policy. The forecasting method employed in the 
supply chain model is the Exponentially Weighted Moving Averages (EWMA) 
method which is the optimal method for an ARIMA (0, 1, 1) process. 
p > qR ? L 
Moving Average Parameter in 
demand (?R) 
M
 k k k= +? ? ?  
p ? qR ? L 
M
 k k k= +? ? ?  /M Rk L k+=? ? ?  
k ? p p < k ? qR - L 
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The ARIMA (0, 1, 1) demand process is of the form: 
? ?
 ? = + ?1 1
 R
 t t t td d ? ? ? ?                   4-5 
Graves (1999) showed that the order generated from the above demand will also 
follow an ARIMA (0, 1, 1) demand process represented as: 
? ?
 ? = + ?1 1
 M
 t t t tY Y a a? ?                   4-6 
where 1 1 ? ?= + ?[ ( )]Rt ta L  and 
1
 1 1[ ( )]
 R
 M
 RL
 ?
 ?
 ?
 ?
 =
 + ?
 . 
Thus, if the demand process at a downstream member is an ARIMA (0, 1, 1) process, 
and the supply chain links utilise the optimal forecasting method and an OUT policy, 
the demand process at all upstream members will also be ARIMA (0, 1, 1). 
 
Figure 4-6 Multi-Stage Demand Translation for ARIMA (0, 1, 1) (Graves, 1999) 
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Gilbert (2005) obtained general results on demand translation in supply chains for an 
ARIMA (p, d, q) process. He showed that, if the demand process at the retailer 
follows an ARIMA (p, d, qR) process, then the order process to the manufacturer will 
be ARIMA (p, d, qM) where qM = max (p+d, qR -L) and L is the lead time from the 
manufacturer to the retailer. 
An ARIMA (p, d, qR) demand process can be represented as: 
? =( ) ( ) ( )d Rt tB d B? ? ?                                                                          4-7 
or ? ? ?=( )( ) ( )Rt tB d B  
An alternative representation is: 
( )( )t td B? ?=  
So: 
( )
 ( )
 ( )
 R B
 B
 B
 ??
 ?
 =  
We derive the equations to calculate { }1 2, ,..., L? ? ?  later in this sub-section. 
Gilbert (2005) showed that, on using the optimal forecasting method and an OUT 
policy, the demand process at the upstream link will be translated as: 
( ) ( ) ( )d Mt tB Y B a? ?? =                   4-8 
where t 1 2 and 1 ...t o o La K K? ? ? ?= = + + + +  
The coefficients of the moving average parameters 1 2, ,...,
 M M M
 q? ? ? can be expressed 
as:  
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1
 1 1
 2 1 1
 2 2
                                                                                              
                                                                      
?? ?
 ? ??? ?
 +
 + +
 ?
 = +
 ?
 = + +
 M L
 o
 M L L
 o o
 K
 K K
 1 1 2 2 1 1
         
.
 .
 .
 ...                                   
? ?? ? ? ? ?
 ? ?+ + ? + ? ? +?= + + + + +L q L q L q q LMq q
 o o o oK K K K
  
We assume nine ARIMA (p, d, q) models in simulation (see sub-section 7.3.1). We 
now derive equations to calculate 1 2 3, ,? ? ? and 1 2, ,..., L? ? ?  from the above general 
equations given by Gilbert (2005). We restrict the derivations to 1 2 3,  and ? ? ?  as it is 
shown in sub-section 7.3.1 that, based on the selection of models for the 
simulation, , 0 for n > 3n n =? ? . 
( ) ( ) dB B? ?= ?  
where 21 21? ? ?= ? ? ?( ) ...B B B  
Based on the above, we can derive the following equations for 1 2,? ? and 3? : 
1 1
 2 2 1
                                                                                                                  4-9
 ( 1)
                                                             
2
 d
 d d
 d
 ? ?
 ? ? ?
 = +
 ?
 = ? ?
 1
 3 3 2
                               4-10
 ( 1) ( 1)( 2)
                                                            4-11
 2 6
 d d d d d
 d
 ?? ? ? ? ? ?= ? + +
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Since
 ( )
 ( )
 ( )
 R B
 B
 B
 ??
 ?
 =
 1 1 1
 2 2 1 1 2
                                                                                                            4-12
                                                                   
R
 R
 ? ? ?
 ? ? ? ? ?
 = ?
 = + ?
 3 3 1 2 2 1 3
 4 1 3 2 2 3 1
 5 2 3 3 2 4 1
 3 3 2 2
                              4-13
                                                                                     4-14
 .
 .
 .
 R
 L L L L
 and
 ? ? ? ? ? ? ?
 ? ? ? ? ? ? ?
 ? ? ? ? ? ? ?
 ? ? ? ? ? ?
 ? ? ?
 = + + ?
 = + +
 = + +
 = + + 1 1                                                                                  4-15?
    
See proof of Equations 4-9 ? 4-15 in Appendix 4A. 
We present the following figure (Figure 4-7) to show the links between the research 
papers on the upstream translation of demand in the case of an optimal forecasting 
method. 
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Figure 4-7 Upstream Demand Translation (Optimal Forecasting Method) 
4.2.3. Multi-Stage Demand Translation 
Based on the result of Gilbert (2005), we now present the following figure (Figure 4-
 8) to show the demand translation in a multi-stage supply chain for an ARIMA (p, d, 
q) process at the most downstream link. 
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Figure 4-8 Multi-Stage Demand Translation for ARIMA (p, d, q) 
 
The above figure clearly shows that the demand process at any upstream link of the 
supply chain depends not only on the consumer?s demand process but also on the 
cumulative lead time from that link to the consumer. It also shows that if 
1
 1
 m
 R
 j
 j
 p d q L
 ?
 =
 + ? ?? , then the propagation beyond the mth link upstream is ARIMA (p, 
d, p + d). 
4.2.3.1. Order Translation for MA (q) Processes 
In this sub-section, we discuss upstream demand translation when the consumer?s 
demand follows an MA (q) process. This is a special case of ARIMA demand 
translation because, when q ? L, the MA (q) process will translate into a random 
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process. If q ? L, then max (p + d, q ?L) = 0. In this case the demand process 
ARIMA (0, 0, q) at the retailer will translate into an order process ARIMA (0, 0, 0) 
or a random process at the manufacturer. As we assume qR ? L in the experiment 
(with one exception: qR=2, L=1(see Chapter 7)), the MA (q) process in the 
simulation translates into a random process. The multi-stage translation for an MA 
(q) demand process is shown in the following figure (Figure 4-9): 
Figure 4-9 Multi-Stage Demand Translation for MA (q) 
This is an important corollary of Gilbert (2005), as sharing demand information 
using the DIS approach (as advocated in the literature; see section 5.2) will not be 
valuable when q ? L for MA (q) demand processes. 
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4.3. Non-Optimal Forecasting Methods 
Various papers (e.g. Chen et al, 2000a; Chen et al, 2000b; Zhang, 2004a; 
Stamatopoulos et al, 2006) have discussed the effect of non-optimal forecasting 
methods on upstream demand propagation. All these papers restrict their analysis to 
the effect of forecasting methods on order variability. Although they derive 
expressions for the demand process at the upstream member, they do not represent 
them in the form of an ARMA model. 
Chen et al (2000a) examined the ratio of upstream to downstream demand variance, 
or the Bullwhip Ratio, when the demand pattern at a retailer follows an AR (1) 
process. They showed that when the retailer uses a Simple Moving Average method 
to forecast their lead time demand there is an increase in variability. This increase in 
variability is a function of three parameters: the number of historical terms (n) used 
in the Simple Moving Average, the lead time (L), and the autoregressive parameter 
( ? ).  
Chen et al (2000b) performed a similar analysis on an AR (1) demand process based 
on Single Exponential Smoothing. They concluded that the increase in variability is 
an increasing function of ?, the smoothing parameter, an increasing function of L, the 
lead time, and a decreasing function of ? , the autoregressive parameter.  
Zhang (2004a) compared the Bullwhip Effect for an AR (1) demand process for 
SMA, SES and an MMSE optimal forecasting method. He showed that the MMSE 
forecasting method results in lowest variability and lowest inventory. 
Using an AR (1) demand process, Stamatopoulos et al (2006) argued that previous 
studies have only incorporated SES with a fixed smoothing constant. They compare 
the increase in variability when a best exponential smoothing method is chosen. A 
?best? exponential smoothing method is one that minimises the mean square error. 
They show that this method results in lower variability than SES (fixed smoothing 
constant) and SMA, and thus can be used as an alternative to an MMSE forecasting 
method. 
Alwan et al (2003), in addition to comparing the Bullwhip Effect for different 
forecasting methods, also examined demand propagation for an AR (1) demand 
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process in the case of non-optimal forecasting methods. They employ two non-
 optimal forecasting methods, SMA and SES, and study the upstream translation of 
demand when these two methods are used by the supply chain links.  
They assume an AR (1) process as shown in equation 4-1. First, they look at the 
upstream demand translation when the supply chain links use the SMA method as 
given by equation 3-6 (see section 3.3). They mathematically show that if the 
downstream member employs the SMA of the n most recent demands, an AR (1) 
process will translate into an ARMA (1, n) process at the upstream member given by: 
1
 M
 t t t t nY Y a a? ? ?? ?= + + ?                            4-16 
where ? =
 +
 M L
 L n
 and ?=
 +t t
 La
 L n
  
Alwan et al (2003) then look at upstream demand translation when the supply chain 
links use the SES forecasting method. They assume that an infinite data history 
( , , ,...t t td d d? ?1 2 ) is available at the retailer. In this case, the retailer can use the 
?infinite representation? of SES: 
? ?
 ?
 + ?
 =
 = ??1
 0
 ? (1 ) jt t j
 j
 D d       
They show that an AR (1) process at the retailer (equation 4-1) will translate into an 
ARMA (1, ? ) process: 
? ? ?
 ?
 ? ?
 =
 = + + ??1
 1
 M
 t t t j t j
 j
 Y Y a a                            4-17 
where 
?
 ?
 =
 +
 2 1(1 )
 1
 j
 M
 j
 L
 L
 ? ??
 ?
 and = +( 1)t ta L? ?  
The upstream translation of demand in the case of non-optimal forecasting methods 
as discussed in Alwan et al (2003) is shown in the following figure (Figure 4-10). 
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Figure 4-10 Upstream Translation for Non-Optimal Methods 
 (Alwan et al, 2003) 
Alwan et al (2003) is an important paper as it is the only one that discusses the 
upstream translation of demand when non-optimal forecasting methods are used. 
Secondly, this paper has also shown that upstream demand translation depends on the 
forecasting method used by the supply chain links. One of the limitations of the 
paper is that it only considers the upstream translation of an AR (1) demand process. 
Secondly, their analysis is limited to two echelon supply chains. Another limitation 
of Alwan et al (2003) is the assumption of the availability of an infinite data history 
at the retailer. 
We generalise the results of Alwan et al (2003) for an ARMA (p, q) process. Thus, in 
the next section, we present a complete picture of upstream translation for an ARMA 
(p, q) process for multi-stage supply chains using two non-optimal forecasting 
methods. When we analyse upstream translation for SES, we consider the availability 
of a finite data history at the supply chain links. 
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4.4. Upstream Translation for an ARMA (p, q) Process 
In sub-section 4.4.1, we analyse the upstream demand translation when the supply 
chain links utilise the SMA forecasting method. Then, in sub-section 4.4.2, we 
present the analysis for the case of SES. 
4.4.1. Upstream Propagation for Simple Moving Averages 
When a Simple Moving Average method is used to forecast the lead time demand for 
an ARMA (p, qR) demand process (see equation 4-7) at the downstream member, the 
order to the upstream member follows an ARMA (p, n + qR) process given by the 
following: 
t
 M
 t aBYB )()( ?? =                             4-18 
where ( )M B?  is the moving average operator for the manufacturer, of the 
order = +M Rq n q , and 1? ?= +? ?? ?t t
 L
 a
 n
 ? . 
The proof is given in Appendix 4B. 
The following figure illustrates the ARMA (p, q) upstream translation when the 
downstream link employs the SMA method. 
 
Figure 4-11 Upstream Demand Translation for SMA 
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4.4.2. Upstream Propagation for Single Exponential Smoothing  
Alwan et al (2003) showed that when SES is employed on an AR (1) process, it 
propagates into an ARMA (1, ?) process. This result was based on an infinite 
representation of SES. In real world applications, it is not possible to have a time 
series with an infinite data history. In this sub-section, using a finite representation of 
SES, as in equation 3-9, we generalise the results for an ARMA (p, q) demand 
process.  
When the Single Exponential Smoothing forecasting method is used to forecast the 
lead time demand for an ARMA (p, qR) demand process (equation 4-7) at the 
downstream member, the order on the upstream member approximately follows an 
ARMA (p,  t ? 1) process: 
t
 M
 t aBYB )()( ?? =                             4-19 
where ( )M B?  is the moving average operator for the manufacturer and is of the 
order = ?1Mq t , and t is the current time period. 
The approximation is due to the presence of an extra term on the right hand side. For 
an ARMA (p, q) process, this extra term is: 
? ?
 =
 ? ? + ??1 1 0 0
 2
 [ (1 ) ( ) (1 ) ]
 p
 t t i
 i
 i
 L d d d? ? ? ? ? . It is obvious from the expression that, 
for 0 < ? < 2, this extra term will tend to zero as t tends to infinity. 
The proof of the approximate equation 4-19 is given in Appendix 4C. 
The following figure illustrates the upstream ARMA (p,  q) demand translation when 
the downstream link employs SES. 
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Figure 4-12 Upstream Demand Translation for SES 
4.4.2.1. Infinite Representation of SES 
Alwan et al (2003) have used an infinite representation of SES for an AR (1) retailer 
model, assuming that an infinite data history is available. If we let t tend to infinity in 
expression 4-19 for an AR (1) demand process, it propagates into an ARMA (1,? ) 
process, with no extra term, which is the result of Alwan et al (2003). Thus, the result 
of Alwan et al (2003) is compatible and a special case of the result in sub-section 
4.4.2 above. 
4.4.3. Multi-Stage Propagation for Non-Optimal Methods 
If there are m stages in a supply chain and all links use the n most recent historical 
demands to forecast using SMA and SES forecasting methods, the demand 
propagation is as shown in the following figures (Figures 4-13 and 4-14). 
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Figure 4-13 Multi-Stage Upstream Demand Translation for SMA 
 
Figure 4-14  Approximate Multi-Stage Upstream Demand Translation for 
SES 
We showed in sub-section 4.4.2 that when the supply chain links employ a SES 
forecasting method, the upstream translation into an ARMA process is an 
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approximation. Therefore, the multi-stage upstream translation is also of an 
approximate nature. This approximation may become less accurate along the supply 
chain, because each link introduces another term. 
4.5. Conclusions 
In this chapter, we discussed the upstream demand translation of supply chains for 
optimal and non-optimal forecasting methods. Upstream demand translation shows 
the relationship between the demand and the order process at any supply chain link. 
The mathematical relationships established in the literature have provided insights 
into the progression of ARIMA processes through the supply chain. Many authors 
have quantified the Bullwhip Effect and the value of information sharing based on 
these relationships.  
Much progress has been made in the literature on upstream demand translation for a 
two stage supply chain. Although the upstream translation for ARIMA (p, d, q) has 
been established for an optimal forecasting method, the case of non-optimal 
forecasting methods is limited to an AR (1) demand process.  
In the case of an optimal forecasting method, Gilbert (2005) has presented the 
upstream demand translation for an ARIMA (p, d, q) process. We derive various 
equations (equations 4.9 ? 4.15) from his mathematical results which we use in the 
simulation and empirical analysis. We specifically discuss demand translation for an 
MA (q) process where q ? L and L is the lead time; it translates into a random 
process and thus there will be no value of sharing demand information using DIS, a 
demand information sharing approach used in the literature to be discussed in 
Chapter 5. 
For non-optimal forecasting methods, we analyse upstream demand translation for an 
ARMA (p, q) process. We show that an ARMA (p, qR) will translate into ARMA (p, 
qR + n) when SMA is employed and into ARMA (p, t-1) approximately when SES is 
employed, where n is the number of terms in SMA and t is the current time period.  
Finally, we move the focus to the discussions of multi-stage upstream demand 
translation. None of the papers has explored multi-stage demand translation for non-
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optimal forecasting methods. In this chapter, we extended the analysis for upstream 
demand translation to ARMA (p, q) processes to non-optimal forecasting methods. 
Results have been established for multi-stage upstream translation for ARMA 
demands in the case of SMA and SES forecasting methods.  
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5. Demand Information Sharing Approaches 
5.1. Introduction 
The coordination of decisions among supply chain members is critical to the 
performance of supply chains. Coordination may be facilitated by some form of 
information sharing. Many papers can be found in the literature that explore the 
sharing of demand information in supply chains. As discussed in Chapter 3, we use 
an ARIMA methodology to represent demand in this research. Thus, in this chapter, 
we present a literature review of papers discussing sharing of demand information 
using the ARIMA framework. These papers can be divided into two streams: Sharing 
Demand Information and Downstream Demand Inference. 
The stream of papers analysing sharing demand information presents two supply 
chain strategies. The first strategy is not to share the downstream demand 
information. In such a strategy, the upstream members base their forecasts on the 
orders received from downstream members and do not require a formal information 
sharing mechanism. This is termed a No Information Sharing (NIS) approach in the 
literature. On the other hand, if a supply chain adopts a strategy of sharing demand 
information with the help of a formal information sharing mechanism, their forecasts 
are based on the downstream demand information. Two approaches, Demand 
Information Sharing (DIS) and Vendor Managed Inventory (VMI), have been 
analysed in the literature for such a strategy. 
Another stream of papers claims that, even in the absence of a formal information 
sharing mechanism, the upstream member can mathematically deduce the 
downstream demand information. This approach has been termed as Downstream 
Demand Inference (DDI), where the forecasts by the upstream members are based on 
the inferred downstream demand.  
In this chapter, we present a critical review of these streams of research and analyse 
the approaches discussed in the literature. Based on this analysis, we present two new 
approaches, No Information Sharing ?Estimation (NIS-Est) and Centralised Demand 
M. Ali, 2008, Chapter 5  72 
 
Information Sharing (CDIS). We argue that these two new approaches should 
improve the existing approaches found in the literature.  
5.2. Current Approaches of Sharing Downstream Demand  
The papers discussed in this section argue that it is beneficial for the upstream 
member to know or deduce the demand at the downstream member and to use it in 
their forecasts. We discuss the two streams as introduced in section 5.1 in the 
following sub-sections. 
5.2.1. Sharing Demand Information Approaches 
Several papers (e.g. Chen et al, 2000a; Lee et al, 2000; Yu et al, 2002; Raghunathan, 
2003; Cheng and Wu, 2005; Hosoda et al, 2008) quantify the value of sharing 
demand information by comparing various performance metrics (e.g. inventory 
holdings, inventory costs) resulting from the adoption of the two strategies discussed 
in section 5.1.  
Lee et al (2000) showed the value of sharing demand information in a two-echelon 
supply chain, comprising a retailer and a manufacturer. An AR (1) demand process is 
assumed at the retailer: 
1t t td d? ? ??= + +                    5-1 
where the notation is unchanged from previous chapters. 
For simplicity of exposition in this chapter, the constant term (? ) will be dropped. 
This does not affect any of the arguments or conclusions presented. 
The supply chain model consists of a periodic review system where each site reviews 
its inventory level and places orders on the upstream link, if required, every period. 
The inventory policy used is the order up to level (OUT) policy. The study by Lee et 
al (2000) assumes that the manufacturer is aware that the retailer?s demand follows 
an AR(1) process and is also aware of the parameters ?  and ?. It is supposed that the 
manufacturer retrieves this information from the retailer through periodic discussions 
or alternatively through the historic demand data.  
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On observing the AR (1) demand process, the retailer uses a Minimum Mean 
Squared Error (MMSE) method to forecast their lead time demand. Based on this 
forecast, they place an order on the manufacturer; the order process can be expressed 
as: 
2 1
 1 1
 1 (1 )
 1 1
 l l
 t t t tY Y
 ? ? ?? ? ?
 ? ?
 + +
 ? ?
 ? ?
 = + ?
 ? ?
               5-2 
where the notation is defined in Chapter 3. 
The order placed by the retailer is the demand of the manufacturer. Based on this 
demand, the manufacturer will make its forecast. The equation for the lead time 
forecast derived by the authors is: 
1 1
 1 1 (1 )?  
1 1
 L l
 L
 t t tY Y
 ? ?? ?
 ? ?
 + +
 + ? ?? ?
 = ?? ?
 ? ?? ?
                               5-3 
They first assume that the supply chain adopts a strategy of not sharing the demand 
information. For such a strategy, the authors introduce a No Information Sharing 
(NIS) approach whereby the manufacturer remains unaware of the demand (dt) at the 
retailer. The manufacturer makes its lead time forecast only on the basis of the order 
Yt received from the retailer. Thus, although t?  has been realised, it is unknown to 
the manufacturer and thus they assume its value to be zero. The manufacturer?s 
forecast for the NIS approach will become: 
[ ]
 1
 1 1?  
1
 L
 L
 t tY Y
 ??
 ?
 +
 + ?
 =
 ?
                   5-4 
They calculate the inventory holdings and the inventory cost based on the above 
approach using equation 3-15. 
Then the authors suppose that the supply chain members adopt the strategy of 
sharing the demand information. In this case, a Demand Information Sharing (DIS) 
approach has been presented where the retailer now shares its demand (dt) with the 
manufacturer. The manufacturer, in this case, is now aware of the value of t?  and 
thus can utilise equation 5-3 to forecast their lead time demand. Inventory holdings 
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and inventory costs are again calculated for this approach using the same 
methodology as for the NIS approach.  
With the help of mathematical analysis and simulation, Lee et al (2000) compare the 
inventory holdings and inventory costs for the two approaches.  Their simulation 
results show that, under certain conditions, the manufacturer can achieve a 42% 
reduction in inventory cost.  
Although the supply chain model by Lee et al (2000) is quite simple: single retailer ? 
single manufacturer, several papers show similar results for more complex models.  
Raghunathan (2003) and Cheng and Wu (2005) extend the above supply chain model 
to a multi retailer-single manufacturer case and generalise the results of Lee et al 
(2000) to the extended model. Cheng and Wu (2005) assume that the demands 
among the retailers are uncorrelated, while Raghunathan (2003) assumes that the 
demands among the different retailers are correlated. Both assume that the demands 
at different retailers share the same autocorrelation. The studies mathematically show 
that the manufacturer benefits in terms of inventory holdings when they share and 
utilise the retailers? demand in their forecasts.  
The above studies assume that there is no unit ordering cost involved. Yu et al (2002) 
extended the model of Lee et al (2000) by introducing a unit ordering cost. They 
used a different cost minimisation model to calculate the inventory safety factor (k), 
based on the unit ordering cost (c) and a discount factor (?): 
1 (1 ) /? ?? ? ?? ?
 = ? ? ?
 +? ?
 Lp c
 k
 p h
                            5-5 
where the discount factor ? embodies the manufacturer?s time preference for money. 
As the unit cost is the same in both NIS and DIS, the introduction of the unit cost 
does not change the results of Lee et al (2000). Secondly, Yu et al (2002) also 
compare the two approaches of Lee et al (2000) with a Vendor Managed Inventory 
(VMI) approach. In this approach, the forecasts are the same but the retailer?s 
inventory replenishment decisions are made by the manufacturer. However, they did 
not find any inventory costs savings when they compared DIS with a VMI approach. 
Thus, the value of sharing demand information does not depend on which member 
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makes the replenishment decision. The reason that DIS yields lower inventory cost at 
the manufacturer than NIS is the use of less variable demand in their forecasts. As 
Yu et al (2002) assume sharing of demand information in both DIS and VMI, both 
give the same inventory cost. This agrees with Cheng and Wu (2005) who also 
include VMI in their analysis and find the same result. Thus, the above papers show 
that the main conclusion of Lee et al (2000), namely lower inventory cost by using 
the DIS approach, can also be applied to a multi retailer-single manufacturer supply 
chain and also to a supply chain when taking unit cost into account, and applying a 
discount factor. 
In order to test whether the results can be extended to a multi-echelon supply chain, 
Wu and Cheng (2003) mathematically analysed the same model as Lee et al (2000) 
but for a three level supply chain: Retailer-Distributor-Manufacturer. The authors 
also suppose that the supply chain adopts two approaches, NIS and DIS. They 
conclude that the results of Lee et al (2000) can be extended to a three echelon 
supply chain.  
The results in the above papers are based on mathematical and simulation analysis. 
Hosoda et al (2008) consider real data and investigate the benefit of sharing demand 
information in a soft drink supply chain. They consider three products and compare 
the standard deviation of the prediction errors (SDPE) for the two approaches, NIS 
and DIS. They conclude that sharing demand information results in better forecast 
accuracy for the manufacturer. Their numerical analysis, based on the data history of 
three products, shows that the manufacturer can reduce SDPE by 8 ? 19% (a detailed 
critique of the paper is presented in Chapter 8). 
5.2.1.1. Discussion on NIS, DIS and VMI Approaches 
The previous sub-section noted that various authors have extended the model of Lee 
et al (2000) by relaxing assumptions. All the papers show that their conclusions 
regarding the value of demand information sharing are also applicable to more 
complex supply chain models. The extensions of the Lee et al (2000) model are 
summarised in the following figure: 
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Figure 5-1 Extensions of Lee et al (2000) Model 
The above figure shows that the supply chain model by Lee et al (2000), with 
somewhat restrictive assumptions, provided a basis for extended analysis by 
relaxation of assumptions. The papers in Figure 5-1 analysed the value of demand 
information sharing by considering three approaches: NIS, DIS and VMI. VMI and 
DIS share the same forecasting methodology and so there is no difference in the 
performance metrics of the two approaches in terms of inventory holdings and 
inventory costs. Thus, comparing inventory of either of them with NIS will quantify 
the value of demand information sharing. The replenishment policy in VMI is 
different from both NIS and DIS. As we do not focus on the effect of replenishment 
policies, we include only NIS and DIS in this research.   
For a supply chain to adopt a strategy of not sharing demand information, we find 
that an NIS approach has been presented in the literature. In this approach, there is no 
sharing of demand information among the supply chain members. Instead, the supply 
chain members base their forecasts on the orders received from the downstream link. 
Although the demand is realised at the retailer, the upstream member is unaware of 
this demand and assumes the value of noise in the retailer?s demand to be zero. 
On the other hand, when the supply chain adopts a strategy of sharing demand, a DIS 
approach has been presented where the downstream member shares its demand 
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information with the upstream member through some formal information sharing 
mechanism. The upstream member, in this case, is aware of the downstream 
member?s demands. Thus, on making their lead time forecast, they utilise the shared 
value of the noise in the retailer?s demand. 
5.2.2. Downstream Demand Inference  
We discussed in the previous sub-section that savings in inventory costs can be 
obtained if an upstream member utilises the downstream demand in their forecasts. 
In order to do so, the papers in the previous sub-section argue that the downstream 
member will have to share its demand information with the upstream member.  
In Chapter 4, we discussed upstream demand translation, which shows that the 
demand and order processes of any supply chain member are linked by a 
mathematical relationship. Based on this upstream translation of demand, and using 
strict model assumptions, various authors (Graves, 1999; Raghunathan, 2001; Li et 
al, 2003; Zhang, 2004b, Gilbert, 2005; Hosoda and Disney, 2006) maintain that the 
inverse translation is also possible when an MMSE forecasting method is employed. 
The upstream member can infer the demand present at the downstream member, 
owing to the existence of mathematically tractable relationships. Thus, these papers 
present another approach which we term ?Downstream Demand Inference? (DDI). 
In the DDI approach, the downstream member does not share its demand information 
with the upstream member. Instead, the upstream member tries to infer the retailer?s 
demand by utilising mathematical equations. These mathematical equations have 
been presented in chapter 4 (see equations 4-8 ? 4-15). The equations reveal that, 
under certain assumptions, the orders at the upstream member contain complete 
information on the downstream member?s demands. Hence, under these assumptions, 
the manufacturer may exploit their orders to infer the actual consumer demand.  
Various authors have shown that, in certain circumstances, the manufacturer can 
infer the actual consumer demand by the orders received. Raghunathan (2001), using 
an AR (1) demand process at the retailer, has shown that the retailer?s order history 
to the manufacturer already contains information about the demand at the retailer. 
Therefore, the manufacturer can deduce the actual demand at the retailer by using the 
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order history if they are aware of the retailer?s demand process and its parameters. 
Thus, the author concludes that DIS is of no value to the manufacturer.  
Graves (1999) modelled an ARIMA (0, 1, 1) demand process and concluded that 
there is no benefit from providing the upstream stage with the actual demand values, 
if the upstream member is aware of the demand process and parameters at the 
downstream member.  
Hosoda and Disney (2006) have found the same results by using AR (1) and ARMA 
(1, 1) demand processes at the downstream member. Their study also concludes that, 
as the ordering process from the retailer to the manufacturer already contains 
complete market demand information, there is no benefit of DIS in terms of forecast 
accuracy. 
Zhang (2004b) has generalised the above conclusions for an ARMA (p, q) process, 
while Li et al (2003) and Gilbert (2005) generalised further for an ARIMA (p, d, q) 
process. All three studies argue that the manufacturer can infer the demand at the 
retailer without requiring the demand information from the retailer.  
5.2.2.1. Discussion on the DDI Approach 
In the previous sub-section, we reviewed the literature on another demand sharing 
approach: Downstream Demand Inference. This approach is based on the fact that 
under certain assumptions, the orders at any supply chain member contain complete 
information on the demands.  The upstream supply chain member can thus exploit 
their orders to infer the downstream demand. We present the following figure (Figure 
5-2) to summarise the links between papers discussing the DDI approach. 
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Figure 5-2 Papers Discussing the DDI Approach 
We observe that inferring the demand at the downstream link, or Downstream 
Demand Inference (DDI), is sensitive to the model assumptions. This has also been 
acknowledged in other studies. For example, Raghunathan (2001) suggests that 
information sharing has no value only if both the supply chain members are aware of 
the demand process at the downstream link. Similarly, Graves (1999) acknowledged 
that DIS is valuable if the upstream stage is not aware of the demand parameters of 
the customer demand process.  
Thus, the claim about no value in sharing demand information in the above papers 
(Graves, 1999; Raghunathan, 2001; Li et al, 2003; Zhang, 2004b; Gilbert, 2005; 
Hosoda and Disney, 2006) is dependent on the assumption that the manufacturer is 
aware of the process and the parameters of the retailer?s demand.  
We discussed in chapter 1 that, in this research, we relax many assumptions in the 
supply chain model to bring this work closer to reality. We show in Chapter 6, by 
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relaxing some assumptions, that Downstream Demand Inference (DDI) is not 
feasible. Therefore, in the simulation and empirical analysis of this research, we do 
not consider the DDI approach.  
5.3. New Approaches  
In section 5.2, we discussed various approaches that have been adopted in previous 
research on the value of sharing demand information. Two of the approaches 
discussed above, NIS and DIS, will be adopted in this research (see sub-section 
5.2.1.1 for reasons for selection of these approaches).  
We observe that the value of demand information sharing has been quantified in the 
literature by comparing the performance metrics of the NIS and DIS approaches. In 
this research, we argue that these two approaches can be further improved. Thus, we 
present two new approaches of sharing demand information. One is based on 
improving NIS; the other is based on improving DIS. These new approaches are 
discussed in the following sub-sections.  
5.3.1. No Information Sharing ? Estimation (NIS-Est) 
Before introducing the NIS-Est approach, the NIS approach will be explained with 
the help of two demand process as examples. In the NIS approach, as discussed in 
the literature, the manufacturer assumes the value of the retailer?s noise to be zero, as 
it is not being shared.  
For example, consider an AR (1) process at the retailer. Lee et al (2000) have shown 
that such a demand process at the retailer will be translated to the following demand 
process at the manufacturer (see section 5.2).  
2 1
 1 1
 1 (1 )
 1 1
 l l
 t t t tY Y
 ? ? ?? ? ?
 ? ?
 + +
 ? ?
 ? ?
 = + ?
 ? ?
               5-6 
In section 5.2, we also discussed that the equation for the lead time forecast by the 
manufacturer for the above demand process will be: 
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In the NIS approach, the value of the noise term ( t? ) is assumed as zero by the 
manufacturer. Thus, using a NIS approach, the manufacturer?s forecast will become 
[ ]
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The manufacturer?s forecast in the NIS approach is based only on the previous order 
and autoregressive coefficient and not on the noise term as shown in equation 5-8. 
For any AR (p) process, the manufacturer?s forecast using the NIS approach will be 
based on the last p orders and the autoregressive coefficients only, while the noise 
terms will be assumed to be zero. 
Now we consider the following MA (3) process: 
t t t t td ? ? ? ? ? ? ? ?? ? ?= + ? ? ?1 1 2 2 3 3                  5-9 
Using the upstream demand translation formula by Gilbert (2005), as discussed in 
sub-section 4.2.2, such a demand process at the retailer will be translated to the 
following demand process at the manufacturer for a lead time of unity:  
( )t t t tY ? ? ? ? ? ? ?? ?= + ? ? ?1 2 1 3 21                5-10 
In the literature the NIS approach has been presented only for an AR (1) process as 
discussed in section 5.2. If the NIS approach is applied to the above MA (3) process, 
the values of the noise terms will be assumed to be zero by the manufacturer. Thus, 
using a NIS approach, the manufacturer?s forecast will simply be the mean of the 
process as shown in the following equation. 
?=+1? LtY                   5-11 
For any MA (q) process, the manufacturer?s forecast using the NIS approach will be 
the mean of the process only while the noise terms in the retailer will be assumed to 
be zero. 
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Now a new approach, the NIS-Est approach, will be presented. We argue that, for an 
AR (1) process, the demand at the manufacturer (equation 5-6) can be easily written 
in terms of the manufacturer?s moving average terms shown as: 
1 1 1
 M
 t t t tY Y a a? ?? ?= + ?                 5-12 
where ,t ta a ?1are the noise terms in the manufacturer?s demand process at time t and 
t-1 respectively and M?1 is the moving average parameter.  
The lead time forecast by the manufacturer in this case can be shown as: 
?
 L
 L M
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In the NIS-Est approach, although there is no information sharing among the supply 
chain members, the manufacturer can still estimate the moving average terms in its 
demand and utilise the estimated values of these terms for its forecast. 
Now we analyse the NIS-Est approach for the MA (3) process. The demand process 
at the manufacturer (equation 5-10) can be written in the following form: 
M M
 t t t tY a a a? ? ?? ?= + ? ?1 1 2 2                            5-14 
In the NIS-Est approach, the manufacturer can still estimate the moving average 
terms in its demand and forecast using these estimated terms. The forecast using the 
NIS-Est approach will include the mean of the process and the moving average terms 
compared with the forecast only being the mean of the process in the NIS approach 
(equation 5-11). 
There are two methods by which the manufacturer can mathematically estimate the 
moving average terms, namely Recursive Estimation and Estimation by Forecast 
Error (Box et al, 1994; Chatfield, 2003). We adopt the recursive estimation method 
and discuss the reason for selection of this method in Chapter 7. All other 
replenishment and ordering policies remain the same as in the NIS approach. 
We find that the value of sharing demand information has been discussed in the 
literature by comparing the demand information sharing approaches with the NIS 
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approach. For an MMSE forecasting method, we argue that, even with a strategy of 
not sharing demand information, the manufacturer?s forecasting approach can be 
improved by introducing estimation of the moving average terms at the 
manufacturer.  
Stage I of the simulation results (see section 8.2) show the reduction in inventory 
costs when the NIS-Est approach is used, as compared to the NIS approach. In stages 
II and III of the simulation and in the empirical analysis, the value of demand 
information sharing is analysed by considering the NIS-Est approach as the base 
case.  
Now, we move our discussion to the NIS approach for non-optimal forecasting 
methods. As for this approach, the manufacturer is not aware of the retailer?s 
demand, it will base its lead time forecast on the orders received from the retailer. 
The equations 3-6 and 3-9 presented in chapter 3 for the retailer?s forecasts are 
adopted here for the manufacturer to represent its SMA and SES forecasts using the 
NIS approach. 
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For non-optimal forecasting methods, there are no noise term estimation issues and 
the NIS-Est approach is not relevant. Therefore, the NIS-Est approach is limited to 
optimal forecasting methods. In simulation (see section 8.6) the value of demand 
information sharing for non-optimal forecasting methods is analysed by considering 
the NIS approach as the base case.  
5.3.2. Centralised Demand Information Sharing 
In the literature review presented in sub-section 5.2.1, we explored the DIS approach 
as discussed by various papers. These papers argue that if a supply chain follows a 
strategy of sharing demand information, they may use a DIS approach where the 
downstream member shares its demand information with the upstream member 
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through some formal information sharing mechanism. In this case, the manufacturer 
is aware of both its order (Yt) from the retailer and the actual demand (dt) at the 
retailer. In the DIS approach, as the manufacturer is now aware of the demand at the 
retailer, they can utilise it to calculate the value of the noise terms in the retailer?s 
demand. The manufacturer then uses the order (Yt) received from the retailer and the 
calculated noise terms at the retailer to forecast its lead time demand. 
For example, when the AR (1) demand process at the retailer (equation 5-1) is shared 
with the manufacturer, the manufacturer can calculate the value of the noise term 
from this shared demand. The manufacturer can then use equation 5-7 to forecast as 
now they are aware of the noise in the retailer?s demand. A similar argument stands 
for the case of the MA (3) demand process at the retailer. When this demand process 
is shared with the manufacturer, the manufacturer can calculate the noise terms from 
the retailer?s demand and use them in its lead time forecast.   
The literature review shows that the DIS approach results in lower inventory 
holdings and inventory costs due to the fact that the manufacturer benefits by 
forecasting with a true value of t? . In the case of a no information sharing strategy, 
this value of t? is either termed zero (NIS approach) or estimated (NIS-Est approach). 
In the DIS approach, the manufacturer uses the order (Yt) from the retailer in their 
lead time forecast (equation 5-7). The discussion on the Bullwhip Effect, in Chapter 
2, summarised evidence that the retailer?s order Yt is more variable than its demand 
dt. As the manufacturer is aware of the demand dt at the retailer, the DIS approach 
can be improved if the manufacturer uses dt instead of Yt in making their lead time 
forecast. This new improved approach is called the Centralised Demand Information 
Sharing approach (CDIS). In the CDIS approach, the manufacturer utilises the 
retailer?s demand dt and the noise in the retailer?s demand t?  instead of Yt and ta , the 
noise in the retailer? Thus, in this approach the manufacturer?s forecast will be the 
same as the retailer?s forecast as both the retailer and the manufacturer utilise dt and 
t? to make their lead time forecast. The manufacturer?s forecast using the CDIS 
approach will be the same as the retailer?s NIS-Est forecast. This approach can be 
used with any ARIMA (p, d, q) process whereby both the retailer and the 
manufacturer will utilise dt instead of Yt and 11 ,...,, +?? Rqttt ???  instead 
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of
 11
 ,...,,
 +?? Mqttt
 aaa . In the CDIS approach, the manufacturer will be utilising the 
NIS-Est approach adopted by the retailer. The noise terms at the retailer will be 
estimated and then the noise terms and the demand at the retailer will be used to 
forecast the lead time demand. 
We now move our discussion to the cases when non-optimal forecasting methods are 
used by the manufacturer to make their lead time forecast. As discussed in sub-
 section 5.3.1, there are no demand parameter estimation issues for non-optimal 
methods. Thus, the DIS approach is not relevant when non-optimal forecasting 
methods are employed.  
When supply chain links share demand information, the CDIS approach can be 
utilised for non-optimal forecasting methods. As the manufacturer in this case is 
aware of the retailer?s demand, it will utilise the retailer?s demand in its lead time 
forecast. The forecast equations for SMA and SES in the case of the CDIS approach 
are:  
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In the simulation for non-optimal forecasting methods (section 8.6), we compare the 
two approaches of NIS and CDIS to evaluate the value of demand information 
sharing. While in the NIS approach, the manufacturer forecasts using the orders 
received from the retailer, in the CDIS approach the manufacturer?s forecast is based 
on the shared retailer?s demand.  
5.4. Conclusions 
Sharing demand information has been advocated by many authors, to coordinate 
decision making among supply chain members. We reviewed four approaches 
suggested in the literature for sharing demand information, namely No Information 
Sharing (NIS), Demand Information Sharing (DIS), Vendor Managed Inventory 
(VMI) and Downstream Demand Inference (DDI).  
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We argue that the incorporation of the downstream demand in the upstream 
member?s forecast follows exactly the same rules in both VMI and DIS approaches. 
This is the reason why the papers analysing VMI conclude that there is no difference 
in the performance metrics of VMI and DIS in terms of inventory costs. VMI 
incorporates a different replenishment rule, but this is not the focus of this thesis and 
thus we do not consider VMI in this research. With regards to DDI, we show in 
Chapter 6 that this approach is not feasible when we consider more relaxed 
assumptions in the supply chain model. 
We further argue that the NIS and DIS approaches can be improved. In this chapter, 
we introduce two new approaches: NIS-Estimation (NIS-Est) and Centralised 
Demand Information Sharing (CDIS).  
We argue that when the supply chain members adopt the strategy of not sharing 
demand information, the NIS-Est approach will perform better than the NIS 
approach. The NIS-Est approach should work better than the NIS approach as it 
incorporates estimation of the noise term at the manufacturer.  
On the other hand, when the supply chain adopts a strategy of sharing demand 
information, the CDIS approach will be more beneficial than DIS. In this case, 
because the upstream member has access to the downstream demand, they can use 
the demand at the retailer and the noise in the demand at the retailer to make their 
lead time forecast. This should result in the manufacturer?s lead time forecast using 
CDIS being less variable than the DIS approach. 
We test these approaches with the help of simulation and empirical analysis. The 
simulation and the empirical results (Chapters 8 and 9) show that the results for the 
performance metrics are better for NIS-Est compared to NIS and better for CDIS 
compared to DIS. The analyses also indicate that CDIS results in the least inventory 
holdings, inventory cost, Bullwhip Ratio and forecast error compared to the other 
three approaches. 
The approaches used in this research for optimal forecasting methods are 
summarised in the following table. 
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Approaches for Optimal Forecasting 
Methods 
Operational Rules 
No Information Sharing (NIS)  ? Retailer does not share its demand 
information with the manufacturer. 
? The manufacturer makes its forecast 
based on the orders from the retailer 
and assuming the noise term to be 
zero. 
No Information Sharing - Estimation 
(NIS - Est)  
? Retailer does not share its demand 
information with the manufacturer. 
? The manufacturer makes its forecast 
based on the orders from the retailer 
and by estimating its noise terms. 
Demand Information Sharing (DIS) ? Retailer shares its demand 
information with the manufacturer.  
? The manufacturer makes its forecast 
based on the shared value of noise at 
the retailer. 
Centralised Demand Information Sharing 
(CDIS) 
? Retailer shares its demand 
information with the manufacturer.  
? The manufacturer makes its forecast 
by utilising the demand and the noise 
in the demand of the retailer. 
Table 5-1 Supply Chain Approaches for Optimal Forecasting Methods 
For non-optimal forecasting methods, there are no noise term estimation issues and 
thus the NIS-Est and DIS approaches are not relevant. In this case, we compare only 
NIS with the CDIS approach.  
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Approaches for Non-Optimal 
Forecasting Methods 
Operational Rules 
No Information Sharing (NIS)  ? Retailer does not share its demand 
information with the manufacturer. 
? The manufacturer makes its forecast 
based on the orders from the retailer. 
Centralised Demand Information Sharing 
(CDIS) 
? Retailer shares its demand 
information with the manufacturer.  
? The manufacturer makes its forecast 
by utilising the demand of the 
retailer. 
Table 5-2 Supply Chain Approaches for Non-Optimal Forecasting Methods 
In the following table, we present the approaches used for the optimal and non-
 optimal forecasting methods in this research. 
Forecasting Methodology Approaches used in the research 
Optimal Forecasting Method NIS, NIS ? Est, DIS, CDIS 
Non-Optimal Forecasting Methods NIS, CDIS 
Table 5-3 Approaches for Optimal and Non-Optimal Methods 
In the simulation (Chapters 7 and 8) of this research, we compare all four approaches 
for the optimal forecasting method and the two approaches, NIS and CDIS, for the 
non-optimal forecasting methods in terms of the four performance metrics discussed 
in section 3.7. In the empirical analysis (Chapter 9) we exclude the NIS approach for 
optimal forecasting methods from the investigation, the reasons for which are 
explained in section 9.5. Further, as discussed in sub-section 3.7.2, in addition to 
Mean Squared Error (MSE) we also use mean absolute percentage error (MAPE) to 
calculate the forecast error in the empirical analysis.  
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6. Downstream Demand Inference 
6.1. Introduction 
In Chapter 4, we discussed upstream demand translation for an Order up to (OUT) 
inventory policy, examining the mathematical relationships between the demand and 
order processes in a supply chain link. We further discussed in sub-section 5.5.2 that, 
based on this upstream translation of demand, and using strict model assumptions, 
various authors (e.g. Graves, 1999; Raghunathan, 2001; Zhang, 2004b; Gilbert, 
2005) maintained that the inverse translation is also possible when the MMSE 
forecasting method is employed. They argued that the upstream member can infer the 
demand present at the downstream link, owing to the mathematical tractability of the 
relationships for the optimal forecasting method. We called this a Downstream 
Demand Inference (DDI) approach and presented a detailed discussion of it in sub-
 section 5.2.2.1. If the inverse translation (DDI) is possible, there will be no value of 
sharing demand information in supply chains.  
In this chapter, we analyse the DDI approach using both optimal and non-optimal 
forecasting methods. We argue that the supply chain models presented in the above 
papers have very restrictive assumptions. These papers assume that the manufacturer 
is aware of the demand process and the demand parameters of the retailer even when 
they are unaware of the demand itself. The claim of no value in sharing demand 
information in these papers is sensitive to this assumption.  
In a real world scenario, supply chain links need to have a formal information 
sharing mechanism if they decide to share demand information between downstream 
and upstream members. On the other hand, there is no need to invest in a formal 
information sharing mechanism if the strategy of the supply chain link is not to share 
demand information. Thus, it is very unlikely that the supply chain links will invest 
in a formal information sharing mechanism just to share the information on demand 
process and parameters and not on the actual value of demand itself. 
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For an optimal forecasting method (section 6.3), we argue that, under more realistic 
assumptions, the DDI approach is not feasible. The upstream member cannot infer 
the downstream demand when they are unaware of the demand process and its 
parameters at the downstream link.  
Then we investigate the DDI approach when non-optimal forecasting methods 
(section 6.4) are employed. We show that for ARMA processes, in the case of SMA, 
the demand at the downstream link can be inferred. This is based on the assumption 
that the upstream member is aware of the number of historical terms (n) used in the 
SMA forecast. On the other hand, when supply chain links employ SES, DDI is not 
possible. 
6.2. Requirements for DDI 
We discussed in the previous section that papers advocating DDI have very 
restrictive supply chain model assumptions. We argue that, in real world supply 
chains, the upstream members are not aware of the demand process and the demand 
parameters at the downstream link, and thus relax these assumptions in this thesis 
(see Chapters 7 and 9).  
For DDI, the upstream member needs to first identify the demand process at the 
downstream link and then estimate the required parameters to calculate the demand. 
It is shown in this chapter that the identification of the demand process and inference 
of demand depends on the relationship between the number of autoregressive and 
moving average parameters and the degree of differencing at the upstream link?s 
demand process.  
These two aspects of demand inference will now be addressed.   
6.2.1. Identification of Demand Process 
Results on the upstream translation of demand indicate that, in some cases, the 
translation is unique: only one demand process at the retailer would translate into a 
given demand process at the manufacturer. On the other hand, in some cases this 
translation is not unique: various demand processes at the retailer would translate 
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into the same demand process at the manufacturer. In sub-section 4.2.2, we discussed 
that an ARIMA (p, d, qR) demand process at the retailer will translate into an 
ARIMA (p, d, max {p + d, qR - L}) demand process at the manufacturer. Suppose the 
demand process is ARIMA (1, 1, 3) at the manufacturer. If the lead time between the 
manufacturer and the retailer is one and the supply chain links utilise MMSE 
forecasting methods, such a demand process could only translate from an ARIMA (1, 
1, 4) process at the retailer. Thus, if a manufacturer identifies an ARIMA (1, 1, 3) 
process and its lead time is one, it can easily infer that the demand process at the 
retailer follows an ARIMA (1, 1, 4). On the other hand, suppose the demand process 
is ARIMA (1, 1, 2) at the manufacturer. Again, if we assume the lead time to be one, 
this demand process could propagate from various processes at the retailer, namely 
ARIMA (1, 1, 3), ARIMA (1, 1, 2), ARIMA (1, 1, 1) and ARIMA (1, 1, 0). In this 
case, the manufacturer will not be able to infer the demand process at the retailer.  
Accurate identification of the demand process at the downstream link depends on 
whether the propagation is unique. If only one demand process is possible at the 
downstream link, then accurate identification is feasible. On the other hand, 
identification is not feasible if a range of demand processes is possible at the 
downstream link. 
6.2.2. Calculation of the Demand 
In Chapter 4, we examined the upstream translation of the demand process. We 
discussed that the constant term and the autoregressive terms remain the same, while 
it is only the moving average terms that are changed. Figure 4-5 shows the 
relationship that exists between the moving average terms in the downstream and 
upstream demand processes. Based on this mathematical relationship, the upstream 
member can calculate the corresponding moving average term at the downstream 
member, e.g. R1? can be calculated from
 M
 1? ;
 R
 2? can be calculated from
 M
 2? etc. 
Thus, calculation of the demand at the downstream member depends on the number 
of moving average terms at the link. If the upstream member has more than or equal 
to the number of moving average terms in the downstream link, then they can 
accurately calculate the demand at the downstream link. This is because the number 
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of equations at the upstream link would be equal to or greater than the number of 
unknowns at the downstream link. 
On the other hand, if the upstream member has fewer moving average terms, then it 
is not possible to calculate the demand at the downstream link. This is due to the 
presence of more unknowns than equations at the upstream link. Suppose the demand 
process at the retailer follows an ARIMA (1, 0, 5). If the lead time from the 
manufacturer to the retailer is 4, then according to the upstream translation of 
demand, the demand process at the manufacturer will be ARIMA (1, 0, 1). In this 
case the manufacturer has only one moving average term (i.e. one equation) as 
opposed to five moving average terms at the retailer (five unknowns) (see section 
4.2). Therefore, it would not be possible to deduce the demand at the downstream 
link. 
6.3. Optimal Forecasting Methods 
We first analyse the DDI approach when the supply chain members employ an 
optimal forecasting method. In sub-section 5.2.2, we presented a literature review of 
the papers claiming that DDI is possible and thus there is no value in sharing demand 
information. We observe that inferring the demand at the downstream link, or 
Downstream Demand Inference (DDI), is sensitive to the model assumptions. This 
has also been acknowledged in other studies, as noted in Chapter 5. Raghunathan 
(2001) suggested that information sharing has no value only if both the supply chain 
members are aware of the demand process at the downstream link. Similarly, Graves 
(1999) has also acknowledged that DIS is valuable if the upstream stage is not aware 
of the demand parameters of the customer demand process. Based on similar 
assumptions of known demand process and demand parameters, various other papers 
(Zhang, 2004b; Gilbert, 2005; Hosoda and Disney, 2006) show that there is no value 
in sharing demand information.  
We argued in sub-section 6.1 that the value of sharing demand information is 
sensitive to the assumption made in these papers. We show in this section, by 
relaxing the above two assumptions of known demand process and known demand 
parameters, that sharing demand information is valuable and Downstream Demand 
Inference (DDI) is not feasible. By presenting Uncertainty Principles, we state rules 
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about when the manufacturer can accurately identify the demand process at the 
retailer but not the demand.  The rules also show under what circumstances the 
manufacturer cannot even identify the demand process at the retailer.  
6.3.1. Uncertainty Principles 
PRINCIPLE I.  If the upstream member can identify the demand process at the downstream 
link, the demand at the downstream link cannot be exactly calculated. 
PRINCIPLE II. If the upstream member cannot identify the demand process at the downstream 
link, then the demand at the downstream link can be exactly calculated, if a certain model is 
assumed from a restricted subset of the possible models. 
According to the Uncertainty Principles stated above, an upstream member in the 
supply chain cannot infer the demand at the retailer even if they can identify the 
model present at the downstream link. In some cases, they cannot even identify the 
demand process at the retailer from a range of feasible models. Calculation of 
demand in this case is only possible if the upstream member assumes a demand 
process at the downstream member.  In order to prove the Uncertainty Principles, we 
first establish a rule for downstream demand calculation in the next sub-section, 
which is based on the requirements for DDI. 
6.3.2. Rule for Downstream Demand Calculation 
The discussion in section 6.2 reveals that, for demand inference, the upstream 
member needs to first identify the demand process and then calculate the demand at 
the downstream link. We discussed in sub-section 6.2.1 the circumstances under 
which the upstream member will be able to identify the demand process at the 
downstream member. In terms of the second requirement for DDI, which is the 
calculation of the demand, we present the following rule for the case of an optimal 
forecasting method. 
RULE FOR DOWNSTREAM DEMAND CALCULATION: An upstream member can 
accurately calculate the demand at the downstream member only  if qR? qM. 
The proof is given in Appendix 6A. 
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6.3.3. Proof of Uncertainty Principles 
As discussed in Chapter 4, Gilbert (2005) showed that for an OUT inventory policy 
and an MMSE forecasting method, an ARIMA (p, d, qR) demand process at the 
downstream link will always be translated into an ARIMA (p, d, qM) process at the 
upstream link where qM = max {p + d, qR ? L}. We show in the following sub-
 sections that Principle I applies when qM = qR ? L and Principle II applies when qM = 
p + d. 
6.3.3.1. Proof of Principle I 
If p + d < qR ? L, then according to the upstream translation of demand, ARIMA (p, 
d, qR) will translate into ARIMA (p, d, qM) where qM = qR - L. Now we look at this 
translation from the perspective of the manufacturer. The manufacturer identifies its 
demand process as ARIMA (p, d, qM) and observes that p + d < qM. Based on the 
upstream translation of a demand we can present the following corollary, which 
follows immediately from the formula qM = max {p + d, qR - L}. 
COROLLARY 1. If the demand at an upstream link is ARIMA (p, d, qM) and p + d < qM, 
then the demand process at the downstream link is ARIMA (p, d, qM + L). 
 
 
Figure 6-1 DDI in case of p + d < qM. 
The translation of demand in this case is unique (see sub-section 6.2.1); therefore the 
upstream member can identify the demand process at the downstream link. On the 
other hand, it is evident that the retailer has more moving average terms (qM + L) 
than at the manufacturer (qM) since lead-time (L) is strictly positive (see section 3.1). 
ARIMA (p, d, qM) 
ARIMA (p, d, qM+ L) 
Manufacturer 
Retailer 
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Thus, the manufacturer is unable to accurately calculate the demand, as there are 
more unknowns than equations. Therefore, downstream demand inference in this 
case is not possible.  
Since p + d < qM, the upstream member can identify the demand process at the 
downstream member (Corollary 1). But they cannot calculate the demand at the 
downstream member (Rule for downstream demand calculation). This proves 
Principle I that if the demand process can be identified, then the demand values 
cannot be calculated. 
6.3.3.2. Proof of Principle II 
If p + d ? qR ? L, then according to the upstream translation of demand, ARIMA (p, 
d, qR) will translate into ARIMA (p, d, qM) where qM = p + d. Looking at this 
translation from the perspective of the manufacturer, it identifies its demand process 
as ARIMA (p, d, qM) and observes that p + d = qM. Based on the upstream translation 
of demand we can present the following corollary which, again, follows immediately 
from the formula qM = max {p + d, qR - L}. 
COROLLARY 2. If the demand at an upstream link is ARIMA (p, d, qM) and p + d = qM, 
then the demand at the downstream link is ARIMA (p, d, qR) where qR ?  {0,?, qM + L}. 
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Figure 6-2 DDI in the case of p + d = qM 
In Figure 6-2: 
A = {ARIMA (p, d, 0), ARIMA (p, d, 1) ? ARIMA (p, d, qM)} 
B = {ARIMA (p, d, qM+1) ? ARIMA (p, d, qM + L)} 
The translation of demand in this case is not unique (as illustrated by Figure 6-2). 
There are qM+L+1 possible demand processes at the retailer. Since L ? 1, this means 
that there are at least two possible processes, and the upstream member will not be 
able to identify the demand process present at the downstream member.  
If the upstream member assumes a demand process from the subset A, then they can 
exactly calculate the demand at the downstream link owing to the fact that, for 
demand processes in A, qR ? qM. The downstream member has the same or fewer 
moving average terms than the moving average terms (qM) at the upstream member. 
Thus, the number of equations at the upstream member will be more than or equal to 
the number of unknowns.  
On the other hand, if the upstream member assumes a demand process from the 
subset B, then they cannot exactly calculate the demand at the downstream link 
owing to the fact that for demand processes in B, qR> qM (Rule for downstream 
demand calculation). The downstream member has more moving average terms than 
A 
? ARIMA (p, d, q
 M+1) ARIMA (p, d, qM) ? 
ARIMA (p, d, qM) Manufacturer 
ARIMA (p, d, 0) ARIMA (p, d, qM+L) ARIMA (p, d, 1) 
Retailer 
B 
M. Ali, 2008, Chapter 6  97 
 
the moving average terms (qM) at the upstream member. Therefore, they will have 
more unknowns than available equations.  
We mentioned in section 6.2 that Raghunathan (2001) has argued that DDI is 
possible for an AR (1) process at the retailer. We will look at the author?s model in 
terms of the findings in this section. The demand process at the manufacturer, in his 
model, is ARMA (1, 1); therefore, it is case II of the study (i.e. p + d = qM). In the 
model it is assumed that the manufacturer is aware of the demand process at the 
retailer, which is AR (1). The retailer demand model lies in the subset A of Figure 6-
 2 above because it has fewer moving average terms than the manufacturer. As 
mentioned earlier in this section, if the manufacturer assumes a demand process from 
subset A, they can accurately deduce the demand at the retailer. Thus, it is only due 
to the assumption of a known demand process (AR (1)) by the manufacturer that 
Raghunathan (2001) was able to conclude that DDI is possible. Similar arguments 
apply to the studies by Graves (1999) where an ARIMA (0, 1, 1) retailer demand 
process was assumed and Hosoda and Disney (2006) where AR (1) and ARMA (1, 
1) retailer processes were assumed. Thus, we demonstrate here the sensitivity of the 
assumption of a known retailer demand model in these studies. 
6.4. Non-Optimal Forecasting Methods 
In this section, based on the upstream translation of demand, we analyse the 
possibility of Downstream Demand Inference (DDI) for non-optimal forecasting 
methods.  
6.4.1. Downstream Demand Inference for Simple Moving Averages  
In Chapter 4, we showed that if the retailer employs Simple Moving Averages to 
forecast its lead time demand, an ARMA (p, qR) demand process would propagate 
into an ARMA (p, qM) process at the manufacturer, where qM = qR +n.   
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Figure 6-3 Upstream Demand Translation for SMA 
6.4.1.1. Identification of Demand Process 
The upstream propagation of demand is unique when the SMA method is used. A 
unique demand process at the downstream member would translate into a given 
demand process at the upstream member, as shown in Figure 6-3. Thus, the 
manufacturer would always be able to identify the demand process present at the 
retailer, assuming that they know the number of terms used in the Simple Moving 
Average by the retailer. 
6.4.1.2. Calculation of the Demand 
In the case of SMA, the upstream member would be able to accurately calculate the 
demand at the downstream member. This is because the downstream member has 
fewer moving average terms (qR) than the moving average terms (qR +n) at the 
upstream member, as shown in Figure 6-3 above. Therefore, the upstream member 
will have more equations than unknowns. 
Thus, DDI is feasible for ARMA processes when it is known that the SMA method is 
used and the manufacturer is aware of the number of terms (n) included in the 
average.  
ARMA (p, qR) 
ARMA (p, qR + n) 
M R
 Manufacturer 
Retailer 
SMA Forecasting Method 
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6.4.2. Downstream Demand Inference for Single Exponential 
Smoothing 
In Chapter 4, we showed that if the SES method is used, then an ARMA (p, qR) 
demand process would propagate into an ARMA (p, qM) process at the manufacturer, 
plus another term, where qM = (t - 1) and t is the number of periods of data history 
available to the manufacturer. 
 
Figure 6-4 Upstream Demand Translation for SES 
The above figure shows that the propagation of demand in the case of SES is not 
unique. There could be a range of demand processes present downstream, and the 
upstream member will not be able to identify the demand process at the downstream 
member.  
In Corollary 2 above (sub-section 6.3.3.2), we discussed a similar demand translation 
for the case of an MMSE forecasting method where qR ? {0,?, qM + L} and 
considered cases where the manufacturer makes assumptions about the demand. 
Although the principle of identification of demand processes for SES is the same, 
there are two issues that need consideration regarding the manufacturer making an 
assumption about the demand process. Firstly, a wider range of models could be 
present at the retailer in the case of SES as qR ?  {0,?, t ? 1 + L}. Secondly, the 
translation for SES is of an approximate nature. Deducing demand at the retailer, 
based on demand process assumption at the manufacturer is therefore more 
challenging for SES than for SMA.  
ARMA (p, qR) 
ARMA (p, t - 1) approx Manufacturer 
Retailer 
SES 
Forecasting Method 
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6.5. Conclusions 
There is a stream of research claiming that the upstream member can infer the 
demand at the downstream member. If this were so, then there would be no value in 
sharing demand information in supply chains.   
We argue that the papers concluding that there is no value of information sharing are 
based on the assumptions of a known demand process and parameters at the retailer. 
We argue that the value of information sharing is sensitive to these assumptions and 
that in a real world supply chain, an upstream member will not be aware of the 
demand process and parameters at the downstream member. The only way to be 
aware of demand process and parameters of the downstream link is through some 
formal information sharing mechanism. When members of a supply chain do share 
information though some formal information sharing mechanism it is unlikely that 
such a mechanism will be used to share information on demand process and 
parameters, but not on the actual value of demand itself. 
In this chapter, we analyse the DDI approach using more realistic assumptions. 
When we examine the optimal forecasting methods, we present Uncertainty 
Principles to show that it is not possible for the upstream member to infer the 
demand at the downstream member.  
We then move on to discuss the case when supply chain members employ non-
 optimal forecasting methods. We show that when the supply chain links use SMA for 
forecasting their lead time demand, the upstream member can accurately infer the 
demand present at the downstream member owing to the unique propagation of the 
demand process. When the supply chain links employ SES, the upstream member 
would not be able to accurately infer the demand at the downstream member. This is 
owing to the non-unique demand process propagation in this case. 
When upstream members in a supply chain forecast using the actual consumer 
demand, this results in a reduction of the Bullwhip Effect. While various studies 
claim that this consumer demand can be inferred by the upstream members in the 
supply chain, we have shown that exact deduction of demand is not possible. For 
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accurate demand, the downstream member will have to share its demand with the 
upstream member via some formal information sharing mechanism.    
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7. Simulation Design 
7.1. Introduction 
A simulation model represents a situation on a computer in order to study how it has 
arisen or how it could be improved. The behaviour of a system can be studied by 
changing the factors affecting it. Robinson (2004) has defined simulation as 
?Experimentation with a simplified imitation (on a computer) of an operations 
system as it progresses through time, for the purpose of better understanding and/or 
improving the system?. 
7.2. Rationale for using Simulation 
The previous chapter discussed the effect of using different forecasting methods on 
Downstream Demand Inference and thus on the value of Demand Information 
Sharing in reducing the Bullwhip Effect. In this chapter, we use simulation to 
accomplish the following objectives: 
? In Chapter 5, we discussed a number of approaches to sharing demand 
information. We now wish to establish the best approach in terms of various 
performance metrics (mean squared forecast error, Bullwhip Ratio, inventory 
holdings and inventory cost). It is very complicated to mathematically 
calculate the Bullwhip Ratio and forecast error (see section 3.7); thus we 
require simulation to calculate these values. In terms of inventory holdings, 
equation 3-15 in sub-section 3.7.3.1 gives only the approximate value of the 
inventory holdings. The inventory costs obtained, therefore, are also 
approximate. Simulation helps in assessing the accuracy of the values of 
inventory holdings and costs. 
? We will also explore the sensitivity of the benefit of information sharing to 
various factors, namely lead time, autoregressive parameters, moving average 
parameters, demand variance, cost ratio and forecasting method parameters. 
? The analytical model shows that, for MA (q) processes, there is no value of 
the traditional DIS approach. The simulation experiment not only helps us to 
validate this rule but also quantifies the value of CDIS.  
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We use simulation in this research not only to test and validate the approximations 
but also as a bridge linking the analytical model to the empirical analysis.  
 
Figure 7-1   Role of Simulation in the Research Methodology 
Simulation gives a good understanding of how various factors affect the dynamics of 
the system, by changing one variable at a time. 
7.3. Simulation Design 
In this section, we will discuss some design issues including the range of the factors 
(lead time, demand parameters, cost ratio, demand variance and forecasting 
parameters) analysed in the simulation experiment. 
7.3.1. Demand Process 
The literature review (see sub-section 5.2.1) shows that the supply chain models used 
in most papers are restricted to one or two demand processes. To cover a wider range 
of ARIMA (p, d, q) models, we generate nine demand processes in the supply chain 
model. This will help us test models that are addressed in the broader literature. We 
restrict the model selection to p, d, q ? 2, as in practice demand can usually be 
represented by limiting the ARIMA process within this range (Montgomery and 
Johnson, 1976; Box et al, 1994; Zhang, 2004a).  
Mathematical 
Analysis 
Simulation Testing on 
Empirical Data 
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The following nine ARIMA (p, d, q) models are used in the simulation; ARIMA (1, 
0, 0), ARIMA (2, 0, 0), ARIMA (0, 0, 1), ARIMA (0, 0, 2), ARIMA (1, 0, 1), 
ARIMA (0, 1, 1), ARIMA (0, 2, 2), ARIMA (1, 1, 1) and ARIMA (1, 1, 2). 
The above nine models have been chosen, owing to their frequent occurrence in the 
real world (Roberts, 1982; Box et al, 1994). Another reason for the selection is that 
there is an optimal smoothing method for some of these models. Single Exponential 
Smoothing is an optimal forecasting method for ARIMA (0, 1, 1). Similarly, Holt?s 
method is an optimal forecasting method for ARIMA (0, 2, 2) and Dampened Holt?s 
method is an optimal forecasting method for ARIMA (1, 1, 2).  
7.3.2. Information Sharing Approaches used in Simulation 
In Chapter 5, we observed that supply chain links can adopt two strategies in terms 
of demand information sharing. Either they share the downstream demand 
information by a formal information sharing mechanism or they do not share the 
demand information at all. In this research, for the case of not having a formal 
information sharing mechanism, we discussed the use of two approaches: NIS and 
NIS-Est. On the other hand, we discussed the DIS and CDIS approaches in the case 
of a formal information sharing mechanism. NIS-Est and CDIS are new approaches 
introduced in this thesis which have not been examined via simulation previously. 
 
Strategy Demand Information Sharing Approaches 
No Information Sharing (NIS) No Formal Information 
Sharing mechanism No Information Sharing ? Estimation (NIS-Est) 
Demand Information Sharing (DIS) Formal Information Sharing 
mechanism Centralised Demand Information Sharing (CDIS) 
Table 7-1 ? Approaches in the Simulation Experiment 
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7.3.3. Stages of the Model 
The mathematical models found in the literature are restricted by various 
assumptions, which may not show the real value of information sharing. In this 
thesis, we argue that real world modelling requires less restrictive assumptions. In 
real world supply chains, the demand process and its parameters are not known and 
they need to be estimated (Cheng and Wu, 2005) and thus sharing demand 
information may be of value for the supply chain members (Gavirneni et al, 1999). 
Hence, the review of the literature reveals the need to incorporate more realistic 
assumptions into supply chain modelling. This may help in the analysis and 
quantification of a more pragmatic value of sharing demand information in supply 
chains.  
Moving away from a model having a number of restrictive assumptions directly 
towards a less stringent model creates a very complex and confusing environment. 
We would not be able to analyse the relationship between the value of sharing 
demand information and each of these assumptions and appreciate the magnitude of 
these effects individually. Therefore, we have developed three stages in the supply 
chain model to allow staged relaxation of model assumptions. In stage I, we assume 
that the demand process and its parameters are known. Then, in stage II, we assume 
that only the demand process is known. Finally, in stage III, both the demand process 
and demand parameters are not known. 
We have designed the simulation experiment in order to have a stage-wise 
comparison of the performance metrics of all the approaches to demand information 
sharing. We now present the structure of each of these three stages. 
7.3.3.1. Stage I 
In this stage, we assume that the manufacturer is aware of their own demand process 
and the demand parameters. In addition, they are also aware of the demand process 
and the demand parameters at the retailer.  
 
In this stage, the problem of deducing the demand at the retailer is analytically 
solvable and simulation is not required for the purpose of demand inference. One of 
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the performance metrics we use in this stage to quantify the value of sharing demand 
information is average inventory holdings. In Chapter 3, we have used an 
approximate equation (see equation 3-15) to calculate inventory at the manufacturer. 
Furthermore, the other performance metrics (inventory cost, Bullwhip Ratio and 
forecast error) also need to be calculated via simulation.  
 
Thus, simulation in this stage helps us to check the accuracy of the approximation for 
average inventory holdings and also to calculate the other performance metrics in 
order to quantify the value of sharing demand information. 
7.3.3.2. Stage II 
One of the limitations in the supply chain models presented in the literature is the 
assumption of known demand parameters. In stage II of the simulation experiment, 
we relax this assumption and use estimation procedures to estimate the demand 
parameters at both the manufacturer and the retailer. These estimated demand 
parameters are then used to deduce the demand at the retailer. Details of the 
estimation procedures used in the simulation are further discussed in sub-section 
7.3.5.  
 
In this stage, the manufacturer is aware of its own demand process and that of the 
retailer. However, they are unaware of the exact values of their own demand 
parameters and those of the retailer. 
7.3.3.3. Stage III 
Stage III has been designed to reflect more closely a real world scenario. In this 
stage, we relax the restriction of known demand processes. Thus, in this stage, the 
manufacturer is not aware of its demand process and demand parameters. They are 
also unaware of the demand process and demand parameters of the retailer. In Stage 
III, both supply chain links will identify their demand process as well as estimate 
their demand parameters.  
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7.3.4. Stages and Approaches for Non-Optimal Forecasting Methods 
In the previous sub-sections, we presented the four approaches and three stages for 
relaxation of assumptions in the simulation experiment. These approaches and stages 
are based on ARIMA process identification and parameter estimation.  
The staged relaxation has been designed in order to incorporate process identification 
and parameter estimation. In addition, both the NIS-Est and DIS approaches are 
based on estimation of parameters. However, non-optimal forecasting methods do 
not require demand parameter estimation or process identification. Therefore, the 
staged relaxation of assumptions is not required for non-optimal forecasting methods. 
In addition, the NIS-Est and DIS approaches are not relevant to non-optimal 
forecasting methods. Thus, we restrict the simulation of non-optimal methods to NIS 
and CDIS approaches for Stage I only. 
In the following table we summarise the stages and the approaches for the optimal 
and non-optimal forecasting methods. 
Forecasting 
Methodology 
Stages Approaches 
Optimal Method I, II, III NIS, NIS-Est, DIS, CDIS 
Non-Optimal Methods I NIS, CDIS 
Table 7-2   Stages and Approaches 
7.3.5. Estimation of Demand Parameters ? Stage II 
One of the limitations discussed in the literature review on supply chain models is 
that the demand parameters are assumed to be known. By contrast, we have assumed 
in Stage II that these parameters are not known but need to be estimated by the 
supply chain links. Thus in the simulation the supply chain links will estimate the 
parameter vectors ,? ? and Et where: 
),...,,( 21 pP ???= , ),...,,( 21 q???=? and Et = 1 2( , ,..., )t t t q? ? ?? ? ? . 
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In the time-series literature (e.g. Koreisha and Pukkila, 1990; Box et al, 1994; 
Chatfield, 2003; Kapetanios, 2003) two procedures have been discussed to estimate 
the model parameters for an ARIMA (p, d, q) process: Least Squares (LS) and 
Maximum Likelihood (ML).  
For moderate and long data histories, the likelihood estimate gives a very close 
approximation to the least squares estimate (Box et al, 1994). There have been 
various studies (Hannan and Rissanen, 1982; Koreisha and Pukkila, 1990; Sabiti, 
1996; McKenzie, 1997; Kapetanios, 2003) suggesting that the accuracy of Ordinary 
Least Squares (OLS) is comparable to ML estimates. As the data histories employed 
in this research are of moderate length (up to 104 observations) we employ OLS; it is 
simpler to compute than ML, and will give very similar results. 
The autoarima function, of the C Library, has been used to perform estimation via 
the Ordinary Least Squares method in the simulation to estimate the parameters. 
7.3.6. Identification of Demand Process ? Stage III 
In section 5.2, we saw that the papers discussing demand information sharing assume 
that the supply chain members are aware of their demand process. In addition, they 
assume that, even in the case where a No Information Sharing strategy is assumed, 
the upstream member knows the demand process at the downstream link. We argued 
in sub-section 7.3.3 that the demand process is not known in real world supply chains 
and needs to be identified. In stage III of the simulation experiment we relax the 
assumption of known demand processes. The supply chain links must identify the 
most appropriate ARIMA models to represent their demand processes. 
The final selection of the model is based on the idea of balancing the risks of under-
 fitting and over-fitting and the model is chosen by minimising a penalty function. 
There are two criteria discussed frequently in the literature: the Akaike Information 
Criterion (AIC) and the Bayesian Information Criterion (BIC). 
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where 2?? is the estimate of the variance of the noise term derived directly from the 
residuals of the ARIMA (p, d, q) fit and n is the effective number of observations 
given by n = N-d-p, where N is the total number of observations. 
The first term in the above equations is simply a penalty for under-fitting. On the 
other hand, the second terms are directly proportional to the number of ARMA 
parameters and is a penalty for over-fitting. For n ? 8, the penalty imposed for the 
number of estimated model parameters is greater in the BIC criterion than in AIC. 
Thus, the use of minimum BIC for model selection will result in a model whose 
number of parameters is no greater than that chosen by AIC. Harvey (1993) argues 
that there is evidence to suggest that AIC has a tendency to pick ARMA models that 
are over-parameterised compared to BIC and thus the BIC is a more satisfactory 
criterion than AIC. The BIC criterion is also used in well-known forecasting software 
packages, such as Forecast Pro (Goodrich, 2000). The autoarima function used in 
this research uses the BIC criterion to select the final ARIMA process for the given 
data series. 
7.3.7. Series Splitting Rules 
Process identification and parameter estimation require the specification of series 
splitting rules to be employed in the research. The time series is divided into two 
parts, namely the estimation and the performance measurement periods. As the 
discussion in this thesis relates specifically to the effect on the inventory of an 
upstream member (e.g. the manufacturer) we divide the first part into two sub-parts 
i.e. ?retailer initial estimation period? and the ?retailer and manufacturer estimation 
period?. Now we discuss these parts in detail. 
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Figure 7-2 ? Series Splitting Rules 
7.3.7.1. Estimation Period 
In this period, the demand process is identified and the demand parameters are 
estimated at both the retailer and the manufacturer. In period 1a, we generate the 
retailer?s demand, from which the retailer estimates an initial set of parameters. In 
period 1b, we not only generate the retailer?s demand, but also the manufacturer?s 
demand with the help of the initial estimated parameters from 1a. Finally, the 
demand parameters for both the retailer and the manufacturer are estimated from 1b.  
In No Information Sharing approaches, the manufacturer is not aware of the demand 
series at the retailer and the process identification and parameter estimation takes 
place from its own demand series. As the manufacturer?s demand series is available 
only in period 1b, the identification and estimation takes place in period 1b in the No 
Information Sharing approaches. In order to make a fair comparison between the No 
Information and Information Sharing approaches, the retailer?s parameter estimates 
from 1a are not used for initialisation of parameter estimation in 1b.  
7.3.7.2. Performance Measurement Period 
The final estimates from the first period are utilised in the Performance Measurement 
period and there is no further updating of parameters in this period. These estimates 
are then utilised to test the forecasting and inventory performance of all approaches. 
In section 3.7, we discussed the four performance measures that will be used in the 
Retailer and 
Manufacturer 
Estimation 
Period 1a          Period 1b Period 2 
ESTIMATION 
PERFORMANCE 
MEASUREMENT 
Retailer Initial 
Estimation 
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simulation experiment: mean squared error, Bullwhip Ratio, inventory holdings and 
inventory cost.  
The splitting rules are not relevant in the case of non-optimal forecasting methods 
and in Stage I for optimal forecasting methods as there is no estimation involved in 
these two cases. However, in Stages II and III for optimal forecasting methods, the 
total time series of 100 periods are split into two equal parts of 50 each for the 
estimation and performance measurement periods. Further, the estimation period has 
been split into two equal parts of 25 periods for 1a and 1b, as shown in Figure 7-2.   
7.3.8. Demand and Order Generation 
In this section, we will discuss how the demand is generated at the retailer and how it 
propagates to the upstream members. 
7.3.8.1. Demand Generation  
In order to generate the demand at the most downstream link, i.e. the retailer, a 
standard normally-distributed random number is first generated by the Box-Muller 
method (Box and Muller, 1958). This is then multiplied by the standard deviation ?  
of the noise term to calculate the noise term t? . Demand is generated according to the 
specified values of p, d and q for the ARIMA (p, d, q) demand process using 
different ranges of the autoregressive parameters ( 1 2, ,..., p? ? ? ) and moving average 
parameters ( 1 2, ,..., q? ? ? ) to be discussed further in sub-section 7.3.10.1.  
7.3.8.2. Order Generation  
The simulation model assumes that the links in the supply chain use the order-up-to 
(OUT) policy to calculate the order-up-to level. This has already been discussed in 
detail in section 3.4. 
According to the OUT policy, the order to the next upstream link is the current 
demand plus any change in the order up to level. Thus, we use this equation to 
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generate the order to the next upstream link. This has already been discussed in detail 
in sections 3.5 and 3.6. 
7.3.9. Anti-Bullwhip Effect 
In section 2.4, we discussed the Anti-Bullwhip Effect (ABE) phenomenon. As the 
objective of this research is to minimise the amplification of demand variance (the 
Bullwhip Effect), ABE is out of the scope of the research. In the simulation 
experiment, for an optimal forecasting method, we simulate only the Bullwhip Effect 
(BE) region. In section 2.4, we presented a review of the papers discussing the 
bullwhip region for stationary ARIMA processes (Lee et al, 2000; Li et al, 2005; 
Hosoda and Disney, 2006; Luong and Phien, 2007).  For non-stationary processes 
used in simulation, we simulate within the stationary and invertibility regions, and 
then choose parameters exhibiting the Bullwhip Effect.  
The simulation results have shown that the ABE phenomenon does not occur for 
SMA and SES methods. The only exception is when SES is used for ARIMA (0, 1, 
1) as then SES becomes an optimal method for the demand process. In order for the 
simulation experiment to be consistent for all forecasting methods, we use the same 
range for SMA and SES methods as used for the MMSE method. 
7.3.10. Impact of Various Factors  
Earlier, we discussed the need to simulate nine different demand processes. In this 
section, we look at the factors that may affect the value of sharing demand 
information in supply chains. The mathematical analysis for AR (1) (Lee et al, 2000) 
suggests that noise in the retailer?s demand, the lead time from the supplier to the 
manufacturer, the demand parameters and the cost ratio (ratio of penalty to total cost) 
all affect the value of sharing demand information. Thus, we simulate the effect of 
these factors on all nine demand processes. When we use the SMA forecasting 
method, we also look at the effect of the number of terms used in the moving 
averages on the value of sharing demand information. In the case of SES, we look at 
the effect of the smoothing constant on the value of sharing demand information. 
 
M. Ali, 2008, Chapter 7  113 
 
Factors Forecasting Methods 
Demand Parameter Vectors ( ,? ? ) 
Std Dev (?) in the Retailer?s Demand 
Lead Time (L) from the Supplier to the 
Manufacturer 
Penalty Cost / Holding Cost  Ratio 
MMSE, SMA and SES 
Number of Terms (n) used in 
 Simple Moving Average 
SMA 
Smoothing Constant (?) SES 
Table 7-3 Factors affecting the Value of Demand Information Sharing 
In the following sub-sections we present the range of values for each of the above 
factors.  
7.3.10.1. Demand Parameters 
The regions of demand parameters selected in this research ensure that the demand 
processes are stationary and invertible. In addition, as discussed in the previous sub-
 section, the regions of demand parameters are restricted to those that lie within the 
Bullwhip Effect (BE) region. Although, for non-optimal forecasting methods, the 
Bullwhip Effect is observed in the whole stationary and invertible region, the same 
parameter ranges have been used as in optimal methods for consistency (see sub-
 section 7.3.9) 
In the following table (Table 7-4) we present the demand ranges used in the 
simulation experiment.  
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Demand 
Process 
Regions of values of ?and ? - based on the process 
being stationary, invertible and within the bullwhip 
region 
ARIMA (1, 0, 0) 0 < ?  < 1 
ARIMA (2, 0, 0) 
10 2?< <  
20 1?< <  
ARIMA (0, 0, 1) -1 < ?  < 0 
ARIMA (0, 0, 2) 
 
02 1 <<? ?  
01 2 <<? ?  
ARIMA (1, 0, 1) 
 
1 1
 1 1
 ?
 ?
 ? ?
 ? < <
 ? < <
 >
  
ARIMA (0, 1, 1) 
ARIMA (1, 1, 1) 
ARIMA (0, 2, 2) 
ARIMA (1, 1, 2) 
 
The bullwhip regions for non-stationary demand 
processes are unknown. Various parameter regions 
were simulated within stationary and invertibility 
regions and parameters were selected where 
amplification in demand variance was experienced. 
Table 7-4 Range of Demand Parameters (Box et al, 1994, Li et al, 2005) 
None of the papers discussed in the literature review of the ABE (see section 2.4) 
analyse the parameter regions for the Bullwhip Effect for the non-stationary 
processes. In order to resolve this issue, we simulate various parameter regions for all 
the non-stationary processes and select the parameter values where we find an 
amplification of the demand variance.  
7.3.10.2. Range of Values of Noise in the Retailer?s Demand 
We will assume that there is noise variance of 10, 50 and 100 in the demand 
generated. These values have also been used in Lee et al (2000) and Raghunathan 
(2001), while Li et al (2005) assumed the value to be 50. When we look at the effect 
of other factors on the value of information sharing, we assume the variance to be 50. 
The rationale for the above choice of range of variance of noise is based on the 
comparison with previous papers (Lee et al, 2000; Raghunathan, 2001; Li et al, 
2005). Real data may exhibit greater variability; the effects of such high variances 
are assessed in sub-section 9.7.4 of the empirical analysis. 
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7.3.10.3. Range of Lead Times from the Supplier to the Manufacturer 
We simulate Lead Times from the manufacturer to the retailer (l) and from the 
supplier to the Manufacturer (L) of 1, 6 and 12 periods. Lee et al (2000) and 
Raghunathan (2001) used simulation lead time values from 1 to 10 and kept 10 as 
constant when looking at the effect of other factors. When we look at the effect of 
other factors on the value of sharing demand information, we assume L =12. 
Lee et al (2000) has shown that l has a slight effect on the manufacturer?s inventory 
in the case of the DIS approach. Therefore, we only experiment by changing the 
value of ranging the value of L. In all replications, we assume that the retailer?s and 
the manufacturer?s lead times are equal i.e. l = L. One further scope for refinement of 
this research is to study the effect of l on the value of information sharing.  
7.3.10.4. Range of Values of the Cost Ratio 
As shown by Lee et al (2000), there is an effect of the Cost Ratio (as discussed in 
sub-section 3.7.3.1) on the value of sharing demand information for an AR (1) 
process. They assumed the value of the penalty cost to be 25 and that of the 
inventory holding cost to be 1. We use three values of the penalty cost, namely 2, 25 
and 50, to evaluate the effect of the cost ratio on the value of information sharing. 
When we look at the effect of other factors, we assume the penalty cost to be 25. 
7.3.10.5. Forecasting Method Parameters 
We have used three forecasting methods in the simulation program to forecast the 
lead time demand. These are the Minimum Mean Squared Error (MMSE) forecast, 
Single Exponential Smoothing (SES) and Simple Moving Averages (SMA). The 
MMSE forecast utilises the range of parameters which lie within the stationary, 
invertibility and bullwhip regions, as shown in Table 7-4.  
For non-optimal methods, we choose parameter ranges for forecasting methods based 
on expert recommendation. For SES, the range recommended for the smoothing 
parameter (alpha) is between 0 and 1 (Gardner, 1985; Gardner, 2006). Thus, we use 
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0.1, 0.3 and 0.8 in the simulation. When we look at the effect of other factors, we 
assume the smoothing constant to be 0.3.  
The range of number of terms in SMA is taken to be 3, 6 and 12 periods (Johnston et 
al, 1999; Boylan and Johnston, 2003). When we look at the effect of other factors, 
we assume the number of terms to be 6.  
7.3.11. Performance Metrics 
This has been discussed in detail in Chapter 3. The simulation program will result in 
calculating the values of the following performance metrics for the four approaches: 
? Forecast Error (Mean Square Error) 
? Bullwhip Ratio 
? Average Inventory Holdings 
? Average Inventory Costs 
The measurements of the above performance metrics have been discussed in detail in 
Chapter 3. In the empirical analysis we also use Mean Absolute Percentage Error 
(MAPE) and compare the MSE with the MAPE results.  
7.4. Technical Details 
The simulation code is written in Visual Studio.net. The simulation is designed in 
such a way that the length of the data series and the number of replications can be 
varied. We simulate 2000 data series of 100 observations for each demand model. 
The process is repeated every time the simulation experiment is run. The simulation 
is run a number of times to ascertain the effect of factors by assuming different 
values of these factors, as discussed in this chapter. The results for all performance 
metrics are recorded for the 2000 series and then averaged. 
In stages II and III, we use the autoarima function of the C Numerical Library 
(developed by Visual Numeric) for process identification and parameter estimation. 
The autoarima function automatically identifies the order of the ARIMA process and 
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determines the parameters of the process. We use the Grid-Search method of the 
autoarima function for process identification and parameter estimation. The Grid-
 Search method in autoarima gives the option of specifying the range of the possible 
combinations of candidate values of p, d and q. The function then identifies the 
optimum values of p, d and q according to the BIC measure and returns these values 
in the form of an array. The function also estimates the constant term, the moving 
average parameters and the autoregressive parameters for the given time series based 
on an ordinary least squares method.  
7.5. Verification 
Davis (1992) defines verification as the process of ensuring that the model design has 
been transformed into a computer model with sufficient precision. Steps taken in 
order to verify the simulation model used in this research are summarised below: 
? The Visual Basic code has been read through to ensure that the right data and 
logic have been entered. 
? Visual checks have been carried out by stepping through the model at every 
event. This option is provided by default by the computer software Visual 
Basic.Net. 
? A selection of the time series generated by the simulation has been exported 
to Microsoft Excel where the mean and standard deviation of the series have 
been verified by using the built-in Excel functions. 
? The selection of demand parameters was made to ensure they lie within the 
Bullwhip Effect region. For each time series generated by the simulation 
experiment, the variances of the demand and order of the retailer were 
checked to verify that there is amplification in the demand variance. 
? The same supply chain model was designed in Microsoft Excel and inventory 
costs were compared for selected series. The results of both models were 
found to be exactly the same. 
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? The simulation experiment in Lee et al (2000) was replicated by using the 
same values of lead time, standard deviation in the noise and the 
autoregressive parameter in the simulation of this research. The results were 
then compared and the performance metrics of both the research were found 
comparable (see section 8.4).   
7.6. Conclusions 
In Chapter 5, we presented four demand information sharing approaches. We use 
four performance metrics in this simulation experiment, namely forecast error 
(MSE), Bullwhip Ratio, inventory holdings and inventory cost. Simulation is used in 
this research to establish comparisons between the different approaches in terms of 
the four performance metrics. The first reason to use simulation is that the first two 
performance metrics, mean squared forecast error and Bullwhip Ratio, are very 
complex to analyse mathematically. Secondly, the mathematical analysis in this 
research incorporates an approximate inventory holdings equation. As the inventory 
cost calculation is based on inventory holdings, the values of inventory costs are also 
of an approximate nature.  
The literature review shows that all papers restrict their simulation to one or two 
demand processes. In order to obtain more comprehensive results than previous 
authors, we simulate nine different demand processes. The mathematical analysis for 
AR (1) (Lee et al, 2000) suggests that noise in the retailer?s demand, the lead time 
from the supplier to the manufacturer, the demand parameters and the cost ratio 
affect the value of DIS. Thus, we look at the effect of these factors on all nine 
demand processes. When we use the SMA forecasting method, we also look at the 
effect of the number of terms used in the moving average on the value of information 
sharing. In the case of SES, we look at the effect of the smoothing constant used on 
the value of information sharing. We calculate the four performance metrics for all 
four information sharing approaches for three stages in the case of optimal methods. 
For non-optimal methods, we compare two approaches for only the first stage of the 
analysis (see Table 7-2). 
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8. Simulation Results  
8.1. Introduction 
Following the discussion on the design of the simulation experiment in the previous 
chapter, we dedicate this chapter to the presentation and discussion of the results of 
the experiments. The results for the MMSE forecasting method are presented for 
each of the three stages. Then we move on to the discussion for the two non-optimal 
forecasting methods. 
One of the main aims of this chapter is to provide insights into the performance of 
different approaches to demand information sharing. For the optimal forecasting 
methods, the performance of CDIS is compared with the two No Information Sharing 
approaches and the traditional Demand Information Sharing approach. In the case of 
non-optimal forecasting methods, the comparison is limited to CDIS and NIS, as 
NIS-Est and DIS are not relevant in this case (see sub-section 7.3.4). 
We also wish to look at the effect of various factors (lead time, demand variance, 
autoregressive parameters, moving average parameters, cost ratio and forecasting 
method parameters) on the value of sharing demand information. Finally, the 
analytical model (see sub-section 4.2.3.1) shows that for MA (q) processes, there is 
no value of the DIS approach. We not only validate this analytical result via 
simulation, but also quantify the value of demand information sharing by comparing 
the other approaches with the CDIS approach.  
We start the discussion of the results for the MMSE forecasting method by 
presenting a comparison between the three stages for each of the nine demand 
processes. We then proceed to a detailed discussion of the results of Stage I, where 
we show how the demand parameters, demand variability, lead time and cost ratio 
affect the value of CDIS by comparing it with the other three approaches, namely 
NIS, NIS-Est and DIS. The discussion on the results for Stages II and III is then 
presented and in this case we also look at the effect of the length of demand history, 
demand variability, process identification and parameter estimation method. We have 
discussed in Chapter 3 that the nature of MMSE forecasting in the ARIMA 
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methodology requires a NIS-Est approach and therefore the supply chain links 
should not utilise a NIS approach. In the next section, while presenting the results of 
Stage I, we will also establish that NIS always results in higher inventory costs 
compared to the other three approaches. Thus, we show the value of CDIS in Stages 
II and III by comparing it only with NIS-Est and DIS.  
The results for non-optimal forecasting methods are then presented. As discussed in 
Chapter 5, for non-optimal forecasting methods there are no noise term estimation 
issues and therefore the NIS-Est and DIS approaches are not relevant. The results for 
non-optimal forecasting methods are thus presented by comparing only NIS with the 
CDIS approach.  
8.2. Performance of CDIS for Optimal Forecasting Methods  
As mentioned above, when the supply chain links use the MMSE forecasting method 
(optimal forecasting method), there are different demand information sharing 
approaches. In order to discuss the performance of CDIS, we compare the reduction 
in inventory holdings, inventory costs and forecast error with the other approaches. 
Before moving on to a detailed discussion of the results, we present three rules 
regarding the performance of demand information sharing approaches that are based 
on the simulation results. These rules apply to the Bullwhip Effect regions for all 
demand processes used in the simulation experiment.  
8.2.1. Rules for Sharing of Demand Information 
In this chapter, we establish the following three rules based on the results of the 
simulation experiment. 
Rule 1: Supply Chains with No Information Sharing Strategy 
NIS-Est results in lower inventory cost than NIS for all demand processes 
investigated, except for pure moving average processes, in which case the 
inventory costs are the same. 
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The simulation results show that the NIS-Est results in lower inventory cost, 
averaged over all replications, than the NIS approach, except for pure moving 
average processes. For these processes, the inventory cost remains the same due to 
their conversion into a random process as discussed in sub-section 4.2.3.1. 
The NIS approach, as presented by various papers, involves the calculation of a 
forecast by assuming the noise term to be zero. On the other hand, we introduce the 
NIS-Est approach whereby the manufacturer estimates the noise term by its order 
history. In this case, by utilising an estimate of the noise term, the lead-time forecast 
results in reduced forecast error (as measured by MSE) and thus savings in inventory 
cost. 
Rule 2: Supply Chains with an Information Sharing Strategy 
In all demand processes investigated, CDIS results in lower inventory costs 
compared to DIS 
The simulation results in this chapter show that, for all nine demand processes, in the 
case of an information sharing strategy, CDIS results in lower inventory cost, 
averaged over all replications, than the DIS approach. 
In the DIS approach, the manufacturer makes its lead time forecast based on the 
value of the retailer?s noise term. On the other hand, in the CDIS approach, the 
manufacturer not only shares the demand but also utilises the retailer?s forecast in its 
lead-time forecast. In this way, the variability of the manufacturer?s lead time 
forecast decreases.  
Rule 3: Supply Chains with or without an Information Sharing Strategy 
In all demand processes investigated, CDIS results in lower inventory costs 
compared to NIS-Est 
The inventory cost in the case of CDIS is always less (averaged over all replications) 
than the inventory cost for an NIS-Est approach. Thus, the performance of CDIS in 
terms of inventory cost is the best among the four approaches discussed in the 
research. 
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These three rules are summarised in Figure 8-1 below. An approach is said to be a 
?winner? if, for all demand processes investigated, the average inventory cost is less 
than or equal to that of the alternative approach, averaged over all replications. 
 
Figure 8-1 Inventory Cost Comparison of Information Sharing Approaches 
8.2.2. Performance of CDIS 
Now we move on to the presentation of results to show that, for optimal forecasting 
methods, on average, CDIS results in the lowest MSE, Bullwhip Ratio, inventory 
holdings and inventory cost among all the approaches in all stages. Overall, in all 
simulation runs, irrespective of the demand process and demand parameters, we 
observe that CDIS results in the least inventory cost. 
Lee et al (2000) showed that, in the case of an AR (1) process at the retailer, there is 
value in information sharing. Lee et al (2000) compared the NIS and DIS approaches 
and concluded that DIS is valuable in terms of reduced inventory costs. The 
simulation results in section 8.4 show that the magnitude of savings, as found from 
this simulation, is comparable with the results of Lee et al (2000). The simulation 
design also permits comparisons among the two new approaches, NIS-Est and CDIS. 
Further, we also experiment allowing different model assumptions.   
In stage I, we assume that the retailer and the manufacturer are aware of the demand 
processes and the demand parameters. As discussed in Chapter 5, the value of CDIS 
derives from the fact that the manufacturer forecasts with the less variable consumer 
Rule 3 
Rule 1 
Information  
Sharing Strategy 
 
No Information 
Sharing Strategy  
NIS-Est vs. 
CDIS 
Winner: 
CDIS 
DIS vs. 
CDIS 
Winner: 
NIS-Est 
NIS vs. 
NIS-Est 
Winner: 
CDIS 
 
Rule 2 
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demand. When we relax the assumption of known demand parameters in Stage II, we 
observe that the percentage reduction in inventory costs by using CDIS compared 
with the other three approaches is higher than in Stage I. This percentage reduction 
increases further when, in Stage III, we also relax the assumption of known demand 
processes. Thus, the value of CDIS is highest in stage III, less in stage II and is least 
in stage I.  As discussed in sub-section 7.3.3, we perform staged relaxation in the 
study in order to look at the effect of different assumptions on the value of CDIS. 
Stage II is one step away from the strict mathematical model, while Stage III has 
been designed to more closely reflect a real situation, where the supply chain links 
need to first identify the demand process and estimate their parameters before 
making the forecast. One of the reasons for the high value of CDIS in stages II and 
III, as established in this chapter, is inherent in the identification and estimation in 
ARIMA modelling. It is quite possible for the supply chain links to identify the 
wrong demand process and/or estimate demand parameters inaccurately.  Now, 
upstream translation of demand shows that the demand process always becomes 
more variable as it moves up the supply chain. Thus, in the case of DIS and CDIS, as 
the identification and parameter estimation is done through the retailer?s demand, the 
probability of more accurate identification and estimation is higher. Thus, forecasting 
with more precise demand process and parameters results in lower inventory costs. 
Compared to DIS, as the forecasting in CDIS is done through a less variable demand 
process, CDIS results in the lowest inventory cost in all stages. In the following table 
(Table 8-1), we present an average of percentage savings in inventory costs for all 
simulation runs for an AR (1) process for the three stages. We first find that CDIS 
results in the least inventory cost among all approaches. We also find that as we relax 
assumptions, moving towards a more realistic supply chain, the value of Centralised 
Demand Information Sharing increases.  
Stages Percentage savings in inventory cost by using CDIS 
compared with 
 NIS NIS-Est DIS 
Stage I 32.1 10.8  7.6 
Stage II - 63.0 25.8 
Stage III - 72.0 33.8 
Table 8-1 Comparison of three Stages for an AR (1) Process 
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As mentioned above, previous findings are limited to an AR (1) demand process at 
the retailer. In this research, we have simulated nine different demand processes (see 
sub-section 7.3.1 for details) to look at the effect of the demand process at the retailer 
on the value of CDIS. The percentage reductions in inventory cost are calculated by 
assuming the lead time to be 12 (see sub-section 7.3.10.3). The simulation results 
show that the value of CDIS is demand process dependent: the percentage inventory 
savings depends on the nature of the demand process. This is shown in Table 8-2 
below. 
Demand Process Percentage Reduction in Inventory Cost by using CDIS 
 compared to 
 NIS-Est DIS NIS-Est DIS NIS-Est DIS 
 Stage I Stage II Stage III 
AR (1) 10.8  7.6 63.0 25.8 72.0 33.8 
AR (2) 41.0 11.7 71.4 38.2 74.4 41.0 
MA (1) 2.3 48.8 31.5 53.8 35.0 
MA (2) 7.5 59.6 21.5 63.0 28.8 
ARMA (1, 1)  4.9  4.4 49.6 35.8 58.3 41.2 
ARIMA (0, 1, 1) 39.9 17.8 46.5 22.3 63.3 45.4 
ARIMA (1, 1, 1) 58.6 27.8 72.2 57.2 84.2 61.0 
ARIMA (1, 1, 2) 57.7 21.4 74.4 34.6 86.7 52.5 
ARIMA (0, 2, 2) 79.3 48.1 81.4 49.8 83.0 58.0 
Table 8-2 Demand Process Dependent value of CDIS in three stages 
Table 8-2 shows the demand process dependent behaviour of CDIS. In stationary 
processes, the pure autoregressive demand processes yield higher percentage savings, 
by using CDIS, compared to moving average or mixed processes. Pure moving 
average processes result in very low improvement. The results for percentage 
reduction in using CDIS compared to DIS and NIS-Est are the same for the pure 
moving average processes for stage I. The reason is the conversion of these processes 
into a random process as discussed in sub-section 4.2.3.1, yielding the same results 
for DIS and NIS-Est. 
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From Table 8-2, we also observe that the savings in inventory costs are greater when 
the demand process is non-stationary (compared to stationary processes). A higher 
value of the difference operator results in higher savings in inventory costs. In terms 
of stationary processes, more autoregressive parameters in the model result in higher 
savings in inventory cost. There is more cost savings in an AR (2) process compared 
to the AR (1) demand process. To summarise, the model dependency property of the 
value of CDIS shows that the percentage reduction in inventory cost in CDIS 
compared to other approaches is an increasing function of the number of 
autoregressive parameters, p, and the difference parameter, d, for the ARIMA models 
investigated. 
We also observe from Table 8-2 that the percentage savings in Stages II and III are 
substantially greater than those in Stage I. Thus, when the demand process and 
demand parameters are known to the supply chain members, the value of CDIS is 
less. On the other hand, when we move towards more realistic models (Stages II and 
III), the value of CDIS becomes higher.  
Detailed results for MSE, bullwhip ratio, inventory holdings and inventory costs, for 
each of the three stages are given in Appendices 8A, 8B and 8C. These results show 
that the CDIS approach performs better than the other three approaches in terms of 
all four performance metrics. The values of the performance metrics for non-
 stationary processes are higher than for stationary processes, owing to the choice of 
demand parameters that may lead to strong trends in the demand series. 
8.3. MSE and the Bullwhip Ratio 
We have discussed in the previous section that, on average, CDIS always results in 
the least inventory cost among the different information sharing approaches in all 
stages. In this section, we will look at two major factors linked with the inventory 
performance of CDIS, namely MSE and the Bullwhip Ratio. The percentage 
reduction in MSE, Bullwhip Ratio and inventory cost by utilising CDIS compared to 
DIS and NIS-Est for an MMSE method is given in Tables 8-3 and 8-4 below. Please 
note that in the two tables we abbreviate Bullwhip Ratio as BR and Inventory Cost as 
IC. 
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Percentage Reduction in Performance Metrics by utilising  
CDIS instead of DIS 
Simulation - Stage I Simulation - Stage II Simulation - Stage III 
Demand 
Process 
MSE BR IC MSE BR IC MSE BR IC 
AR(1) 11.8   9.5   7.6 26.8 35.6 25.8 43.1 41.1 33.8 
AR(2) 15.5   9.8 11.7 41.2 25.8 38.2 54.2 49.1 41.0 
MA(1)   8.0   9.4   2.3 32.5 19.5 21.5 41.8 39.4 35.0 
MA(2)   7.1   9.8   7.5 32.5 45.8 35.8 45.0 38.1 28.8 
ARMA 
(1,1) 
  6.5 3.8   4.9 32.6 33.3 31.5 56.1 51.1 41.2 
ARIMA 
(0, 1, 1) 
22.5 21.6 17.8 25.0 25.9 22.3 60.1 58.8 45.4 
ARIMA  
(1, 1, 1) 
25.2 18.7 27.8 56.3 63.2 57.2 59.6 64.1 61.0 
ARIMA  
(1, 1, 2) 
22.2 18.0 21.4 36.9 29.8 34.6 49.1 60.4 85.2 
ARIMA 
 (0, 2, 2) 
52.7 39.3 48.1 51.2 52.6 49.8 40.1 42.1 58.0 
Table 8-3 Performance of CDIS compared with DIS  
Lee et al (2000), using an AR (1) demand process and assuming the demand process 
and parameters to be known, have shown the existence of a relationship between the 
inventory costs and conditional variance of the lead time demand (conditioned on 
known demand, dt). They compare the inventory costs and conditional variance of 
the lead time demand between the NIS approach and the DIS approach. This shows 
that by utilising an NIS approach, the manufacturer will have a higher conditional 
variance in the lead time demand, which results in higher values of inventory costs. 
When the manufacturer forecasts using the alternate DIS approach, the variability in 
the lead time demand forecast reduces, which results in a lower inventory cost.  
In Table 8-3 above, we compare the percentage reductions in MSE, Bullwhip Ratio 
and inventory costs between the CDIS and the DIS approach for all nine demand 
processes. The results of the AR (1) process shows that high percentage reductions in 
MSE and Bullwhip Ratio are associated with high reduction in inventory costs, 
giving similar results as Lee et al (2000). Table 8-3 shows that for any individual 
demand process, apart from ARIMA (0, 2, 2), any increase in percentage reductions 
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in MSE or BR results in increased percentage reductions in the inventory cost, 
although not with the same magnitude. Thus, our staged relaxation of assumptions 
methodology shows that when the forecast error or the variability in the demand 
decreases due to demand information sharing, the inventory cost will also decrease.  
When the associations are compared across different demand processes, we observe 
that the magnitude with which the percentage reductions in MSE and BR are 
transferred to inventory cost also depends on the demand process. In sub-section 
8.2.2 the demand process dependent behaviour of the value of CDIS was discussed. 
This behaviour is also observed in the Tables 8-3 and 8-4 where the magnitudes of 
transfer of reductions in forecast error and demand variability to inventory cost 
depends on the demand process.  
Percentage Reduction in Performance Metrics by utilising  
CDIS instead of NIS-Est 
Simulation - Stage I Simulation - Stage II Simulation - Stage III 
Demand 
Process 
MSE BR IC MSE BR IC MSE BR IC 
AR(1) 
9.8 11.5 10.8 52.5 65.3 63.0 83.6 90.0 72.0 
AR(2) 
18.0 7.8 41.0 29.8 36.5 71.4 96.7 85.6 74.4 
MA(1) 
7.1 9.4 2.3 52.8 42.5 48.8 61.9 51.2 53.8 
MA(2) 
7.1 9.8 7.5 63.7 62.5 59.6 81.9 71.9 63.0 
ARMA 
(1,1) 8.0 3.8 4.4 39.4 52.8 49.6 75.8 62.9 58.3 
ARIMA 
(0, 1, 1) 31.2 29.5 45.6 36.5 25.9 46.5 61.9 41.2 63.3 
ARIMA  
(1, 1, 1) 
31.4 44.2 56.9 66.0 39.6 72.2 75.8 65.0 84.2 
ARIMA  
(1, 1, 2) 
39.2 37.5 58.6 68.4 65.8 74.4 48.7 65.7 86.7 
ARIMA 
 (0, 2, 2) 
61.0 48.5 57.7 72.6 75.8 81.4 45.2 58.0 83.0 
Table 8-4 Performance of CDIS compared with NIS-Est  
Next, we will discuss the simulation results for each of the three stages. 
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8.4. Simulation Results of Stage I 
In this section, we present the simulation results for Stage I for the optimal 
forecasting methods. The results for non-optimal forecasting methods are presented 
in section 8.6. 
In the table below (Table 8-5), we present the percentage reduction in the inventory 
cost by using CDIS, compared to the three other approaches (NIS, NIS-Est and DIS) 
for all the nine processes. The inventory cost for MA (1) and MA (2) is the same for 
the three approaches NIS, NIS-Est and DIS (see sub-section 4.2.3.1). 
Percentage reduction in inventory cost 
by CDIS compared with 
Demand Process 
NIS NIS-Est DIS 
AR (1) 32.1 10.8   7.6 
AR (2) 58.0 41.0 11.7 
MA (1) 2.3 
MA (2) 7.5 
ARMA (1, 1) 32.0   4.9   4.4 
ARIMA (0, 1, 1) 72.1 45.6 17.8 
ARIMA (0, 2, 2) 83.6 79.3 48.1 
ARIMA (1, 1, 1) 89.0 58.6 27.8 
ARIMA (1, 1, 2) 87.4 57.7 21.4 
Table 8-5: Percentage Reduction in Inventory Cost by using CDIS  
The comparisons with the two No Information Sharing approaches show that sharing 
demand information can result in huge savings in inventory cost. The comparison 
with DIS shows that further significant savings in inventory costs can be achieved by 
using the CDIS approach. Similarly, the comparison between NIS and NIS-Est 
shows that NIS-Est results in lower inventory cost than the traditional No 
Information Sharing approach (NIS), with the exception of the pure MA processes.  
Lee et al (2000) quantified the value of information sharing by comparing NIS with 
the DIS approach (see section 5.2). We replicated their simulation design by 
assuming the same values in the experiment (standard deviation (?) = 50, Lead Time 
from the manufacturer to the retailer (l) = 5, Lead Time from the supplier to the 
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manufacturer (L) = 10, autoregressive parameter (?) = 0.1 ? 0.9) (see Lee et al 
(2000:636)). The following table (Table 8-6) shows a comparison of the results. 
Percentage Reduction in Inventory Cost in DIS 
compared with NIS 
 
?  
Lee et al (2000) Replication 
0.1 1% 1% 
0.3 3% 3% 
0.5 7% 9% 
0.7 22% 21% 
0.9 41% 45% 
Table 8-6: Replication of Lee et al (2000)  
Lee et al (2000) do not present the percentage inventory reductions in a tabular form 
and in Table 8-6 we have used approximate values from Figure 3 in their paper. The 
above table indicates that the results from the replication approximately agree with 
the results of Lee et al (2000).  
8.4.1. Effect of Demand Parameters 
The simulation results show that the performance of CDIS depends on the value of 
the demand parameters. As the objective of this research is to counter the 
amplification of demand variance, we experiment only with the demand parameters 
falling within the Bullwhip Effect region. We observe that when there is 
amplification of demand variance, CDIS always results in cost savings. 
We discussed, in sub-section 7.3.8, that the values of parameters considered for non-
 stationary processes in this research are based on simulating different parameter 
regions. No research has yet established the parameter regions for the Bullwhip 
Effect for non-stationary ARIMA processes. Therefore, we restrict the analysis of the 
effect of demand parameters to the discussion of stationary processes. We discuss in 
Chapter 10 that one of the avenues of further research is to mathematically analyse 
the bullwhip regions for non-stationary ARIMA processes.  
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The following figure (Figure 8-2) shows the effect of the autoregressive parameter 
on percentage savings in inventory costs by using CDIS compared to the three other 
approaches for an AR (1) process. We observe that when there is very high 
autocorrelation in the demand (? = 0.9), the average percentage savings in inventory 
cost compared to NIS-Est is 35% and savings compared to DIS is 20%. Hence, when 
the value of the autocorrelation coefficient is very high, centralising demand 
information is very valuable for forecasting future demands and providing greater 
inventory cost savings. The results agree with the simulation findings reported earlier 
by Lee et al (2000), comparing DIS with NIS, that the percentage inventory 
reduction increases with increasing values of the autoregressive parameter (see Table 
8-6). 
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Figure 8-2: Percentage Savings in Inventory Cost for an AR (1) Process by using 
CDIS 
A similar pattern was observed for an AR (2) process, showing that higher values of 
the autoregressive parameters (?1 and ?2) result in greater inventory cost savings, as 
exhibited in Appendix 8F. The results in Appendix 8F for the MMSE forecasting 
method show that as the values of the autoregressive parameters increase, the value 
of CDIS also increases. Table 8-7 (page 132) shows a similar pattern for the ARMA 
(1, 1) process. We observe that as the value of ?  increases, the value of CDIS also 
increases. Thus, we conclude from the above that the value of CDIS is an increasing 
function of the value of the autoregressive parameter, ? . 
In Figure 8-3 and Table 8-7, we look at the effect of the moving average demand 
parameter, ?, on the performance of CDIS compared to the DIS approach. No 
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previous research has investigated the effect of the moving average parameter on the 
value of demand information sharing. The new simulation results show that there is 
an inverse phenomenon for the moving average parameters in MA (q) as compared 
to the autoregressive parameter.  In the case of a moving average parameter, we 
observe that the percentage reduction in inventory cost is a decreasing function of the 
moving average parameter. Thus, centralising demand information is more beneficial 
at lower values of the moving average parameter. This result is exhibited in the 
following figure, Figure 8-3, for an MA (1) process where we have experimented 
with ? < 0 to confine ourselves to the Bullwhip Effect region (see sub-section 7.3.1 
for details). 
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Figure 8-3: Percentage Savings in Inventory Cost for an MA (1) Process by 
using CDIS instead of DIS 
A similar phenomenon has been observed for an MA (2) process, where the 
percentage savings in inventory cost reduces with the increasing value of both the 
moving average parameters 1?  and 2? , as shown in the MMSE results in the first 
table in Appendix 8G. The magnitude of this effect is more marked for an MA (2) 
process than an MA (1) process, where the effect of the moving average parameter is 
slight (see Figure 8-3). 
With the mixed autoregressive moving average stationary process, ARMA (1, 1), 
similar results have been observed. The value of CDIS increases with the increasing 
value of the autoregressive parameter, ? , and decreases with the increasing value of 
the moving average parameter, ? . This is illustrated in the following table (Table 8-
 7): 
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?  ?  
            
-0.9 -0.5 -0.1 0.1 0.5 0.9 
-0.9  1.6 1.7 1.8 5.4 23.1 
-0.5   1.0 1.1 4.4 20.1 
-0.1    1.0 3.9 19.4 
 0.1     2.5 18.1 
 0.5      15.3 
Table 8-7: Percentage Savings in Inventory Cost for ARMA (1, 1) by using 
CDIS instead of DIS 
Table 8-7 shows the percentage decrease in inventory cost when CDIS is utilised 
instead of DIS for the parameter region following ? > ?. This region satisfies the 
conditions of stationarity and invertibility and exhibits the Bullwhip Effect. It is 
obvious from Table 8-7 that the value of CDIS is a function of the demand 
parameters and increases with increasing ?  and decreasing ? . However, the effect is 
not strong, except for high values of the autoregressive parameter.  
8.4.2. Effect of Standard Deviation  
In this sub-section, we discuss the effect of standard deviation of the noise in the 
retailer?s demand on the performance of the CDIS approach. In the following table 
(Table 8-8), we compare the percentage reductions in the inventory cost of CDIS 
with the other three approaches. In calculating the inventory costs, we experiment 
with values of standard deviation in the retailer?s demand noise in the range from 25 
to 100.  
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Percentage Savings in Inventory Cost 
using CDIS compared with 
Demand Process Standard 
Deviation of 
Noise 
NIS NIS-Est DIS 
  25 49.4 10.9   3.9 
 50 62.2 10.8   7.6 
AR (1) 
100 74.7 11.7 16.7 
  25 53.8 34.8 11.2 
  50 58.0 41.0 11.7 
AR (2) 
100 71.7 55.7 15.8 
  25   0.9 
  50   2.3 
MA (1) 
100   7.8 
  25   0.4 
  50   7.5 
MA (2) 
100 25.4 
  25 23.2   3.6   4.2 
  50 41.0   4.9   4.4 
ARMA (1, 1) 
100 46.9 11.3   9.4 
  25 71.1 36.1 15.6 
  50 75.4 39.9 17.8 
ARIMA (0, 1, 1) 
100 81.3 48.7 24.4 
  25 76.0 40.8 40.4 
  50 83.6 79.3 48.1 
ARIMA (0, 2, 2) 
100 88.9 92.6 91.0 
  25 86.1 21.4 25.3 
  50 89.0 58.6 27.8 
ARIMA (1, 1, 1) 
100 91.7 64.3 47.5 
  25 85.3 56.6 20.7 
  50 87.4 58.6 21.4 
ARIMA (1, 1, 2) 
100 90.8 67.0 36.7 
 
Table 8-8 Effect of Standard Deviation on the Performance of CDIS 
The above table shows that the cost savings can be substantial when the value of 
standard deviation is large. When the standard deviation of noise in the demand is 
high, it is quite logical that more safety stock will be required to counteract this 
variability. Lee et al (2000), using an AR (1) process at the retailer, showed 
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analytically and via simulation that percentage savings in the case of DIS, compared 
to NIS, are an increasing function of standard deviation. We observe a similar 
phenomenon for the savings in the case of CDIS, compared to other approaches, for 
all nine demand processes in the study. 
8.4.3. Effect of Lead Time 
The effect of the lead time from the supplier to the manufacturer has also been 
discussed by Lee et al (2000) for an AR (1) process. The mathematical and 
simulation results in their study show that the value of information sharing increases 
with increasing lead time. Our simulation results confirm the findings of Lee et al 
(2000) and show that the same relationship holds for all the nine demand processes. 
The following figures 8-4 and 8-5 show the percentage savings in inventory cost for 
stationary and non-stationary demands for three different values of lead times.  
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Figure 8-4 Savings in Inventory Cost for Stationary Processes by using CDIS 
instead of DIS 
Figure 8-4 above shows that the savings in terms of inventory costs increase with 
lead time. In sub-section 8.4.1, we discussed that the savings for an AR (2) process 
are greater than for an AR (1) process. Figure 8-4 also shows that the effect on lead 
time for an AR (2) process is more pronounced for longer lead-times, compared to an 
AR (1) process. A similar result was observed in the previous sub-section when the 
effect of variability was discussed. In the same sub-section, we showed that the value 
of CDIS increases with the number of autoregressive parameters: it is more in AR (2) 
compared to AR (1). The above results show that the effect of lead time and 
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variability is amplified when the demand process has more autoregressive 
components.  
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Figure 8-5: Savings in Inventory Cost for Non-Stationary Processes by using 
CDIS instead of DIS 
Figure 8-5 also shows that the value of information sharing increases with the lead 
time. The effect of the number of autoregressive parameters is not the same as for 
stationary processes, and is worthy of further investigation (see sub-section 8.4.1).  
Thus, centralised demand information sharing proves to be more beneficial when the 
lead time between the supplier and the manufacturer is large. This is logical, as the 
forecasts for smaller lead times would be less variable, compared to those for longer 
lead times, thus making centralised demand less critical (Lee et al, 2000; Chandra 
and Grabis, 2005). 
8.4.4. Effect of Cost Ratio 
In the simulation experiment, we vary the Cost Ratio in order to examine how the 
percentage reductions in inventory costs are affected by it.  
It is worth mentioning here that none of the previous studies have looked at the effect 
of the Cost Ratio using simulation. Lee et al (2000) discussed this issue for an AR (1) 
process and showed mathematically that the percentage inventory reduction by using 
DIS instead of NIS is an increasing function of this ratio. The simulation results of 
this thesis are compatible with these findings. We also look at the effect of the Cost 
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Ratio for all nine demand processes and show that a similar pattern can be observed 
in all processes.  
We look at the percentage savings in inventory cost by utilising CDIS compared with 
the traditional Demand Information Sharing (DIS) approach and observe that the 
percentage savings in inventory cost are an increasing function of this cost ratio. 
Thus, when the penalty cost is very high compared to the holding cost, Centralised 
Demand Information Sharing results in higher percentage reductions in the inventory 
costs. This is shown in the following table (Table 8-9): 
Demand Process Cost Ratio(
 p
 p h+
 ) 
Percentage Savings in 
Inventory Cost 
2/(2+1)   2.1 
25/(25+1)   5.9 
AR (1) 
50/(50+1)   6.1 
2/(2+1)   8.3 
25/(25+1)   8.8 
AR (2) 
50/(50+1) 13.9 
2/(2+1)   0.6 
25/(25+1)   1.2 
MA (1) 
50/(50+1)   1.6 
2/(2+1)   1.1 
25/(25+1)   6.9 
MA (2) 
50/(50+1)   8.2 
2/(2+1)   1.0 
25/(25+1)   1.9 
ARMA (1, 1) 
50/(50+1)   1.9 
2/(2+1)   8.5 
25/(25+1) 18.6 
ARIMA (0, 1, 1) 
50/(50+1) 22.7 
2/(2+1)   3.9 
25/(25+1) 49.6 
ARIMA (0, 2, 2) 
50/(50+1) 90.9 
2/(2+1) 19.5 
25/(25+1) 20.9 
ARIMA (1, 1, 1) 
50/(50+1) 27.3 
2/(2+1)   9.5 
25/(25+1) 11.5 
ARIMA (1, 1, 2) 
50/(50+1) 21.1 
Table 8-9 Effect of Cost Ratio on the Performance of CDIS compared to 
DIS 
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The above table also indicates that the magnitude in savings for non-stationary 
processes is higher than for stationary processes.  
8.5. Simulation Results for Stages II and III 
Now we move on the presentation of results for Stages II and III. The purpose of the 
staged relaxation is to investigate the effect of different model assumptions (known 
demand process and known demand parameters) on the value of CDIS. Thus, while 
discussing Stages II and III, we do not experiment with different estimation and 
identification processes.  
As discussed in Chapter 3, the nature of the MMSE forecast in an ARIMA 
framework requires the estimation of the noise in the demand. Hence, in order to 
remain consistent with the forecasting approach in the ARIMA methodology, the 
supply chain members do not use the NIS approach.  Moreover, we have also shown 
via the simulation results of Stage I that NIS always results in a higher value of 
inventory costs compared to NIS-Est except for MA (1) and MA (2), where the 
results are the same. Thus, in discussing the results of states II and III, we will 
compare CDIS with DIS and NIS-Est only.  
8.5.1. Value of CDIS in Higher Stages 
In this sub-section, we discuss the reasons for higher values of savings by using 
CDIS in stages II and III. The rationale for the comparison of CDIS with NIS-Est is 
different than the comparison with DIS. We will look at these differences one by 
one. 
8.5.1.1. Comparison with NIS-Est 
When we are analysing the value of CDIS compared to NIS-Est, we are interested in 
knowing what happens when the supply chain links identify and estimate the process 
and its parameters correctly and when they do so incorrectly. This is because the 
inventory cost in the case of NIS-Est depends on the accuracy with which the 
manufacturer performs the identification and the estimation processes. On the other 
hand, as the forecasting in CDIS is dependent on the retailer?s demand, the inventory 
M. Ali, 2008, Chapter 8  138 
 
cost in this case depends on how accurately the identification and estimation 
processes have been performed at the retailer. 
When the manufacturer identifies and estimates its demand process and parameters 
correctly, we observe that there is less value of using the CDIS approach compared 
to when it does so incorrectly. This is because the former case then resembles a Stage 
I environment, where the manufacturer?s forecasting incorporates the correct demand 
process and parameters.  
Conversely, when the manufacturer is inaccurate in its identification and estimation 
process, the value of CDIS is greater (compared to the first case). The rationale is 
simply the incorporation of inaccurate demand parameters and process in its lead-
 time forecast when using NIS-Est.  
To test this phenomenon, the simulation experiment was run for an AR (1) process 
and the results were divided into two groups depending on whether the 
manufacturer?s identification and estimation was accurate or not. After observing the 
results (Table 8-10), a similar grouping was done for the retailer (Table 8-11). 
The results for an AR (1) process (Stage III) are shown in the following table (Table 
8-10) to show the effect of the manufacturer?s identification process.  
Identification  by the 
Manufacturer 
Comparison with NIS-Est 
Accurate 69% Value of CDIS is lesser 
Inaccurate 77% Value of CDIS is greater 
Table 8-10 Percentage Savings in Inventory Cost of CDIS for 
Manufacturer?s Process Identification Capability 
If we look at the identification process at the retailer (Table 8-11), we find that its 
accuracy will result in increased value of CDIS compared to inaccurate identification 
of process. 
We summarise these findings in the following table (Table 8-11): 
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Identification by the 
Retailer 
Comparison with NIS-Est 
Accurate 81% Value of CDIS is greater 
Inaccurate 70% Value of CDIS is lesser 
Table 8-11 Percentage Savings in Inventory Cost of CDIS for Retailer?s 
Process Identification Capability 
In summary, as the performance of NIS-Est depends on the identification by the 
manufacturer, the inventory costs decrease when the manufacturer performs better 
identification. Thus, on comparing CDIS with NIS-Est, we observe that better 
identification by the manufacturer will result in less value of CDIS. 
On the other hand, we observe that the performance of CDIS depends on the 
identification of the retailer. Thus, better identification by the retailer will result in 
greater value of CDIS. 
8.5.1.2. Comparison with DIS 
When we are analysing the value of CDIS compared to DIS, the identification 
process at the manufacturer does not matter. Thus, we only look at the two cases 
when the retailer?s identification and estimation process is accurate, and when it is 
inaccurate. This is because, both in DIS and CDIS, the manufacturer does not 
estimate its parameters. Conversely, it calculates these estimates by the upstream 
characterisation of demand formulae. 
Accurate identification and estimation will yield better performance of both DIS and 
CDIS. This has been confirmed by the simulation results as shown in Appendix 8H. 
It should be noted that the difference in performance is less marked than in Table 8-
 11. This would again resemble a Stage I environment, where the retailer forecasts, 
knowing the actual demand process. However, forecasting using less variable 
demand in CDIS results in its better performance as already shown in Stage I. On the 
other hand, we observe that when the retailer inaccurately identifies the process and 
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its parameters, the inventory cost of both approaches would increase as shown in 
Appendix 8H. As already discussed, this is because the performance of CDIS and 
DIS depends on better identification of the demand process and its inaccurate 
parameters and incorrect identification leads to higher inventory. Again, we observe 
that there is still value in CDIS, owing to the utilisation of a less variable demand in 
its forecasting process. 
8.5.2. Effect of Demand History 
With ARIMA modelling, longer history facilitates better identification and parameter 
estimation of unchanging demand processes. Thus, when a longer history is 
available, the manufacturer can more accurately identify the process and estimate its 
demand processes. This leads to the manufacturer having less benefit from CDIS as 
the demand history increases. This phenomenon was tested in the simulation 
experiment by varying the length of history available to the manufacturer and the 
results are shown in the following table for an AR (1) demand process. 
Percentage Reduction in Inventory Cost by utilising 
CDIS with NIS-Est 
Length of 
History 
STAGE II STAGE III 
24 64.1 73.1 
48 63.0 72.0 
72 57.6 60.9 
144 51.2 57.2 
Table 8-12 Effect of Length of History for an AR (1) Process 
When comparing CDIS and NIS-Est, the benefit comes from the fact that in NIS-Est, 
the manufacturer has to identify the process and estimate its parameters. Longer 
history facilitates better identification and thus the value of CDIS decreases. 
It was established in sub-section 8.5.1.2 that the accuracy of identification does not 
affect the comparison between CDIS and DIS, as longer history will facilitate both 
CDIS and DIS.  
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The above table also shows that although the value of CDIS becomes lower as the 
length of history increases, the effect of length of history is not very large. This is 
because the increased history length is available to both the retailer and the 
manufacturer (see section 7.3 for the details on the estimation procedure for both 
supply chain links). 
8.5.3. Effect of Demand Variability 
The effect of demand variability on the value of CDIS is analysed in this sub-section. 
The standard deviation of the demand is varied for an AR (1) process and the 
percentage reduction in inventory cost by using CDIS compared to NIS-Est and DIS 
is then calculated. The results are shown in Table 8-13 below.  
Percentage Reduction in Inventory Cost by 
utilising CDIS 
STAGE II STAGE III 
Standard 
Deviation 
NIS-Est DIS NIS-Est DIS 
25 55.5 22.2 70.0 33.1 
50 63.0 25.8 72.0 33.8 
100 68.9 37.7 76.7 34.6 
Table 8-13 Effect of Standard Deviation on Value of CDIS for an AR (1) 
Process 
In sub-section 8.4.2, the effect of standard deviation of noise on the value of CDIS 
was investigated and it was found that the percentage reduction in inventory cost 
increases with the increasing value of the standard deviation in the noise. The above 
table (Table 8-13) shows that the value of CDIS increases with the increasing value 
of standard deviation in the demand. This is because, the higher the variability, the 
more difficult it is to identify the demand process and estimate its parameters. 
Secondly, as we have discussed in sub-section 8.3.2, more safety stock needs to be 
kept to counter higher variability. Thus, we observe that the value of CDIS is an 
increasing function of the standard deviation in the retailer?s demand.  
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8.5.4. Effect of Process Identification 
In sub-section 8.5.1, we have shown that the value of CDIS is less when the 
manufacturer identifies the process accurately. Table 8-10 and Table 8-11 quantify 
how much on average the value of CDIS is reduced when accurate identification 
occurs. Thus, if the manufacturer utilises a better identification method than the one 
used in the simulation, the value of CDIS will be lesser. But as shown in Tables 8-10, 
8-11, 8-12 and 8-13 even accurate process identification will result in having some 
value in CDIS.  
8.6. Simulation Results for Non-Optimal Forecasting Methods 
In the previous section, we presented the results of the simulation experiment for the 
three stages when supply chain links utilise an optimal forecasting method. In this 
section, we will present the results when non-optimal forecasting methods are 
employed by the supply chain links. As discussed in Chapter 3, in practice many 
forecasters choose to use non-optimal forecasting methods, such as SMA and SES, 
based on familiarity, simplicity and ease of use of these methods. 
The simulation results show that, compared to the NIS approach, CDIS results in 
reduction of average inventory, inventory costs and forecast error. As discussed for 
optimal forecasting methods, we present the results by looking at the impact of 
various factors on the absolute values and percentage reduction of the performance 
metrics. 
The objective of this simulation experiment is to evaluate the value of centralised 
demand information sharing. We emphasise the performance of CDIS and not the 
forecasting methods themselves. Stamatopoulos et al (2006), using an AR (1) 
demand process and the SES forecasting method, have shown that the Bullwhip 
Ratio decreases when the forecasting parameter (?) is optimised. As discussed in the 
previous chapter, we look at a range of forecasting parameters for both the methods, 
which may not be the optimised parameter for the given conditions. Thus, the reader 
should bear in mind that the following results provide a comparison between CDIS 
and NIS and not between the performances of the two forecasting methods, SMA 
and SES.  
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8.7. MSE and Bullwhip Ratio 
In section 8.3, we showed that, for any individual process, MSE and the Bullwhip 
Ratio are two major factors linked with reduced inventory cost of CDIS in the case of 
optimal forecasting methods. We now consider the relationship between MSE, 
Bullwhip Ratio and inventory cost in the case of non-optimal forecasting methods. 
The results are given in the following table (Table 8-14). 
Percentage Reduction in the following variables by utilising CDIS against 
NIS 
SMA SES 
Demand 
Process 
MSE 
Bullwhip 
Ratio 
Inventory 
Cost 
MSE 
Bullwhip 
Ratio 
Inventory 
Cost 
AR(1) 65.7 55.2 46.4 71.5 70.6 65.6 
AR(2) 65.3 54.2 44.9 73.7 62.1 60.3 
MA(1) 62.2 65.3 58.0 66.6 72.1 68.8 
MA(2) 70.8 63.6 57.5 70.8 64.5 63.9 
ARMA 
(1,1) 
53.5 39.5 29.3 62.0 76.2 71.0 
ARIMA 
(0, 1, 1) 
52.0 34.8 23.1 64.8 59.4 60.9 
ARIMA 
(1, 1, 1) 
61.1 53.6 47.7 72.0 78.0 70.9 
ARIMA 
(1, 1, 2) 
64.2 54.0 45.1 75.3 63.8 60.1 
ARIMA 
(0, 2, 2) 
57.1 42.1 31.7 76.6 62.2 61.2 
Table 8-14 Contribution towards the Performance of CDIS compared with 
NIS 
Table 8-14 shows that for any individual process, an increase in the percentage 
reduction in MSE or Bullwhip Ratio will result in the increase in the percentage 
reduction in the inventory cost. This is the same result as observed for the optimal 
forecasting methods. Although the results are process dependent, they are less 
sensitive to demand process than was the case for optimal forecasting methods. 
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8.7.1. Effect of Demand Parameters 
In sub-section 8.3.1, we analysed the effect of demand parameters for the stationary 
processes when optimal forecasting methods are employed. We discussed, in the 
previous chapter, that the issue of parameter regions for the Bullwhip Effect is not 
relevant in the case of non-optimal forecasting methods. However, in order for the 
simulation design to be consistent for all forecasting methods, we restrict the analysis 
of non-optimal methods to stationary processes. For optimal forecasting methods, we 
observed that the percentage reduction in inventory costs by using CDIS is an 
increasing function of the autoregressive parameters for AR (1) and AR (2) demand 
processes. We observe that an inverse phenomenon exists in the case of non-optimal 
processes where, for an AR (1) process, the larger the value of ? , the smaller is the 
percentage reduction in inventory costs.  
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Figure 8-6: Effect of Autoregressive Parameter in the case of SES 
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Figure 8-7: Effect of Moving Average Parameter in the case of SES 
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Chen et al (2000a) using SMA, and Chen et al (2000b) using SES methods, 
mathematically showed that, for an AR (1) demand process, the Bullwhip Ratio 
decreases with increasing values of the autocorrelation coefficient. We observe the 
same effect in the simulation results (see Figures 8-6 and 8-8). Thus, the simulation 
results are consistent with the mathematical findings of the above two papers. We 
also observe the same effect in an AR (2) process for both SMA and SES where the 
value of CDIS decreases with increasing values of 1 2 and ? ? (Appendix 8F). 
We now discuss the effect of the moving average parameters, 1 2 and ? ? , on the value 
of sharing demand information. We observe that the moving average parameter has 
no effect on the value of CDIS (see Figures 8-7 and 8-9) for an MA (1) process.  
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Figure 8-8: Effect of Autoregressive Parameter in the case of SMA 
Impact of demand parameter for SMA
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Figure 8-9: Effect of Moving Average Parameter in the case of SMA 
The same results have been obtained for an MA (2) process where we observed that 
the percentage reduction in inventory costs by using CDIS compared to NIS remains 
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the same irrespective of the value of the moving average parameters (see Appendix 
8G). 
In the literature, we find that none of the previous papers have looked at the effect of 
the moving average parameters on the value of CDIS. The same gap was also 
discussed for optimal forecasting methods. The simulation results (Figure 8-7, Figure 
8-9 and Appendix 8G) show that the value of CDIS is not affected by the moving 
average parameters. 
8.7.2. Effect of Standard Deviation 
The simulation results show that the reduction in the manufacturer?s inventory costs 
by using CDIS instead of NIS is an increasing function of the standard deviation of 
the noise term in the retailer?s demand. This is the same result as already observed 
for optimal forecasting methods. Thus, the effect of standard deviation in the 
retailer?s noise has the same effect on the performance of CDIS, irrespective of the 
forecasting method employed.  
The average inventory cost reductions for SMA and SES are shown in the following 
two tables (Tables 8-15 and 8-16). 
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Demand process Standard 
deviation of 
noise 
Reduction in inventory cost in 
using CDIS compared to NIS 
25 45.8% 
50 46.4% 
AR(1) 
100 47.0% 
25 44.1% 
50 44.9% 
AR(2) 
100 45.2% 
25 29.1% 
50 29.3% 
ARMA (1, 1) 
100 29.5% 
25 56.8% 
50 57.5% 
MA(1) 
100 57.3% 
25 41.6% 
50 58.0% 
MA(2) 
100 60.1% 
25 19.8% 
50 23.1% 
ARIMA (0, 1, 1) 
100 43.0% 
25 20.8% 
50 47.7% 
ARIMA (1, 1, 1) 
100 74.1% 
25 29.7% 
50 45.1% 
ARIMA (1, 1, 2) 
100 74.5% 
25 33.0% 
50 31.7% 
ARIMA (0, 2, 2) 
100 59.8% 
Table 8-15 Effect of Variability on the Percentage Reduction in Inventory 
Cost for SMA by using CDIS instead of NIS  
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Demand process Standard 
deviation of 
noise 
Reduction in inventory cost in 
using CDIS compared to NIS 
25 53.4% 
50 65.6% 
AR(1) 
100 68.9% 
25 43.5% 
50 60.3% 
AR(2) 
100 63.7% 
25 60.7% 
50 68.8% 
ARMA (1, 1) 
100 71.4% 
25 49.9% 
50 63.9% 
MA(1) 
100 70.9% 
25 65.1% 
50 71.0% 
MA(2) 
100 70.0% 
25 50.8% 
50 60.9% 
ARIMA (0, 1, 1) 
100 61.6% 
25 43.7% 
50 70.9% 
ARIMA (1, 1, 1) 
100 75.5% 
25 46.0% 
50 60.1% 
ARIMA (1, 1, 2) 
100 71.1% 
25 38.8% 
50 61.3% 
ARIMA (0, 2, 2) 
100 74.7% 
Table 8-16 Effect of Variability on the Percentage Reduction in Inventory 
Cost for SES by using CDIS instead of NIS  
Tables 8-15 and 8-16 report the percentage savings in inventory cost when ? varies 
from 25 to 100 for both SMA and SES. We observe that the percentage savings in 
inventory cost increases as ? increases. Thus, both tables suggest that CDIS enables 
the manufacturer to reduce the inventory cost and the percentage reduction is higher 
for larger values of standard deviation in the noise term of the demand process.  
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8.7.3. Effect of the Lead Time 
In this section, we look at the effect of the lead time from the supplier to the 
manufacturer. The simulation results show that the manufacturer?s average 
inventory, inventory costs and forecast errors (MSE) are all increasing functions of 
lead time.  This is again similar to what has already been observed for an optimal 
forecasting method. Thus, there are more benefits of using Centralised Demand 
Information Sharing when lead times are large, irrespective of the forecasting 
method employed. Figure 8-10 and Figure 8-11 show the impact of lead time on the 
percentage reduction in inventory for SMA and SES forecasting methods 
respectively.  
Impact of Lead Time on Inventory 
Reduction from DIS (SMA)
 0
 20
 40
 60
 80
 100
 1 6 12
 In
 ve
 nt
 or
 y 
C
 os
 t R
 ed
 uc
 tio
 n
 AR(1) AR(2)
 ARMA(1, 1) MA(1)
 MA(2) ARIMA(1,1,1)
 ARIMA(1,1,2) ARIMA(0, 1, 1)
 ARIMA (0, 2, 2)
  
Figure 8-10 Effect of Lead Time on Percentage Reduction in Inventory Cost 
for SMA by using CDIS instead of NIS  
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Figure 8-11 Effect of Lead Time on Percentage Reduction in Inventory Cost 
for SES by using CDIS instead of NIS  
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The above figures suggest that CDIS provides relatively small savings when the lead 
time is small but relatively large savings when it is large. The rationale for this effect 
is the same as that discussed for an optimal method. The forecast for a shorter lead 
times would be less variable compared to the one with longer lead time, thus making 
centralised demand less critical (see Lee et al (2000), Chandra and Grabis (2005) for 
details).  
8.7.4. Effect of the Cost Ratio 
In this section, we look at the impact of the cost ratio (penalty to the total cost ratio) 
on the percentage savings by using CDIS instead of NIS. The simulation results 
suggest that a higher cost ratio results in higher reduction in absolute values of 
average inventory and inventory costs. In terms of the impact of cost ratio on the 
percentage reduction, we observe an interesting phenomenon. For all stationary 
demand models, the percentage reduction in average inventory and inventory costs 
either increases slightly or remains constant. On the other hand, for non-stationary 
demand processes, the percentage reduction in the average inventory and inventory 
costs decreases with the increasing cost ratio. This is shown in Table 8-17 and Table 
8-18. 
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Demand 
Process 
Forecasting 
Method 
Cost Ratio 
(
 p
 p h+
 ) 
Percentage 
Reduction in 
Inventory Cost 
2/(2+1) 45.1% 
25/(25+1) 46.4% 
SMA 
50/(50+1) 46.4% 
2/(2+1) 63.6% 
25/(25+1) 65.6% 
AR(1) 
SES 
50/(50+1) 65.6% 
2/(2+1) 44.0% 
25/(25+1) 44.9% 
SMA 
50/(50+1) 44.8% 
2/(2+1) 58.3% 
25/(25+1) 60.3% 
AR(2) 
SES 
50/(50+1) 60.3% 
2/(2+1) 57.2% 
25/(25+1) 58.0% 
SMA 
50/(50+1) 58.1% 
2/(2+1) 60.1% 
25/(25+1) 68.8% 
ARMA (1, 1) 
SES 
50/(50+1) 69.5% 
2/(2+1) 56.1% 
25/(25+1) 57.5% 
SMA 
50/(50+1) 57.7% 
2/(2+1) 58.9% 
25/(25+1) 63.9% 
MA(1) 
SES 
50/(50+1) 71.7% 
2/(2+1) 27.9% 
25/(25+1) 29.3% 
SMA 
50/(50+1) 29.5% 
2/(2+1) 69.4% 
25/(25+1) 71.0% 
MA(2) 
SES 
50/(50+1) 71.1% 
Table 8-17 Effect of Cost Ratio on the Percentage Reduction in Inventory 
Cost for Stationary Demand Processes 
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Demand Process 
Forecasting 
Method 
Cost Ratio 
(
 p
 p h+
 ) 
Percentage 
Reduction in 
Inventory Cost 
2/(2+1) 33.9% 
25/(25+1) 23.1% 
SMA 
50/(50+1) 22.5% 
2/(2+1) 84.2% 
25/(25+1) 60.9% 
ARIMA (0, 1, 1)
 SES 
50/(50+1) 48.0% 
2/(2+1) 75.7% 
25/(25+1) 47.7% 
SMA 
50/(50+1) 45.3% 
2/(2+1) 74.6% 
25/(25+1) 70.9% 
ARIMA (1, 1, 1)
 SES 
50/(50+1) 43.2% 
2/(2+1) 64.8% 
25/(25+1) 45.1% 
SMA 
50/(50+1) 43.5% 
2/(2+1) 70.5% 
25/(25+1) 60.1% 
ARIMA (1, 1, 2)
 SES 
50/(50+1) 44.4% 
2/(2+1) 52.4% 
25/(25+1) 31.7% 
SMA 
50/(50+1) 28.9% 
2/(2+1) 71.1% 
25/(25+1) 61.2% 
ARIMA (0, 2, 2)
 SES 
50/(50+1) 48.5% 
Table 8-18 Effect of Cost Ratio on the Percentage Reduction in Inventory 
Cost for Non-Stationary Demand Processes 
Table 8-17 shows that in the case of stationary processes, the percentage reduction in 
inventory cost either increases or remains constant with increasing value of ?. This is 
in contrast with the non-stationary process (Table 8-18) where the percentage 
reduction in inventory cost decreases with increasing value of ?.  
It is noticeable from Tables 8-17 and 8-18 that there is a marked difference between 
the results of SMA and SES. The choice of forecasting parameters for both SMA and 
SES, as discussed in sub-section 7.3.10.5, results in approximately the same average 
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age of the data used in the forecast (Johnston and Boylan, 2003). However, the 
distribution of the weights on historical data used in the methods is quite different, as 
shown in Table 3-2. This may be one factor leading to the greater value of CDIS in 
SES, but more detailed analysis is required to assess this. 
In this research, we have not mathematically analysed the effect of cost ratio. In 
addition, in the literature review of non-optimal forecasting methods, we did not find 
any paper looking at the effect of cost ratio on the value of demand information 
sharing. Thus, we find this an interesting avenue for further research and this is 
further discussed in Chapter 10. 
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8.7.5. Effect of Smoothing Constant in SES 
Here we discuss the effect of the smoothing constant, alpha, in SES on the 
percentage reduction of average inventory cost. Table 8-19 shows that the percentage 
reduction in inventory cost is an increasing function of the smoothing constant.   
Demand 
Process Alpha 
Percentage Reduction in 
Inventory Cost 
0.1 28.3% 
0.3 65.6% 
AR(1) 
0.8 74.8% 
0.1 21.4% 
0.3 60.3% 
AR(2) 
0.8 87.3% 
0.1 46.8% 
0.3 63.9% 
MA(1) 
0.8 88.4% 
0.1 45.3% 
0.3 71.0% 
MA(2) 
0.8 88.1% 
0.1 14.3% 
0.3 68.8% 
ARMA(1, 1) 
0.8 84.2% 
0.1 56.5% 
0.3 60.9% 
ARIMA(0, 1, 1)
 0.8 65.8% 
0.1 59.7% 
0.3 70.9% 
ARIMA(1, 1, 1)
 0.8 87.0% 
0.1 58.9% 
0.3 60.1% 
ARIMA(1, 1, 2)
 0.8 82.1% 
0.1 54.7% 
0.3 61.2% 
ARIMA(0, 2, 2)
 0.8 72.1% 
Table 8-19 Effect of the Value of the SES Smoothing Constant on the 
Percentage Reduction in Inventory Cost 
The upstream translation of demand (as discussed in chapter 4) shows that the 
manufacturer?s history contains information about the retailer?s demand. Higher 
values of the smoothing constant means there is a lower weighting on the history and 
thus more value of CDIS. 
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8.7.6. Effect of Number of Terms in SMA 
The simulation results show that percentage reduction of average inventory, 
inventory costs and forecast errors are a decreasing function of the number of SMA 
terms. The rationale of the impact of number of SMA terms is similar to the impact 
of the smoothing constant in SES. 
Impact of n on % cost reduction
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Figure 8-12 Effect of the Number of Terms in SMA on CDIS for Stationary 
Demand Processes 
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Figure 8-13 Effect of the Number of Terms in SMA on CDIS for Non-
 Stationary Demand Processes 
Various papers (e.g. Lee et al, 2000; Raghunathan, 2001) have shown that the 
manufacturer?s demand history contains information about the retailer?s demand. 
Thus, when the manufacturer forecasts with more demand history, they are already 
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utilising the information about the retailer?s demand and there is less benefit from 
sharing the retailer?s demand information.  
Figure 8-13 also shows that the savings for ARIMA (0, 1, 1) are lower than for other 
models, since SES is the optimal method for an ARIMA (0, 1, 1) process.  
8.8. Conclusions 
In this chapter, we have presented the results of the simulation experiment. The 
simulation results show that, on average, Centralised Demand Information Sharing 
always results in the least inventory cost, irrespective of the forecasting method. We 
have also examined various factors: the demand parameters, demand variability, lead 
time and forecasting parameters and have shown that CDIS has some value 
irrespective of these factors.  
Based on the results of the simulation experiment within the Bullwhip Effect regions, 
three rules have been established in terms of the performance of the demand 
information sharing approaches. The first rule refers to supply chains with a ?No 
Information Sharing Strategy? and it is established that in all cases, the NIS-Est 
approach results in lower inventory cost than the NIS approach. For supply chains 
with an ?Information Sharing Strategy?, the second rule states that the CDIS 
approach results in lower inventory cost than the DIS approach. Finally, the third rule 
states that the CDIS approach results in lower inventory cost than NIS-Est. Thus, the 
CDIS approach, on average, has the lowest inventory cost over all replications. 
In contrast to previous studies where only one demand process was utilised in 
simulation, we have experimented with nine different demand processes. The results 
were different for optimal and non-optimal forecasting methods.  
For optimal forecasting methods, it was observed that the value of CDIS is model 
dependent. The value of CDIS was found to be higher for non-stationary demand 
processes compared to stationary processes. In terms of demand parameters, it was 
observed that the value of CDIS is an increasing function of the autoregressive 
parameters, 1? and 2? , and a decreasing function of the moving average parameters 
1? and 2? .  
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For non-optimal forecasting methods, the value of CDIS is less sensitive to the 
choice of demand process. In terms of the demand parameters, it was found that the 
value of CDIS is a decreasing function of the autoregressive parameters 1? and 2? . 
However, the moving average parameters 1? and 2? had no effect on the value of 
CDIS. 
The staged relaxation approach has shown that the value of CDIS is dependent on the 
model assumptions. The value of CDIS was least in Stage I, higher in Stage II and 
highest in Stage III. Thus, the results show that on relaxing the assumptions (a move 
from a strict mathematical model towards a real life scenario) the value of CDIS 
increases.  
The simulation results showed that, for any individual demand process, MSE and 
Bullwhip Ratio are associated with inventory cost savings. Higher percentage 
reductions in MSE or Bullwhip Ratio will result in higher reductions in the inventory 
cost, although not with the same magnitude. This was observed both for optimal and 
non-optimal forecasting methods.   
We argued in Chapter 5 that utilising the demand and forecast of the downstream 
member in the CDIS approach will be beneficial to the upstream member in terms of 
the four performance metrics. The simulation results have shown that the CDIS 
approach results in the lowest forecast error, Bullwhip Ratio, inventory holdings and 
inventory cost among the four approaches discussed in this research. 
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9. Empirical Analysis 
9.1. Introduction 
In this chapter, we assess the empirical validity of the theoretical and simulation 
findings in this research. We developed the operational rules for the supply chain 
model in Chapters 3 and 7. These rules were then tested in the simulation experiment 
and results were presented in Chapter 8. Although some model assumptions were 
relaxed, other assumptions were retained (eg unchanging ARIMA processes with 
constant parameters over time). In this chapter, model assumptions are relaxed even 
further, by testing results on empirical data.  
There are numerous papers giving empirical evidence of the Bullwhip Effect?s 
existence (see sub-section 2.3.1). However, the literature review of papers modelling 
the value of demand information sharing (see section 5.2) shows that, with few 
exceptions, the papers are based on mathematical and simulation analysis. There has 
been very little empirical evidence to support these analyses. Hosoda et al (2008) 
quantify the value of sharing demand information in a cold drink supply chain but 
look at only three product series. Wong et al (2007) quantify the value of information 
sharing in a toy supply chain. Although they analyse 46 data series, the analysis is 
restricted to quantifying the value of information sharing in terms of reduced 
Bullwhip Effect. The empirical work presented in this chapter is therefore of some 
significance, as the analysis is based on 1773 fast moving products. 
We analyse two year weekly sales data of a European grocery supermarket. For 
confidentiality reasons, the supermarket and their customers remain anonymous. A 
description of the dataset is provided in section 9.3. 
9.2. Rationale for Empirical Analysis 
Empirical analysis serves the following purposes in this research: 
? Empirical analysis is performed to validate the theoretical and simulation findings 
in earlier chapters. The simulation findings show that the CDIS approach results 
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in the least inventory cost among the supply chain members. We are interested in 
finding out whether the empirical analysis agrees with these earlier findings on 
the performance of CDIS. 
? In the simulation experiment we also looked at the effect of various factors on the 
value of CDIS, namely lead time, demand parameters, demand variability, cost 
ratio and forecasting parameters. The empirical analysis will assess the effect of 
these factors in a real world scenario. 
9.3. Data Series 
The real demand data series acquired for this empirical research consist of two years 
of weekly sales data of a European grocery supermarket. The data provided was 
cleaned, leaving only fast moving products, and 3001 series were selected. The 
criterion for selection of fast moving products was an average demand of at least 100 
units per month over two years with no periods of zero demand. Ignoring products 
having periods of zero demand cleaned the data for intermittence.  
The forecasting and inventory rules presented in Chapters 3 and 7 have been 
established specifically for non-seasonal time series. The next step, therefore, was 
scanning monthly data for seasonality. Monthly data was used for this purpose, 
rather than weekly data, as it exhibited more stable seasonal patterns. For seasonal 
scanning, we used the Grid Search method of the autoarima function of the C 
Numerical Library (see details of the autoarima function in section 7.4) and set the 
seasonal parameters as 4, 6 and 12 in the grid search. This helped to identify any 
quarterly, biannual and annual seasonal patterns. Data series exhibiting seasonality 
were excluded from the detailed empirical analysis to follow, which left 1997 non-
 seasonal time series. 
Further cleaning of data was performed for series with demand parameters lying 
within the Anti-Bullwhip Effect region (see Table 7-4 for details). This research 
focuses on reducing the amplification in demand variance in supply chains. Thus, 
data series where the demand parameters were within the Anti-Bullwhip regions (i.e. 
regions where the demand variance decreases) were ignored. There were 224 series 
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identified within such regions. This ensures that our empirical analysis is consistent 
with the simulation experiment.  
No information has been provided regarding the product description, product cost or 
any other details for the SKUs.  
9.4. Identification of ARIMA Models 
In total there are 1773 data series which match the definition of non-seasonal fast 
moving products lying within the bullwhip parameter region (see previous section for 
the detailed screening methodology). The grid method of the autoarima function (see 
section 7.4) was then used to identify the process on weekly data. This method 
requires specification of the range of values for p, d, q and s. The values of p, d and q 
refer to the coefficients in an ARIMA (p, d, q) process and s is the seasonality factor; 
its value depends on the seasonality pattern observed in the data history. We keep the 
value of s to be 1 in order to specify that the data series are non-seasonal. 
Process Parameter Range provided for Grid 
p 0,1,2 
d 0,1,2 
q 0,1,2 
s 1 
Table 9-1 Grid Range for Process Identification 
The ranges of p, d and q provided in the process identification, p, d, q ? 2, have been 
chosen for consistency with the design of the simulation experiment.  
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The following tables give an overview of the properties of the empirical data. 
Stationary Series 1007 
Non-Stationary Series 766 
Total number of Series 1773 
 
Table 9-2 ? Number of Stationary and Non-stationary Series 
Table 9-2 shows that the empirical data contains a good mix of stationary and non-
 stationary data series with approximately 43% non-stationary and 57% stationary 
series. Further, we divide the empirical series into the demand processes as identified 
by the software (see sub-section 7.3.6 for details on the process identification 
process). 
Demand Process No. of series 
Random Process  
ARIMA(0,0,0) 113 
ARIMA(0,1,0)   76 
Stationary Process  
AR(1) 295 
AR(2) 246 
ARMA(1,1)   76 
MA(1)   76 
MA(2)   71 
ARMA(2,1)   40 
ARMA(2,2)   29 
ARMA(1,2)   61 
Non-Stationary Process  
ARIMA(0,1,1)   17 
ARIMA(1,1,0) 195 
ARIMA(1,1,1)    5 
ARIMA(1,1,2)    5  
ARIMA(1,2,0)    3 
ARIMA(2,2,0)    2 
ARIMA(2,1,2)    4 
ARIMA(2,1,1)   12 
ARIMA(2,1,0) 447 
 
Table 9-3 Number of Series, by ARIMA Processes 
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Table 9-3 above shows that, for some ARIMA processes, only a few series have been 
identified and thus in-depth analysis cannot be performed for those processes. 
However, these series are not excluded from aggregate analyses,  as in Table 9-36 
and Appendices 9D and 9E. We analyse twelve demand processes where at least 20 
series have been identified. The above table (Table 9-3) shows that, using the 
criterion of at least 20 series, there are sufficient numbers of series for all random 
and stationary demand processes to permit in-depth analysis. In terms of non-
 stationary processes, apart from ARIMA (1, 1, 0) and ARIMA (2, 1, 0), very few 
series have been identified in the empirical data for the other processes, and these 
processes with few series will not be analysed in depth. A large number of series has 
been identified for ARIMA (2, 1, 0); as higher order processes of the form ARIMA 
(p, 1, 0) where p ? 3 were not investigated, it is impossible to be certain that such 
series of higher orders were not present.  
9.5. Design of Empirical Analysis 
The design of the empirical analysis follows the simulation experiment design as 
discussed in detail in Chapter 7. Following the methodology in the simulation 
experiment, we utilise both optimal and non-optimal forecasting methods in the 
empirical analysis.  
Based on the simulation results, we presented three rules regarding the performance 
of approaches to Demand Information Sharing in the Bullwhip Effect region (see 
sub-section 8.2.1). We showed, in Rule 1, that if a supply chain follows a strategy of 
not sharing demand information, NIS-Est results in lower inventory cost compared to 
the NIS approach. We have also discussed in detail in sub-section 7.3.4 that in order 
to maximise the benefits of the ARIMA methodology, a supply chain member should 
not utilise the NIS approach. Thus, similar to the approach in stages II and III in 
simulation, we compare only three approaches in the empirical analysis, namely NIS-
 Est, DIS and CDIS.  
On the other hand, in the case of non-optimal forecasting methods, NIS-Est and DIS 
are not relevant. Thus, using the same approach as in simulation, we compare NIS 
and CDIS for non-optimal forecasting methods in the empirical analysis. For optimal 
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forecasting methods, the same series splitting approach is employed as for the stages 
II and III of the simulation experiment. The series is broken into two equal parts of 
52 periods each and the first part of the series is used for estimation and the second 
part for performance measurement. The estimation part is divided into two equal 
parts of 26 periods each (see sub-section 7.3.7).  
Consistent with the simulation experiment, we use Mean Squared Error (MSE), 
Bullwhip Ratio, inventory holdings and inventory cost as the performance metrics. 
As discussed in section 3.7, we also calculate the Mean Absolute Percentage Error 
(MAPE) in the empirical analysis. As no information on product cost, lead time or 
inventory model has been provided, we will make similar assumptions for the 
inventory costs as made in the simulation experiment (see section 7.3 for details on 
the selection of these values). Using these performance metrics, we evaluate which 
of the approaches, as presented in Chapter 5, results in least inventory cost.  
9.6. Results of Empirical Analysis for Optimal Forecasting 
Methods 
Following the discussion in the previous section on the design of the empirical 
analysis, we move on to the presentation and discussion of the results of the analysis.  
We start the discussions by looking at the performance of CDIS for different demand 
processes for the optimal forecasting methods. In doing so, we also compare the 
results of empirical analysis with those of the simulation. We then move on to the 
discussion of the effect of demand parameters, demand variability, cost ratio and 
manufacturer?s lead time on the value of CDIS.  
The results of the empirical analysis clearly show that the Centralised Demand 
Information Sharing (CDIS) approach always results in less inventory cost than DIS 
and NIS-Est. This finding is in accordance with the results of the simulation 
experiment. Thus, the rules established in Chapter 8 comparing CDIS with DIS and 
NIS-Est have been confirmed by the empirical analysis. 
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9.6.1. Demand Process Dependent Behaviour 
The simulation findings have shown that the value of CDIS is demand process 
dependent: the values of the performance metrics depend on the demand process. 
These findings are confirmed by the empirical analysis. 
In the following tables we not only present the findings from the empirical analysis 
but also compare them with the simulation results of the three stages. For comparison 
with simulation results, in Tables 9-4 and 9-5 we only present results for processes 
common to both simulation and empirical analysis. In Table 9-4, we show the 
percentage reduction in the inventory cost by using CDIS instead of NIS-Est, while 
the comparison with DIS is presented in Table 9-5. In Appendix 9A, we present the 
results of all performance metrics for all the demand processes with at least 20 series 
and we proceed to discuss the results of other performance metrics in sub-sections 
9.6.2 and 9.6.3. In Appendix 9A, the twelve processes which have a sufficient 
number of data series for analysis (section 9.4) show a demand process dependent 
behaviour. 
Demand Process Percentage Reduction in Inventory Cost by using CDIS instead 
of NIS-Est 
 Simulation  
Stage I 
Simulation 
Stage II 
Simulation 
Stage III 
Empirical 
Analysis 
AR (1)       10.8       63.0       72.0       41.1 
AR (2)       41.0       71.4       74.4       16.6 
MA (1)         2.3       48.8       53.8       34.8 
MA (2)         7.5       59.6       63.0       22.8 
ARMA (1, 1)         4.9       49.6       58.3       48.6 
Table 9-4   Percentage Savings in Inventory Cost for Stationary Processes by 
using CDIS instead of NIS-Est 
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Demand Process Percent Reduction in Inventory Cost by using CDIS instead of 
DIS 
 Simulation 
Stage I 
Simulation 
Stage II 
Simulation 
Stage III 
Empirical 
Analysis 
AR (1)        7.6      25.8      33.8        6.2 
AR (2)      11.7      38.2      41.0        7.2 
MA (1)        2.3      31.5      35.8      15.5 
MA (2)        7.5      21.5      28.8        8.1 
ARMA (1, 1)        8.2      35.8      41.2      14.9 
Table 9-5  Percentage Savings in Inventory Cost for Stationary Processes by 
using CDIS instead of DIS 
The above tables clearly show the demand process dependent value of CDIS which 
was also revealed in the simulation analysis in Chapter 8.  We have discussed in 
detail the rationale for the increasing value of CDIS as the stages proceed in sub-
 section 8.1.2. The objective of presenting the above tables is to give some insights 
into the comparison of the theoretical and empirical research. 
Firstly, consistent with the simulation findings, the results of empirical analysis also 
show that there is value in CDIS.  
The staged relaxation approach in the simulation experiment showed that the 
percentage reduction in inventory cost is highest in stage III, less in stage II and is 
least in stage I. This indicates that as we move away from a model with strict 
assumptions towards a one with more relaxed assumptions, the value of CDIS 
increases. For further comparison between the theoretical and empirical findings, we 
compare the results of the empirical analysis with those of Stage III of the 
simulation. In the simulation study, Stage III has been designed to most closely 
reflect a real life scenario (see details on this in Chapter 7). Thus the value of CDIS 
for the empirical data was expected to be closer to stage III. However, it is evident 
from Tables 9-4 and 9-5 that the value of CDIS is always higher in Stage III of the 
simulation experiment than in the empirical analysis.   
In the simulation study, we generated different demand processes in a controlled 
environment. This is in contrast to the empirical data which is more complex in terms 
of changes to parameters or to the model itself. One possible reason for the value of 
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CDIS being smaller in the empirical data could be the changing demand model or 
parameters. Further research is required to investigate the value of CDIS in the 
empirical data by updating the demand parameters and model in every period.  
9.6.2. Forecast Error Measures 
In Chapter 3, we discussed that one of the performance metrics of this research is 
forecast error. We also mentioned that where the distribution may not be well 
behaved (particularly for empirical data) a single forecast error measure may not 
capture the necessary complexity of the error distribution and that dimensionless 
error measures should be used (Fildes, 1992; Armstrong and Fildes, 1995). Thus, in 
the empirical analysis, we have also used Mean Absolute Percentage Error (MAPE) 
and compare the results of MSE with MAPE. 
In the following tables (Table 9-6 and Table 9-7), we present two comparisons in 
terms of the percentage reduction of forecast error by utilising CDIS instead of DIS 
and NIS-Est. In both tables, the first comparison is of the forecast error measure, 
MSE, between the simulation and empirical analysis. The second comparison is 
between the two error measures, MSE and MAPE, used in the empirical analysis. 
Empirical Analysis MAPE Demand 
Process 
Percentage 
Reduction in 
MSE 
(Simulation 
Stage III)  
Percentage 
Reduction 
in MSE 
(Empirical)  
 
 
DIS 
 
CDIS 
% 
reduction  
AR(1) 43.1   7.1 42.6 39.2 7.9 
AR(2) 54.2 19.1 41.9 37.5 10.4 
MA(1) 41.8   7.8 41.7 36.2 13.1 
MA(2) 45.0 12.8 38.2 32.5 14.9 
ARMA (1,1) 56.1 48.0 64.7 55.0 15.0 
Table 9-6 Comparison between MMSE Forecast Error Measures (DIS v 
CDIS) 
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Empirical Analysis MAPE Demand 
Process 
Percentage 
Reduction in 
MSE 
(Simulation 
Stage III)  
 
Percentage 
Reduction 
in MSE 
(Empirical)  
 
 
NIS-Est 
 
CDIS 
% 
reduction  
AR(1) 83.6 46.2 49.2 39.2 20.3 
AR(2) 96.7 32.4 47.5 37.5 21.3 
MA(1) 61.9 28.1 44.1 36.2 17.9 
MA(2) 81.9 29.7 43.2 32.5 24.8 
ARMA (1,1) 75.8 54.4 76.1 55.0 27.7 
Table 9-7  Comparison between MMSE Forecast Error Measures (NIS-Est v 
CDIS) 
The comparison between percentage reduction in MSE of simulation and empirical 
analysis shows that the MSE reduction is less in empirical analysis than in 
simulation. We observed the same phenomenon when we compared inventory cost 
between simulation and empirical analysis. We discuss this further in the next section 
(section 9.7).  
Next, we compare the two forecast errors, MSE and MAPE, which we have used in 
our empirical analysis. We observe that the percentage reduction in MSE is high 
compared to the percentage reduction in MAPE. This difference is inherent in the 
nature of these forecast measures as MSE is a squared measure while MAPE is not. 
Most importantly, we observe that the results of MAPE show improvements by using 
CDIS, consistent with the results of all other performance metrics (Appendix 9A). 
9.6.3. Performance of CDIS 
We have discussed in the previous section that, on average, CDIS always results in 
the least inventory cost among the different information sharing approaches. In this 
section, we will look at two factors linked with the inventory cost performance of 
CDIS, namely Forecast Error (in terms of MSE and MAPE) and the Bullwhip Ratio. 
We present results of the empirical analysis in terms of the Forecast Error (MSE and 
MAPE) and the Bullwhip Ratio in the following tables. 
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Percentage Reduction in the following variables by utilising CDIS 
instead of DIS 
Simulation Results ? Stage 
III 
Empirical Analysis 
Demand 
Process 
MSE Bullwhip 
Ratio 
Inventory 
Cost 
MAPE MSE Bullwhip 
Ratio 
Inventory 
Cost 
AR(1) 43.1 41.1 33.8 7.9   7.1 23.3 6.2 
AR(2) 54.2 49.1 41.0 10.4 19.1 27.6 7.2 
MA(1) 41.8 39.4 35.0 13.1   7.8 32.2 15.5 
MA(2) 45.0 38.1 28.8 14.9 12.8 19.8 8.1 
ARMA 
(1,1) 
56.1 51.1 41.2 27.7 48.0 42.9 14.9 
Table 9-8 Performance of CDIS compared to DIS (Stage III Simulation and 
Empirical Analysis) 
Percentage Reduction in the following variables by utilising CDIS 
instead of NIS-Est 
Simulation Results ? Stage 
III 
Empirical Analysis 
Demand 
Process 
MSE Bullwhip 
Ratio 
Inventory 
Cost 
MAPE MSE Bullwhip 
Ratio 
Inventory 
Cost 
AR(1) 83.6 90.0 72.0 20.3 46.2 44.8       41.1 
AR(2) 96.7 85.6 74.4 21.3 32.4 25.8       16.6 
MA(1) 61.9 51.2 53.8 17.9 28.1 28.9       34.8 
MA(2) 81.9 71.9 63.0 24.8 29.7 41.8       22.8 
ARMA 
(1,1) 
75.8 62.9 58.3 15.1 54.4 25.4       48.6 
Table 9-9 Performance of CDIS compared to NIS-Est (Stage III Simulation and 
Empirical Analysis) 
The simulation results (section 8.3) show that Forecast Error (in terms of MSE) and 
the Bullwhip Ratio are associated with inventory cost. It was found that for any 
individual demand process, the percentage reductions in MSE and Bullwhip Ratio by 
using CDIS are transferred to percentage reductions in inventory cost, although not 
with the same magnitude. 
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The empirical results (Tables 9-8 and 9-9) show the same phenomenon as observed 
in the simulation experiment. Thus for any individual demand process, as a 
consequence of changed assumptions in modelling, we observe when the forecast 
error or the demand variability decreases due to demand information sharing, the 
inventory cost will also decrease. This is now established in both simulation and 
empirical analysis for optimal forecasting methods. 
9.6.4. Effect of Demand Variability 
In order to consider the effect of demand variability in the empirical analysis, we 
have looked at the effect of standard deviation in the demand on the value of CDIS. 
In the simulation experiment, demand variability was analysed by looking at the 
effect of standard deviation in the noise of the demand on the value of CDIS. Of 
course, the standard deviation in the demand increases with the standard deviation in 
the noise of the demand. It was also observed in the simulation that the inventory 
cost results recorded by varying the standard deviation in the noise of the demand 
were consistent with those observed by examining demand variability. As it is very 
time consuming to calculate the standard deviation in the noise of the demand for 
each of the 1773 series, we looked at the standard deviation of the demand.  
For some demand processes, due to smaller number of series, the effect of standard 
deviation could not be analysed. In section 9.4, we discussed that for in-depth 
analysis we will only consider the processes having at least 20 series. All processes 
with 20 series cannot be analysed here as analysis of demand variability requires 
breaking down the total number of series in three groups. Thus, we will only analyse 
those processes for the effect of demand variability where at least 60 series have 
been identified. The selection of processes with at least 60 series for in-depth 
analysis by breaking them down into three groups is consistent with our earlier rule 
of a minimum of 20 series for in-depth empirical analysis.  
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Reduction in inventory cost in using CDIS 
compared with Demand 
process 
Std dev of 
Demand 
Number of 
Series DIS NIS-Est 
0 ? 25 169 1.0 30.6 
25 ? 50 98 5.1 37.3 
AR(1) 
50 - above 28 9.4 48.2 
0 ? 25 139 2.9  9.5 
25 ? 50 63 2.0 30.3 
AR(2) 
50 - above 41 7.8 18.0 
0 ? 25 49 14.4 22.1 
25 ? 50 26 20.4 60.4 
ARMA 
(1, 1) 
50 - above 12 -0.3 33.3 
0 ? 25 43 3.2 28.1 
25 ? 50 12 9.8 30.1 
MA(1) 
50 - above 8 30.7 41.7 
0 ? 25 43 18.7 19.6 
25 ? 50 16 5.5 12.5 
MA(2) 
50 - above 11 -1.4 39.9 
0 ? 25 45 5.2 33.4 
25 ? 50 8 12.8 68.2 
ARMA 
(1, 2) 
50 - above 8 6.7 25.9 
0 - 25 69 11.8 59.1 
25 - 50 86 10.4 11.7 
ARIMA 
(1, 1, 0) 
50 - above 39 28.9 33.1 
0 - 25 206 22.0 22.4 
25 - 50 141 29.7 23.1 
ARIMA 
(2, 1, 0) 
50 - above 66 35.1 33.2 
0 - 25 83 0 72.1 
25 - 50 33 0 47.0 
ARIMA 
(0, 0, 0) 
50 - above 13 0 26.6 
0 - 25 40 16.3 60.3 
25 - 50 13 14.2 69.8 
ARIMA 
(0, 1, 0) 
50 - above 23 15.0 60.0 
Table 9-10   Effect of Demand Variability on the Value of CDIS 
The simulation results showed that percentage reduction in inventory cost, by 
utilising CDIS, is an increasing function of standard deviation in the noise of 
demand. We observe in the above table (Table 9-10) that the results are process 
dependent. The results of AR (1), MA (1) and ARIMA (2, 1, 0) show that the value 
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of CDIS increases with the increasing value of standard deviation in the demand. The 
empirical analysis for these three processes reinforces the earlier simulation results. 
On the other hand, this pattern is not observed for the other seven processes.  
The effect of demand variability in the simulation experiment was analysed by 
keeping the demand parameters constant. This is not the case for the empirical 
analysis and thus a possible reason for the inconsistency is the interaction between 
the demand parameters and the demand variability. This is further discussed in the 
next sub-section 9.6.5. 
9.6.5. Effect of Demand Parameters 
Now, we consider the effect of demand parameters on the value of CDIS. The 
simulation results in sub-section 8.3.1 showed that the performance of CDIS depends 
on the value of the demand parameters. In the empirical analysis, we look at each 
process individually and compare the simulation and empirical results. Using the 
same rationale as discussed in sub-section 9.6.4, we restrict discussion to the 
processes where at least 60 series were identified in the empirical analysis. As we are 
looking at the effect of autoregressive and moving average parameters in this sub-
 section, ARIMA (0, 0, 0) and ARIMA (0, 1, 0) processes are not discussed. 
We discuss the remaining processes in two sub-sections. AR (1) and MA (1), having 
only demand parameter to estimate, are discussed in sub-section 9.6.5.1. Then, in 
sub-section 9.6.5.2, we discuss AR (2), MA (2) and ARMA (1, 1) as two demand 
parameters must be estimated for these processes. 
9.6.5.1. Single Parameter Processes 
We first look at the effect of demand parameters for processes where only one 
parameter is required to be estimated, i.e. AR (1) and MA (1). There were 294 series 
identified as AR (1) and 76 series as MA (1) in the empirical data. 
We divide the 294 data series identified as AR (1) into three groups based on the 
value of the autoregressive parameter 1? . The parameter range is selected so as to 
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have an appropriate number of series in each group. The results are shown in Table 
9-11 below. 
Reduction in inventory cost in using CDIS 
compared 
Demand 
process 
1?  
Number of 
Series 
DIS NIS-Est 
< 0.2 75 5.0 38.7 
0.2 - 0.4 137 6.3 39.4 
AR(1) 
> 0.4 82 8.1 44.1 
Table 9-11   Effect of 1?  on the Value of CDIS for AR (1) Process 
The simulation results showed that the value of CDIS is an increasing function of the 
autoregressive parameter. This result is confirmed in the empirical analysis for 
comparison of inventory cost with both DIS and NIS-Est approaches.  
Lee et al (2000), by simulating an AR (1) process, quantified the value of demand 
information sharing. They showed that this value is an increasing function of the 
autoregressive parameter, 1? . The simulation and empirical results in this research 
agree with the findings of Lee et al (2000). 
We now move the discussion to looking at the effect of the moving average 
parameters on the value of CDIS. We first look at an MA (1) process. 
Reduction in inventory cost in using CDIS 
compared 
Demand 
process 
1?  
Number of 
Series 
DIS NIS-Est 
< -0.4 7 26.0 40.7 
-0.4 - -0.2 32 11.5 33.1 
MA(1) 
> -0.2 34 0.5 29.7 
Table 9-12   Effect of 1?  on the Value of CDIS for MA (1) Process 
The above results are similar to the earlier findings in the simulation experiment. The 
simulation results showed that the value of CDIS decreases with the increasing value 
of the moving average parameter? . This result is also exhibited in the empirical 
findings as shown in Table 9-12 above. Indeed, the effect of the moving average 
parameter is more pronounced in empirical analysis than in simulation. 
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In this sub-section, the effect of demand parameters on the value of CDIS for AR (1) 
and MA (1) processes have been discussed. We observe that the empirical findings 
are consistent with the earlier simulation results on the effect of autoregressive and 
moving average parameters on the value of CDIS. The value of CDIS is an 
increasing function of the autoregressive parameter, 1? , and a decreasing function of 
the moving average parameter 1? . 
9.6.5.2. Double Parameter Processes 
The three processes AR (2), MA (2) and ARMA (1, 1) will be discussed separately in 
this sub-section as there are two demand parameters to be estimated for these 
processes. 
We first analyse the effect of the autoregressive parameters for an AR (2) process. 
The numbers in each box are the percentage reductions in inventory cost obtained by 
using CDIS, while the numbers in brackets are the number of series for each of the 
groups. The rationale for the division of groups is the same as discussed for the AR 
(1) process in the previous sub-section (9.6.5.1). 
2?  1?  
< 0.2 ? 0.2 
< 0.2 2.6 (35) 5.8 (66) 
? 0.2 3.3 (91) 16.6 (52) 
Table 9-13   Percentage Reduction in Inventory Cost by using CDIS compared 
to DIS for AR (2) Process 
The simulation results for AR (2) show that, as the value of the autoregressive 
parameters 1? and 2?  increases, the value of CDIS also increases. We observe that 
when the value of CDIS is calculated in comparison with DIS, the empirical results 
confirm the earlier simulation experiment findings. The value of CDIS in the above 
table (Table 9-13) is increasing both in 1? and 2? . 
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2?  1?  
< 0.2 ? 0.2 
< 0.2 38.5 (35) 18.3 (66) 
? 0.2 17.7 (91) 1.9 (52) 
Table 9-14   Percentage Reduction in Inventory Cost by using CDIS compared 
to NIS-Est for AR (2) Process 
In Table 9-14, the value of CDIS is calculated by comparing the inventory cost for 
CDIS with the inventory cost for NIS-Est. We observe that the value of CDIS is 
decreasing with the increasing value of both 1? and 2? . This is an opposite 
phenomenon as to what was revealed from our simulation experiment.  
We now analyse the MA (2) process to look at the effect of the moving average 
parameters on the value of CDIS. 
2?  1?  
< -0.2 ? -0.2 
< -0.2    5.6  (15) 9.1 (24) 
? -0.2 21.6 (12) 1.6 (18) 
Table 9-15   Percentage Reduction in Inventory Cost by using CDIS compared 
to DIS for MA (2) Process 
2?  1?  
< -0.2 ? -0.2 
< -0.2 3.1  (15) 7.4 (24) 
? -0.2 43.8   (12) 30.0  (18) 
Table 9-16   Percentage Reduction in Inventory Cost by using CDIS compared 
to NIS-Est for MA (2) Process 
The results of the simulation experiment for MA (2) process showed that the value of 
CDIS is a decreasing function of the value of both ?1 and ?2. The above tables (Table 
9-15 and 9-16) show that this pattern does not hold for the empirical analysis, when 
we look at the effect of the moving average parameters on the value of CDIS for 
comparisons with DIS and NIS-Est. The effect of autoregressive and moving average 
parameters are now analysed for the mixed ARMA (1, 1) process. The reduction in 
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inventory cost by using CDIS compared with DIS is given in Table 9-17, while the 
results when compared with NIS-Est are given in Table 9-18. 
1?  1?  
-0.9 ?  0.5 0.5 ? 0.9 
-0.9 ? -0.3 1.1 (11)  
-0.3 ?  0.5 5.0 (11) 15.3 (24) 
0.5 ?  0.9  56.6 (41) 
Table 9-17   Percentage Reduction in inventory Cost by using CDIS compared 
to DIS for ARMA (1, 1) Process 
Simulation results showed that when the autoregressive parameter 1?  increases, the 
value of CDIS will increase and this is also observed in empirical analysis. However, 
the simulation also showed that when 1?  increases, the value of CDIS will decrease. 
This pattern is not observed in Table 9-17. 
1?  1?  
-0.9 ? 0.5 0.5 ? 0.9 
-0.9 ? -0.3 9.1 (11)  
-0.3 ? 0.5 54.7 (11) 47.0 (24) 
0.5 ? 0.9  6.2 (41) 
Table 9-18   Percentage Reduction in Inventory Cost by using CDIS compared 
to NIS-Est for ARMA (1, 1) Process 
The comparison with NIS-Est (Table 9-18) also shows that the pattern expected from 
the simulation results is not observed in the empirical analysis. However, the analysis 
presented in Tables 9-17 and 9-18 are limited to only two intervals for 1? and three 
intervals for 1? due to small number of series observed for ARMA (1, 1). 
It is clear that, for double parameter processes, the empirical results do not all agree 
with the simulation findings. The empirical analysis often does not confirm the 
relationship observed in the simulation experiment. One reason for the difference in 
results in the empirical analysis could be that in the simulation experiment, the effect 
of demand parameters was considered by keeping the standard deviation of the noise 
constant. This is not the case with the empirical analysis where both the demand 
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parameters and the standard deviation in the noise vary in these groups. The dual 
effect of both demand parameters and standard deviation of the noise is a possible 
reason for the difference in results for some processes. In order to resolve this, 
investigation is required to assess the dual effect of the demand parameters and 
standard deviation of noise. Such an analysis should be based on larger data sets, 
which would enable interaction between variables to be analysed in depth, and non-
 linear effects (such as those shown in Table 8-7) to be identified. 
9.6.6. Effect of Cost Ratio 
In the simulation experiment, the cost ratio was varied to investigate how the 
percentage reductions in the inventory costs are affected by the cost ratio. In Table 9-
 19, we present the results of empirical analysis for the effect of cost ratio on the 
value of CDIS. 
Cost Ratio Percentage Savings in Inventory Cost by using CDIS compared to 
 DIS NIS-Est 
2/(2+1) 14.5 22.5 
25/(25+1) 29.5 53.0 
50/(50+1) 32.9 68.9 
Table 9-19   Effect of Cost Ratio on Percentage Reduction in Inventory Cost 
In the simulation experiment, it was found that the value of CDIS is an increasing 
function of the cost ratio. This result has now been validated by the empirical 
analysis. The results of simulation and empirical analysis have shown that the value 
of CDIS is high when the penalty cost is high compared to the inventory cost.  
9.7. Results of Empirical Analysis for Non-Optimal Forecasting 
Methods 
The results of the empirical analysis for the non-optimal forecasting methods are 
discussed in this section. The results clearly show that the Centralised Demand 
Information Sharing (CDIS) approach always results in less inventory cost than NIS. 
This finding is consistent with the results from the simulation experiment. Thus, the 
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rules established in Chapter 8 with respect to non-optimal forecasting methods have 
been confirmed by the empirical analysis. 
9.7.1. Results for Demand Processes 
We start this discussion by first looking at the value of CDIS for individual demand 
processes. The values presented in the following table compare the percentage 
reduction in inventory cost by using CDIS instead of NIS when the Simple Moving 
Average forecasting method is employed. As the purpose of the following table is to 
present a comparison between simulation and empirical analysis, only the results of 
ARIMA processes common to both in-depth simulation and empirical analysis are 
presented.  
Demand Process Percentage Reduction in Inventory Cost by using CDIS 
compared with NIS 
 Simulation Experiment Empirical Analysis 
AR (1) 46.4 42.3 
AR (2) 44.9 39.7 
MA (1) 58.0 58.0 
MA (2) 57.5 54.4 
ARMA (1, 1) 29.3 32.9 
Table 9-20 Results of Empirical Analysis compared with Simulation for SMA 
The above table shows that the results of empirical analysis are consistent with the 
results of the simulation experiment. Similar results can be observed when the Single 
Exponential Smoothing forecasting method is employed. The results are summarised 
in the following table. 
 Demand Process Percentage Reduction in Inventory Cost by using CDIS 
compared with NIS 
 Simulation Experiment Empirical Analysis 
AR (1) 65.6 71.7 
AR (2) 60.3 72.5 
MA (1) 68.8 74.3 
MA (2) 63.9 72.8 
ARMA (1, 1) 71.0 73.2 
Table 9-21 Results of Empirical Analysis compared with Simulation for SES 
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Detailed results of all the performance metrics for both forecasting methods are 
presented in Appendices 9B and 9C. The patterns of the results of all the other 
processes not included in the above two tables (Tables 9-20 and 9-21) are consistent 
with the results of the above five processes.  
9.7.2. Forecast Error Measures 
One of the performance measures used in this research is Forecast Error (see sub-
 section 3.7.2). The use of a dimensionless accuracy measure in empirical analysis 
was also discussed in the same sub-section and in sub-section 9.6.2. Thus, in the 
empirical analysis, we use Mean Absolute Percentage Error (MAPE) and compare 
the results of MSE with MAPE. 
In the following tables (Table 9-22 and Table 9-23), similar to optimal forecasting 
methods, we present two comparisons in terms of the percentage reduction of MSE 
by utilising CDIS instead of NIS. MSE of simulation is first compared with MSE of 
empirical analysis followed by comparison of MSE and MAPE in empirical analysis. 
Empirical Analysis MAPE Demand 
Process 
Percentage 
Reduction in 
MSE 
(Simulation)  
 
Percentage 
Reduction 
in MSE 
(Empirical)  
 
 
NIS 
 
CDIS 
% 
reduction  
AR(1) 41.7 39.0 64.9 47.0 20.6 
AR(2) 41.0 38.9 59.1 48.0 18.7 
MA(1) 52.9 42.7 62.1 42.1 32.2 
MA(2) 52.6 45.3 66.8 47.5 28.8 
ARMA (1,1) 27.6 35.4 49.2 37.8 23.0 
Table 9-22 Comparison between SMA  Forecast Error Measures (NIS vs. 
CDIS) 
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Empirical Analysis MAPE Demand 
Process 
Percentage 
Reduction in 
MSE 
(Simulation)  
 
Percentage 
Reduction 
in MSE 
(Empirical)  
 
 
NIS 
 
CDIS 
% 
reduction  
AR(1) 71.5 70.0 55.2 37.1 32.7 
AR(2) 73.7 70.8 59.1 48.0 34.6 
MA(1) 66.6 81.3 53.4 28.9 45.8 
MA(2) 70.8 64.2 56.6 39.3 29.4 
ARMA (1,1) 62.0 73.4 48.7 30.9 36.6 
Table 9-23 Comparison between SES  Forecast Error Measures (NIS vs. 
CDIS) 
In terms of the first comparison, between MSE of simulation and empirical analysis, 
we find that the empirical results are broadly consistent with simulation results. This 
is true for both forecasting methods: SMA and SES. Similar results were observed 
for the processes in terms of inventory costs (see sub-section 9.7.1).  
The second comparison is between the percentage reductions of MSE and MAPE in 
the empirical analysis. The percentage reduction in MSE is found to be higher 
compared to MAPE. This is similar to what was observed for the optimal forecasting 
methods (sub-section 9.6.2). The reason for this, as already mentioned for the 
optimal forecasting method, is that MSE is a squared measure while MAPE is not. 
Most importantly, consistent with the results of optimal methods, we observe that the 
results of MAPE show improvements by using CDIS, consistent with the results of 
all other performance metrics (Appendices 9B and 9C). 
9.7.3. Performance of CDIS 
In section 8.7, we analysed two factors linked with the performance of CDIS for non-
 optimal methods. The simulation results showed that, for any demand process, 
percentage reductions in inventory costs on using CDIS approach were associated 
with percentage reductions in Forecast Error and Bullwhip Ratio.  
In the following tables (Table 9-24 and Table 9-25), we present the percentage 
reductions of the Forecast Error (MSE and MAPE), Bullwhip Ratio and inventory 
cost by using CDIS approach compared to NIS for SMA and SES methods. 
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Percentage Reduction in the following variables by utilising CDIS 
instead of NIS 
Simulation Results  Empirical Analysis 
Demand 
Process 
MSE Bullwhip 
Ratio 
Inventory 
Cost 
MAPE MSE Bullwhip 
Ratio 
Inventory 
Cost 
AR(1) 65.7 55.2 46.4 20.6 39.0 54.8 42.3 
AR(2) 65.3 54.2 44.9 18.7 38.9 50.0 39.7 
MA(1) 72.2 65.3 58.0 32.2 42.7 62.8 58.0 
MA(2) 70.8 63.6 57.5 28.8 45.3 62.8 54.4 
ARMA 
(1,1) 
53.5 39.5 29.3 23.0 35.4 35.5 27.9 
Table 9-24 Performance of CDIS for SMA 
Percentage Reduction in the following variables by utilising CDIS 
instead of NIS 
Simulation Results  Empirical Analysis 
Demand 
Process 
MSE Bullwhip 
Ratio 
Inventory 
Cost 
MAPE MSE Bullwhip 
Ratio 
Inventory 
Cost 
AR(1) 71.5 70.6 65.6 32.7 70.0 81.3 71.7 
AR(2) 73.7 62.1 60.3 34.6 70.8 79.7 72.5 
MA(1) 66.6 64.5 63.9 45.8 81.3 72.1 68.8 
MA(2) 70.8 76.2 71.0 29.4 64.2 64.5 63.9 
ARMA 
(1,1) 
62.0 72.1 68.8 36.6 73.4 76.2 71.0 
Table 9-25 Performance of CDIS for SES 
Tables 9-24 and 9-25 show that for any demand process, as a consequence of 
changed model assumptions, an increase in the percentage reduction in MSE and 
Bullwhip Ratio (by using CDIS compared to NIS) results in an increase in the 
percentage reduction in the inventory cost, although not with the same magnitude. 
This phenomenon has now been observed for optimal and non-optimal forecasting 
methods in both simulation and empirical analysis.  
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In addition, consistent with the simulation results, Tables 9-24 and 9-25 also show 
that non-optimal forecasting methods are less sensitive to demand process as 
compared to optimal methods.   
9.7.4. Effect of Demand Variability 
In the simulation experiment, we looked at the effect of demand variability by 
considering the standard deviation in the noise of the demand. We discussed in sub-
 section 9.6.4 that the effect of demand variability in the empirical analysis has been 
measured by calculating the standard deviation of the demand. It is obvious that the 
standard deviation in the demand increases with the standard deviation in the noise of 
the demand. It was also observed in the simulation that the simulation results on 
inventory cost reductions obtained by varying the standard deviation in the noise of 
the demand were consistent with those obtained for demand variability. 
We present the effect of demand variability on the percentage reduction in inventory 
cost for the two non-optimal forecasting methods, SMA and SES in the following 
table (Table 9-26). 
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Reduction in inventory cost in using CDIS 
compared with NIS Demand 
process 
Std dev of 
Demand 
Number of 
Series SMA SES 
0 ? 25 169 40.2 51.8 
25 ? 50 98 44.6 61.7 
AR(1) 
50 ? above 28 46.6 75.0 
0 ? 25 139 38.1 80.5 
25 ? 50 63 37.3 69.2 
AR(2) 
50 ? above 41 48.5 71.5 
0 ? 25 49 37.2 71.0 
25 ? 50 26 39.5 75.2 
ARMA 
(1, 1) 
50 ? above 12 28.4 71.8 
0 ? 25 43 55.3 74.0 
25 ? 50 12 57.2 74.1 
MA(1) 
50 ? above 8 59.2 74.8 
0 ? 25 43 52.1 73.6 
25 ? 50 16 58.4 71.0 
MA(2) 
50 ? above 11 49.5 74.2 
0 ? 25 45 35.6 60.4 
25 ? 50 8 48.0 88.2 
ARMA 
(1, 2) 
50 - above 8 32.2 58.4 
0 ? 25 69 66.8 69.5 
25 ? 50 86 66.8 77.1 
ARIMA 
(1, 1, 0) 
50 ? above 39 70.5 68.3 
0 ? 25 206 59.8 71.9 
25 ? 50 141 66.6 72.1 
ARIMA 
(2, 1, 0) 
50 ? above 66 72.5 77.2 
0 ? 25 83 69.5 73.6 
25 ? 50 33 66.2 69.9 
ARIMA 
(0, 0, 0) 
50 ? above 13 66.2 70.0 
0 ? 25 40 70.2 66.6 
25 ? 50 13 59.9 65.2 
ARIMA 
(0, 1, 0) 
50 ? above 23 69.2 76.2 
Table 9-26   Effect of Demand Variability on the Value of CDIS compared with 
NIS 
The simulation results revealed that percentage reduction in inventory cost on 
utilising CDIS, is an increasing function of standard deviation in the noise of demand 
or standard deviation in the demand (see sub-section 8.5.3). We observe in the above 
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table (Table 9-26) that the results are process dependent. The results of AR (1), MA 
(1) and ARIMA (2, 1, 0) show that the value of CDIS increases with the increasing 
value of standard deviation in the demand. The empirical analysis for these three 
processes reinforces the earlier simulation results. On the other hand, this pattern is 
not observed for the other processes i.e. AR (2), ARMA (1, 1), ARMA (1, 2), MA 
(2), ARIMA (1, 1, 0), ARIMA (0, 0, 0) and ARIMA (0, 1, 0). The same phenomenon 
was observed for the optimal forecasting method (sub-section 9.6.4) and the 
suggested reasons are the same as mentioned earlier. 
9.7.5. Effect of Demand Parameters 
In this sub-section, we analyse the effect of demand parameters on the value of CDIS 
for non-optimal forecasting methods. In the simulation experiment, we analysed the 
effect of demand parameters for the five stationary processes used in the research.  
For the empirical analysis, in this sub-section, the same processes are analysed.  The 
results are discussed in the following sub-sections. 
9.7.5.1. Single Demand Parameter 
AR (1) and MA (1) demand processes are discussed in this sub-section as both 
processes have only one demand parameter to estimate. The total number of series 
for both processes has been divided into three groups so that we have appropriate 
numbers of series in each group. The grouping is similar to that for optimal 
forecasting methods. 
Reduction in inventory cost in using 
CDIS compared Demand 
process 1
 ?  Number of 
Series SMA SES 
< 0.2 75 44.4 71.9 
0.2 ? 0.4 137 43.9 71.6 
AR(1) 
> 0.4 82 39.6 71.0 
Table 9-27   Effect of 1? on the Value of CDIS for AR (1) Process 
For non-optimal forecasting methods, the simulation results showed an opposite 
trend compared to optimal forecasting methods. For both SMA and SES, it was 
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observed that the value of CDIS decreases with the increasing value of the 
autoregressive parameter, 1? . This result is confirmed in the empirical analysis for 
comparison of inventory cost for both SMA and SES methods.  
Chen et al (2000a; 2000b), by simulating an AR (1) process, quantified the value of 
demand information sharing. They showed that the value of sharing demand 
information decreases with the increasing value of the autoregressive parameter, 1?  
for both SMA and SES. The simulation and empirical results in this research confirm 
the findings of Chen et al (2000a; 2000b). 
We now move the discussion to looking at the effect of the moving average 
parameters on the value of CDIS and first look at an MA (1) process in this sub-
 section. 
Reduction in inventory cost in using CDIS 
compared Demand 
process 1
 ?  Number of 
Series SMA SES 
< -0.4 7 44.2 70.8 
-0.4 - -0.2 32 66.1 77.3 
MA(1) 
> -0.2 34 39.8 71.8 
Table 9-28   Effect of 1? on the Value of CDIS for MA (1) Process 
It was discussed in sub-section 8.4.1 that none of the earlier papers have looked at 
the effect of the moving average parameter on the value of CDIS. In the simulation 
experiment, we found that the moving average parameter has no effect on the value 
of CDIS. This result is not contradicted in the empirical findings as shown in Table 
9-28 above, where for both SMA and SES, there is no consistent upward or 
downward trend, as 1?  is varied. A limitation of the above table is the small number 
of series when 1 0.4? < .  
In this sub-section, the effect of demand parameters on the value of CDIS for AR (1) 
and MA (1) processes has been discussed. It is observed that the empirical findings 
are consistent with the earlier simulation results on the effect of autoregressive and 
moving average parameters on the value of CDIS. The value of CDIS is an 
increasing function of the autoregressive parameter, 1? , while the value of CDIS for 
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non-optimal forecasting methods is neither an increasing nor decreasing function of 
the moving average parameter, 1? . 
9.7.5.2. Double Demand Parameters 
The three processes AR (2), MA (2) and ARMA (1, 1) will be discussed in this sub-
 section as there are two demand parameters to be estimated for each of these 
processes. 
The AR (2) process is considered first and the results are shown in Table 9-29 and 
Table 9-30. The numbers in each box are the percentage reduction in inventory cost 
by using CDIS compared to NIS, while the numbers in brackets are the number of 
series for each of these groups. The rationale for the division of group is the same as 
discussed for the AR (1) process in the previous sub-section (9.6.5.1). 
2?  1?  
< 0.2 ? 0.2 
< 0.2 40.8 (35) 22.1 (66) 
? 0.2 30.2 (91) 55.0 (52) 
Table 9-29   Percentage Reduction in Inventory Cost for AR (2) Process using 
SMA Method 
2?  1?  
< 0.2 ? 0.2 
< 0.2 68.6 (35) 80.0 (66) 
? 0.2 68.9 (91) 79.9 (52) 
Table 9-30   Percentage Reduction in Inventory Cost for AR (2) Process using 
SES Method 
The simulation results for AR (2) showed that the as the value of the autoregressive 
parameters 1? and 2?  increases, the value of CDIS decreases. We do not find this 
effect in the empirical analysis.  
We now analyse the MA (2) process to further look at the effect of 1?  and 2?  on the 
value of CDIS. 
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2?  1?  
< -0.2 ?- 0.2 
< -0.2 55.6 (15) 49.1 (24) 
? -0.2 41.6 (12) 71.6 (18) 
Table 9-31   Percentage Reduction in Inventory Cost for MA (2) Process using 
SMA Method 
2?  1?  
< -0.2 ?- 0.2 
< -0.2 81.3 (15) 67.9 (24) 
? -0.2 81.3 (12) 68.8 (18) 
Table 9-32   Percentage Reduction in Inventory Cost for MA (2) Process using 
SES Method 
The results of the simulation experiment for MA (2) process showed that the value of 
CDIS does not depend on the values of ?1 and ?2. 
The above tables (Table 9-31 and 9-32) do not contradict the simulation findings, as 
there is no consistent effect of the moving average parameters on the value of CDIS 
for both SMA and SES forecasting methods.  
The effect of autoregressive and moving average parameters are now analysed for 
the mixed ARMA (1, 1) process. The reduction in inventory cost by using CDIS 
compared with NIS is given in Table 9-33 for SMA and in Table 9-34 for SES. 
1?  1?  
-0.9 ? 0.5 0.5 ? 0.9 
-0.9 ? -0.3 39.0 (11)  
-0.3 ? 0.5 22.1 (11) 20.4 (24) 
0.5 ? 0.9  36.0 (41) 
Table 9-33   Percentage Reduction in Inventory Cost for ARMA (1, 1) Process 
using SMA 
Simulation results showed that when the autoregressive parameter 1?  increases, the 
value of CDIS will decrease. The simulation showed that there is no effect of 1?  on 
the value of CDIS.  
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1?  1?  
-0.9 ? 0.5 0.5 ? 0.9 
-0.9 ? -0.3 73.0 (11)  
-0.3 ? 0.5 73.5 (11) 69.2 (24) 
0.5 ? 0.9  75.9 (41) 
Table 9-34   Percentage Reduction in Inventory Cost for ARMA (1, 1) Process 
using SES 
The empirical analysis (Table 9-33 and Table 9-34) does not show any pattern in 
terms of the effect of 1?  and 1?  on the value of CDIS. For the moving average 
parameter, the result is consistent with the simulation findings. In terms of the 
autoregressive parameter, the simulation experiment showed that the value of CDIS 
decreases when the value of autoregressive parameter increases. The results of the 
empirical analysis do not agree with these findings. However, the analysis presented 
for AR (2) and MA (2) is limited to only two intervals for the demand parameters 
due to small number of series. Similarly, for ARMA (1, 1) the intervals are limited to 
only two intervals for 1? and three intervals for 1? . 
It has been argued in sub-section 9.6.5 that the standard deviation of noise was kept 
constant in the simulation experiment when the effect of demand parameters was 
analysed, which is not the case in the empirical analysis. Thus, there is a need in the 
empirical analysis to investigate the interaction between the demand parameters and 
standard deviation of noise. However, as already discussed in sub-section 9.6.5, such 
an investigation, taking into account 1? , 2? and standard deviation in the noise 
should be based on larger data sets. 
9.7.6. Effect of Cost Ratio 
In the simulation experiment, the effect of the cost ratio on the value of CDIS was 
analysed. For non-optimal forecasting methods, the simulation results showed an 
interesting phenomenon. It was observed that the percentage savings in inventory 
cost using CDIS compared to NIS increased with the increasing value of the cost 
ratio for stationary processes but decreased with the increasing value of cost ratio for 
the non-stationary processes. In order to validate this, a similar analysis was 
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performed on stationary and non-stationary processes on the empirical data. The 
results are given below in Table 9-35.  
Percentage Savings in Inventory Cost by using CDIS 
compared to NIS 
Demand 
Process 
Cost Ratio 
SMA SES 
2/(2+1) 46.8 70.4 
25/(25+1) 52.9 75.5 
Stationary 
Processes 
50/(50+1) 54.6 77.1 
2/(2+1) 55.8 73.6 
25/(25+1) 55.6 71.5 
Non-
 Stationary 
Processes 50/(50+1) 54.9 70.9 
Table 9-35   Effect of Cost Ratio for Non-Optimal Methods 
Table 9-35 shows that the empirical results agree with the simulation findings about 
the effect of cost ratio on the value of CDIS. For stationary processes, the value of 
CDIS is an increasing function of the cost ratio. The phenomenon is totally opposite 
when the demand process is non-stationary. For such demand processes, the value of 
CDIS decreases with increasing value of the cost ratio, although the effect is not 
strongly marked (see Table 9-35). 
9.7.7. Effect of Forecasting Parameters 
Here we discuss the effect of the forecasting parameters on the value of CDIS for the 
two non-optimal forecasting methods. For SMA, we look at the effect of the length 
of the moving average and, for SES, we look at the effect of the smoothing constant. 
9.7.7.1. Effect of the Smoothing Constant in SES 
The following figure (Figure 9-1) shows the percentage reduction in the inventory 
cost by employing the CDIS approach instead of NIS, when we consider the effect of 
the smoothing constant in SES for an AR (1) process.  
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Effect of smoothing constant on the value of CDIS
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Figure 9-1  Effect of Smoothing Constant on CDIS for an AR (1) Process 
The above figure clearly indicates that the value of CDIS is an increasing function of 
the smoothing constant in SES in the empirical analysis, which is in close agreement 
with the simulation experiment.  
The upstream translation of demand, as discussed in detail in Chapter 4, shows that 
the manufacturer?s demand history contains information about the retailer?s demand. 
Thus, when a higher value of the smoothing constant is used, it shows less weighting 
has been put on the demand history. This results in more value of CDIS. 
The same effect of the smoothing constant has been observed when all demand 
processes were analysed by changing the value of alpha. The results are presented in 
Appendix 9D. 
9.7.7.2. Effect of Number of Terms in SMA 
The following figure (Figure 9-2) shows the effect of number of terms (n) in SMA 
for an AR (1) process on the percentage reduction in the inventory cost by employing 
the CDIS approach instead of NIS.  
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Effect of n on the value of CDIS
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Figure 9-2 Effect of Number of Terms in SMA on CDIS for an AR (1) 
Process 
It is evident from the above figure that the value of CDIS decreases as the value of 
the number of terms (n) in SMA increases. These results are consistent with the 
findings in the simulation experiment.  
The rationale for this effect is similar to that for the SES method. A higher value of n 
means that more demand history has been taken into account by the manufacturer in 
its forecasting. As the manufacturer?s history contains information about the 
retailer?s demand, more history means less value in CDIS. 
The same effect of the smoothing constant has been observed when all demand 
processes were analysed by changing the value of alpha. The results are presented in 
Appendix 9E. 
9.7.8. Effect of Lead Time 
The empirical results show that the percentage reduction in inventory cost is an 
increasing function of the lead time from the supplier to the manufacturer. This has 
already been established by Lee et al (2000) for optimal forecasting methods and is 
consistent with the simulation results. 
Table 9-36 shows the percentage reduction in inventory cost by using CDIS 
compared to NIS-Est (for an MMSE forecasting method) and compared to NIS (for 
the two non-optimal forecasting methods, SMA and SES). 
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Average Percentage Savings over all Demand 
Processes in Inventory Cost by using CDIS for  
Lead Time 
MMSE SMA SES 
1 8.6 5.7 6.4 
6 21.9 26.4 48.1 
12 25.6 42.6 72.6 
 
Table 9-36  Effect of Lead Time on the Percentage Savings in Inventory Cost 
The above table clearly indicates that there is more value in centralising the demand 
information when the lead time between the supplier and the manufacturer is large. 
This is true irrespective of the forecasting method employed in the supply chain. 
There are more benefits of centralising the demand information when lead times are 
longer. This is quite logical, as the forecast for shorter lead times would be less 
variable compared to the one with longer lead time, thus making centralised demand 
less critical (see details in sub-section 8.4.3). 
9.8. Conclusions 
In this chapter we have presented the results of the empirical analysis. The purpose 
of the empirical analysis was to assess the empirical validity and utility of the 
findings suggested by the theoretical and simulation exercises.  
In the preceding sections, three forecasting methods, MMSE, SMA and SES, were 
employed and the performance metrics were calculated. The assumptions and supply 
chain model used in the empirical analysis have been chosen to be consistent with 
the simulation experiment, as discussed in Chapter 7. 
CDIS outperformed all other approaches irrespective of the forecasting method used. 
This empirical evidence validates the findings from the simulation experiment as 
detailed in Chapter 8. The design of the empirical analysis also confirms that the 
operational rules for the two approaches, NIS-Est and CDIS, can be applied to a real 
world scenario. 
Similar to the simulation findings, we observed that the value of CDIS is quite 
consistent when non-optimal forecasting methods are employed. In the case of the 
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MMSE method, the value exhibits a demand process dependent behaviour and this 
behaviour is consistent with the findings in the simulation experiment. 
In the empirical analysis, we found that for some processes, the effect of demand 
variability and the effect of demand parameters were not consistent with the 
simulation experiment. We discussed in sub-section 9.6.4 that one of the reasons may 
be the interaction between the demand parameters and demand variability. In the 
simulation experiment, we analysed one factor while keeping the others constant, 
which was not the case with the empirical analysis. An investigation of the 
interaction between demand parameters and demand variability should be based on a 
larger data set. Other factors that would require analysis include changes in demand 
model and demand parameters over the performance measurement period. This 
investigation remains an area for further research. 
The effect of forecasting parameters and the manufacturer?s lead time was also 
investigated in the empirical analysis. The results showed that the value of CDIS 
decreases when more history is utilised in the forecasting method. Further, it was 
also shown that the value of CDIS increases with increasing values of the lead time 
from the manufacturer to the retailer. In terms of cost ratio, for optimal forecasting 
methods, the value of CDIS is an increasing function of the cost ratio. The same 
relationship has been observed for non-optimal forecasting methods but only when 
the demand is stationary. When the demand is non-stationary and non-optimal 
methods are used, the value of CDIS decreases with increasing cost ratio. These 
results are consistent with the simulation findings. 
Given the above empirical analysis, we conclude that the Centralised Demand 
Information Sharing (CDIS) approach, as advocated in Chapter 3 (theory) and 
Chapter 8 (simulation), is robust and clearly reduces the inventory cost against the 
other two approaches NIS-Est and DIS. 
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10. Conclusions, Implications and Further Research 
10.1. Introduction 
In this chapter, the main threads of the research presented in the thesis are drawn 
together and the principal conclusions are summarised in a concise form. The main 
limitations of the work are assessed and, where appropriate, avenues of further 
research are suggested. 
In order to achieve the above task, we divide this chapter into three sections. We first 
present the main contributions from this Ph.D. thesis and then summarise and 
conclude our findings arising from each of our methodological approaches: theory, 
simulation and empirical analysis. The next section is devoted to a discussion on the 
managerial implications of the conclusions arising from this research. Finally, we 
discuss the limitations of the research and some areas of further research.  
The overall research aim of this thesis is to analyse the value of demand information 
sharing in supply chains, based on more realistic assumptions than in previous 
research. 
The objectives of this research, as already stated in Chapter 1 of this thesis, are as 
follows: 
1. To critically analyse and improve the current demand information sharing 
approaches discussed in the literature. 
2. To extend the upstream translation of demand to a general ARMA (p, q) 
process for non-optimal forecasting methods.  
3. To analyse the Downstream Demand Inference (DDI) approach and reflect on 
the implications for the value of sharing demand information.  
4. To evaluate the performance of demand information sharing approaches with 
the help of simulation experiments, in the light of relaxed model assumptions.  
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5. To analyse the effect of lead time, demand variance, autoregressive parameters, 
moving average parameters, cost ratio and forecasting method parameters on 
the value of demand information sharing approaches.  
6. To test the empirical validity and utility of the theoretical and simulation results 
on a large set of real world data..  
All the above objectives have been achieved and the contributions of the thesis are 
summarised in the next section. 
10.2. Summary and Conclusions 
10.2.1. Contributions of the Thesis 
The contributions of the thesis are as follows: 
? Two new demand information sharing approaches, NIS-Est and CDIS, have 
been developed in this research (Objective 1). 
o When supply chain links adopt a strategy of not sharing demand 
information, we show with the help of simulation that NIS-Est will 
always result in lower inventory cost than the traditional NIS 
approach, except for pure moving average processes, in which case 
the inventory costs are the same. Thus, we introduce a new 
benchmark for quantifying the value of demand information sharing. 
o On the other hand, when supply chain links adopt a strategy of sharing 
demand information, we show, with the help of simulation and 
empirical analysis that CDIS will result in lower inventory cost than 
the traditional DIS approach presented in the literature. 
? The multi-stage mathematical translation for the upstream translation of 
demand for non-optimal forecasting methods has been generalised to ARMA 
(p, q) processes (Objective 2). This extension helps us in proving the value of 
the Downstream Demand Inference (DDI) approach for demand information 
sharing (Objective 3). 
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? Based on more realistic assumptions, we have shown that Downstream 
Demand Inference (DDI) is not feasible for MMSE and SES forecasting 
methods. We have also shown that DDI is possible for ARMA demand 
processes when the SMA forecasting method is employed and the upstream 
link is aware of the number of historical terms used in SMA and the demand 
parameters at the downstream link (Objective 3). 
? We show that there are benefits when an upstream member in a supply chain 
forecasts uses the demand information of the downstream member. The 
benefits arise from reduction in forecasting errors, resulting in reduction of the 
Bullwhip Effect and lower inventory holdings and inventory costs (Objectives 
4 and 6). 
? The traditional DIS approach showed that there is no value of sharing demand 
information when the demand follows an MA (q) process. With the help of 
simulation and empirical analysis, we have proved that there is value of sharing 
demand information when the CDIS approach is used (Objectives 4 and 6). 
? We quantify the value of demand information sharing for the two non-optimal 
forecasting methods, SMA and SES. It was shown that, for the nine ARIMA 
processes used in simulation and twelve ARIMA processes in empirical 
analysis, there is value of sharing demand information when non-optimal 
forecasting methods are utilised. The results from empirical analysis support 
the simulation results (Objectives 4 and 6). 
? With the help of simulation and empirical analysis, we have analysed the effect 
of various factors such as lead time, demand variance, demand parameters, cost 
ratio and forecasting method parameters on the value of sharing demand 
information.  The simulation results have shown that the value of CDIS 
increases with increasing lead time, demand variance, autoregressive 
parameters and the smoothing constant used in SES. On the other hand, the 
value of CDIS decreases with increasing value of the moving average 
parameter and the historical terms used in SMA. The effect of cost ratio on the 
value of CDIS depends on the forecasting method used. In the case of optimal 
methods, the value of CDIS is an increasing function of the cost ratio. On the 
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other hand, for non-optimal forecasting methods, the value increases with 
increasing cost ratio for stationary demand processes but shows an opposite 
trend for non-stationary demand processes. The empirical findings agree with 
all the above simulation results for lead time, forecasting parameters and cost 
ratio; however, the empirical findings did not agree with the simulation results 
for demand variance and demand parameters for most ARIMA processes 
(Objective 5 and 6). 
10.2.2. Conclusions from the Theoretical Part of the Thesis 
10.2.2.1. Upstream Demand Translation 
In the literature, we observe that the analysis of the Bullwhip Effect and the 
evaluation of sharing demand information have been achieved by deriving 
mathematical relationships between demand processes at downstream and upstream 
links in the supply chain. These mathematical relationships on upstream demand 
translation have been derived for an ARIMA (p, d, q) process in the case of MMSE 
forecasting methods. The demand translation for a MA (q) process for q ? L, where 
L is the lead time, was specifically discussed as it translates into a random process. 
For such a process, the traditional DIS approach to demand information sharing will 
not yield any benefits. By utilising the CDIS approach, supply chain links will 
benefit from demand information sharing even when the demand process is MA (q) 
(q ? L). 
In terms of non-optimal forecasting methods, the literature on upstream demand 
translation is limited to an AR (1) demand process. As one of the objectives of this 
research is to quantify the value of demand information sharing for non-optimal 
forecasting methods, generalisations to an ARMA (p, q) process became imperative. 
We analysed the upstream demand translation for an ARMA (p, q) process for non-
 optimal methods and showed that an ARMA (p, qR) will translate into ARMA (p, 
qR+n) when the SMA forecasting method is employed, where n is the number of 
terms in SMA. On the other hand, our analysis for the SES method showed that an 
ARMA (p, qR) method will approximately translate into an ARMA (p, t-1) process, 
where t is the current time period.  
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10.2.2.2. New Demand Information Sharing Approaches 
To forecast the future demand, an upstream member in the supply chain can utilise 
two strategies in terms of sharing demand information. The first strategy is not to 
share any downstream member?s demand information. In the literature, we find that 
two demand information sharing approaches have been discussed, namely No 
Information Sharing (NIS) and Downstream Demand Inference (DDI). On the other 
hand, Vendor Managed Inventory (VMI) and Demand Information Sharing (DIS) 
approaches have been proposed in the literature when the supply chain links adopt 
the strategy of sharing demand information.  
10.2.2.2.1. The No Information Sharing Strategy 
Lee et al (2000) discussed the NIS approach, where the downstream member does 
not share demand information with the upstream member. Although the demand at 
the downstream member has been realised, the upstream member is unaware of it 
and they forecast on the basis of the order they have received, assuming the noise 
term to be zero.  
We argue that, for an optimal forecasting method, the upstream member can estimate 
the noise term in its own demand, even when the downstream demand is not being 
shared. Based on this argument, we introduce a new approach, No Information 
Sharing ?Estimation (NIS-Est). In this new approach, the forecast of the upstream 
member is still based on the orders from the downstream member, but the noise term 
is estimated and not equated to zero. The estimation can be performed by two 
methods, namely Recursive Estimation and Estimation by Forecast Error (Box et al, 
1994, Chatfield, 2003). All other replenishment and ordering policies of the NIS-Est 
approach remain the same as in the NIS approach.  
The introduction of the NIS-Est approach provides a new base case for quantification 
of the value of demand information sharing. Various papers (e.g. Lee et al, 2000; 
Raghunathan, 2001; Yu et al, 2002) have quantified the value of information sharing 
by comparing the demand information sharing approaches with NIS. In this research, 
a new approach has been presented for the no information sharing strategy which is 
also used as a base case to quantify the value of demand information sharing.   
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Stage I of the simulation experiment showed that using the NIS-Est approach, 
compared to NIS, results in lower Mean Squared Forecast Error and Bullwhip Ratio 
and ultimately in lower inventory holdings and inventory cost. The reason for better 
performance of NIS-Est is the additional estimation process incorporated in this 
approach. In stages II and III of simulation and in the empirical analysis, the value of 
demand information is quantified based on comparison with NIS-Est. 
For non-optimal forecasting methods, there are no noise term estimation issues. 
Therefore, the NIS-Est approach is limited to optimal forecasting methods. 
10.2.2.2.2. The Information Sharing Strategy 
Supply chain links can utilise two approaches, VMI and DIS, in the case of a strategy 
of sharing demand information. The VMI and DIS approaches utilise the same 
forecasting process and the difference is only in the replenishment policy. This is the 
reason there is no difference in the forecast variance of the two approaches and the 
reason for their comparison in the literature is to discuss another means of 
replenishment policy (Yu et al, 2002). As the focus of this research is not on 
replenishment policies, we restrict the discussions to the DIS approach. 
The DIS approach for optimal forecasting methods, as presented in the literature, 
incorporates sharing the downstream demand information with the upstream 
member. The forecasting methodology in the DIS approach incorporates the use of 
the orders from the downstream member instead of their demand. As discussed in 
Chapter 5, the downstream member?s orders are more variable than their demand. 
Thus, the DIS approach can be improved by using an approach based on the 
incorporation of demand instead of the orders. This new approach is called the 
Centralised Demand Information Sharing (CDIS) approach. 
For non-optimal forecasting methods, there are no noise term estimation issues and 
therefore the DIS approach is limited to optimal forecasting methods. When the 
supply chain links adopt a Demand Information Sharing Strategy, they can utilise the 
CDIS approach. The manufacturer in such a case will be aware of the retailer?s 
demand and will use these in its forecast rather than the orders from the retailer. 
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The results of simulation and empirical analysis in this research show that CDIS 
results in lower forecast error (MSE and MAPE), Bullwhip Ratio, inventory holdings 
and inventory cost than the DIS approach. The reason for the better performance of 
CDIS is the use of the downstream demand, which are less variable. 
10.2.2.3. Downstream Demand Inference 
The literature on value of demand information sharing in supply chains can be 
broadly divided into two streams. While one stream of papers argues that the supply 
chain links benefit by sharing demand information, the second stream maintains the 
opposite. Papers in the second stream of research argue that the upstream member 
can infer the demand at the downstream member and claim that there is no value in 
sharing demand information. Thus, they maintain that supply chain links do not need 
a formal information sharing mechanism. 
In this research, we perform a detailed analysis of these research streams and argue 
that papers claiming no value of demand information sharing are based on strict 
supply chain model assumptions. These papers assume that supply chain links are 
aware of the demand process and parameters at the downstream links. In this 
research, it is argued that the supply chain links will need a formal information 
sharing mechanism to share the information about the process and parameters with 
the downstream member. It is difficult to reason why, in the presence of such a 
formal mechanism, the supply chain links will choose to share information on 
ARIMA processes and parameters but not on the demand itself. Thus, the 
assumptions of known process and parameters are quite unrealistic.  
We assume in this research that the supply chain links are unaware of the demand 
parameters and processes. Using this assumption, we analyse Downstream Demand 
Inference (DDI) for the three forecasting methods used in this research: MMSE, 
SMA and SES. We show that when supply chain links employ MMSE and SES 
methods, DDI is not possible. On the other hand, when the supply chain links employ 
SMA method, the demand at the downstream member can be inferred.   
We show in this research, with the help of simulation and empirical analysis, that 
forecasting using the downstream member?s demand results in reduced demand 
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variance, forecast error, and ultimately lower inventory holdings and inventory cost. 
A stream of research papers argue that the downstream member?s demand can be 
inferred with the help of mathematical relationships that exist between demand and 
orders. We have shown in this research, using more realistic assumptions, that 
inference of the downstream member?s demand, or DDI, is not possible for some 
forecasting methods. For accurate demand, the downstream member will have to 
share its demand with the upstream member via some formal information sharing 
mechanism.    
10.2.3. Conclusions from the Simulation Part of the Thesis 
Simulation methodology is adopted in this research to establish comparisons between 
different demand information sharing approaches. Four performance metrics are used 
for such comparisons, namely mean squared forecast error, Bullwhip Ratio, 
inventory holdings and inventory cost.  
In the following sub-sections, we summarise the most important findings from the 
simulation experiment. 
10.2.3.1. Establishment of Rules 
The following three rules were established based on the results of the simulation. 
These rules apply to the Bullwhip Effect region for all demand processes used in the 
simulation experiment. 
Rule 1: NIS-Est results in lower inventory cost than NIS for all demand processes 
investigated, except for pure moving average processes, in which case the inventory 
costs are the same. 
Rule 2: In all demand processes investigated, CDIS results in lower inventory costs 
compared to DIS 
Rule 3: In all demand processes investigated, CDIS results in lower inventory costs 
compared to NIS-Est 
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Establishment of the above rules shows that when the supply chain adopts a strategy 
of not sharing demand information, the NIS-Est approach performs better than the 
NIS approach. On the other hand, in the case of the strategy of sharing demand 
information, CDIS performs better than DIS. The overall results show that the CDIS 
approach performs better than all the other three approaches, averaged over all 
simulation replications. We discussed in sub-section 10.2.2.2 that one of the reasons 
of better performance of CDIS is the use of less variable demand in the forecast.  
In terms of non-optimal forecasting methods, we have only two demand information 
sharing approaches, NIS and CDIS. The simulation results show that CDIS always 
results in lower forecast error, Bullwhip Ratio, inventory holdings and inventory 
cost.  
Thus, the simulation results show that the CDIS approach performs the best in terms 
of the four performance metrics, irrespective of the forecasting method employed. 
10.2.3.2. Dependence of Value of CDIS on Model Assumptions 
The simulation experiment was designed as a staged relaxation of assumptions. In 
Stage I, we assumed that the supply chain members are aware of their demand 
process and parameters. In Stage II, we relaxed the assumption of known demand 
parameters and assumed that the supply chain members have to estimate the demand 
parameters. Finally, Stage III was developed closer to a real life situation by 
assuming that the supply chain members have to identify the demand process and 
estimate the parameters.  
The simulation results show that the value of CDIS increases as the model 
assumptions are relaxed. The value of CDIS is highest in Stage III, not so high in 
Stage II and is least in Stage I. One of the reasons for higher values of CDIS in more 
relaxed models is inherent in the identification and estimation issues in ARIMA 
modelling. For unknown demand parameters in Stage II, and then unknown 
processes in Stage III, it is quite possible for supply chain links to inaccurately 
identify and estimate the process and the parameters. The simulation results show 
that the value of CDIS increases when the supply chain links perform inaccurate 
identification and estimation. Thus, one of the reasons for higher values of demand 
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information sharing at higher stages is because of inaccurate identification and 
estimation with more relaxed supply chain model assumptions. 
10.2.3.3. Demand Process Dependent Value of CDIS 
In previous studies (see Chapter 5), only one ARIMA demand process was 
considered to calculate the value of demand information sharing. In the simulation 
experiment of this research, we explored the value of demand information sharing for 
nine demand processes. The simulation results showed that the value of demand 
information sharing depends on the nature of the process. Overall, it was found that 
the value of demand information sharing is higher for non-stationary demand 
processes than for stationary processes. In stationary processes, the results showed 
that the value is higher for pure autoregressive process compared to moving averages 
or mixed processes.  
It was found from the simulation experiment results that the value of CDIS is an 
increasing function of the number of autoregressive parameters and the degree of 
differencing for the ARIMA models investigated. 
10.2.3.4. Effect of Demand Parameters 
The effect of demand parameters on the value of CDIS was explored for the 
stationary processes. The reason for not exploring the effect for non-stationary 
processes is due to the absence of the discussion of the bullwhip region for the non-
 stationary processes in the literature. Mathematical exploration of bullwhip regions 
for non-stationary demand processes is thus an interesting area for further research.  
The simulation results showed that the value of CDIS is an increasing function of the 
autoregressive parameters. This result was shown earlier in Lee et al (2000) but only 
for an AR (1) demand process. None of the papers in the literature have explored the 
effect of the moving average parameters on the value of demand information sharing. 
The simulation results in this experiment show that the value of CDIS decreases with 
the increasing value of the moving average parameters. This was found in all the 
three stationary processes, MA (1), MA (2) and ARMA (1, 1), examined in this 
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research. This is an interesting finding and needs to be further explored for other 
demand processes.  
For non-optimal forecasting methods, we observed a different phenomenon. The 
value of CDIS decreases with the increasing value of the autoregressive parameter. 
Chen et al (2000b) found similar results when they mathematically explored the 
value of demand information sharing using an AR (1) demand process and the SES 
forecasting method. In terms of the moving average parameters, the simulation 
results show that there is no effect of the moving average parameter on the value of 
CDIS. 
10.2.3.5. Effect of Standard Deviation 
The effect of standard deviation in the noise of the demand on the value of demand 
information sharing was explored in the simulation experiment. The simulation 
results show that the value of CDIS increases with increasing standard deviation in 
the noise term of the demand. Thus, it was found from the simulation results that 
demands with more variability will result in higher savings from CDIS irrespective 
of the forecasting method or demand process. These results are consistent with 
findings of previous papers (e.g. Lee et al, 2000; Yu et al, 2002) showing that the 
value of CDIS is an increasing function of the value of standard deviation in the 
noise term of the demand. 
10.2.3.6. Effect of Lead Time 
Another factor that is explored in the simulation experiment is the lead time from the 
supplier to the manufacturer. The simulation results show that demand information 
sharing becomes more beneficial when the manufacturer?s lead time is large. This is 
quite logical, as the forecast for larger lead times will be more variable compared to 
the forecast for smaller lead times. This effect was observed in both optimal and non-
 optimal forecasting methods.  
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10.2.3.7. Effect of Cost Ratio 
Cost Ratio is the ratio between the penalty cost and the total cost (holding cost + 
penalty cost). Lee et al (2000), using an AR (1) demand process and an MMSE 
forecasting method, have shown mathematically that the percentage reduction in 
inventory holdings is an increasing function of this ratio. It was found that none of 
the papers in the literature have explored this effect with the help of simulation. 
Three different values of the ratio were assumed in the simulation experiment and the 
results show a similar effect as identified by Lee et al (2000), but for all the nine 
processes. The simulation results, thus, show that the higher the cost ratio, the higher 
will be the value of demand information sharing. 
The effect of cost ratio is then explored for non-stationary forecasting methods. The 
simulation results show quite an interesting pattern. For stationary ARIMA 
processes, the value of demand information sharing either remains constant or 
increases with the increasing value of the cost ratio. In contrast, for non-stationary 
demand processes, the value decreases with increasing cost ratio.  
10.2.3.8. Effect of Demand History 
Longer demand history in ARIMA methodology facilitates better identification and 
estimation of demand process and parameters (Box et al, 1994). A longer demand 
history leads to the upstream member having lesser benefits from demand 
information sharing. The simulation results also show similar effects. When we move 
from a history of 24 periods to 144 periods, the value of CDIS tends to decrease. 
In sub-section 10.2.3.2, we discussed that there is more value in CDIS when the 
manufacturer identifies and estimates parameters inaccurately. The simulation results 
on the effect of demand history reinforce the earlier results as higher values of CDIS 
are observed when the demand history is shorter. 
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10.2.3.9. Effect of Forecasting Parameters for Non-Optimal Methods 
The effect of the smoothing constant,? , for the Single Exponential Smoothing (SES) 
method and the effect of the number of terms used in the Simple Moving Averages 
method, n, is analysed in this research.  
Some papers (Lee et al, 2000; Raghunathan, 2001) show that the upstream member?s 
demand already contains information about the downstream member?s demand. 
Thus, when the upstream member forecasts using more demand history, they are 
actually utilising more downstream member?s demand. This results in lower benefits 
from sharing demand information. 
The simulation results agree with this earlier finding and show that, when there is 
more weighting on the historical terms, the value of CDIS decreases. It was found 
that lower values of ? in SES and higher values of n in SMA both result in lower 
benefits from demand information sharing. This is because both lower ? and higher 
?n? put more weighting on the demand history. 
10.2.4. Conclusions from the Empirical Part of the Thesis 
The theoretical and simulation analyses in this research have established 
comparisons among the four information sharing approaches. Empirical analysis is 
performed to validate the earlier theoretical and simulation findings. Two year 
weekly sales data of a European Grocery Retailer was cleaned to remove all series 
except non-seasonal fast moving products exhibiting the Bullwhip Effect. In total, 
1773 data series were found to fit this definition and these were analysed. The design 
of the empirical analysis follows the simulation design and both optimal and non-
 optimal forecasting methods were used. The information sharing approaches were 
compared using the same four performance metrics as in simulation: mean squared 
forecast error, Bullwhip Ratio, inventory holdings and inventory cost. In the 
empirical analysis, we also used the mean absolute percentage error (MAPE) in 
addition to MSE to measure the forecast error.  
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10.2.4.1. Performance of CDIS Compared with the Other Approaches 
The results of the empirical analysis validated the earlier findings that the CDIS 
approach results in the least inventory cost compared to the NIS-Est and DIS 
approaches. MSE and Bullwhip Ratio are two major factors that were identified in 
the simulation experiment to be associated with the better performance of the CDIS 
approach. This association was found to be strong in Stage I where the demand 
process and parameters are assumed to be known. This agrees with the mathematical 
results of Lee et al (2000) and Graves (1999) who, assuming known demand process 
and parameters, showed that an increase in percentage reduction of demand 
variability will lead to increase in percentage reduction of inventory cost. However, 
the staged relaxation of assumptions showed that the association was weaker for 
stages II and III. Thus, in stages II and III, an increase in percentage reduction in 
MSE or Bullwhip Ratio may not be transferred to the percentage reduction in 
inventory cost by the same magnitude. The empirical results were compared with the 
simulation results of Stage III which they broadly agreed with.  
The percentage savings in inventory cost reduction in the empirical analysis were not 
as high as those identified in the simulation experiment. The simulation results 
showed that we get a lower value of CDIS when the retailer inaccurately identifies 
and estimates the process and its parameters. The demand process in the simulation 
is generated in a controlled environment; real data may exhibit more complexities for 
example in terms of changes to parameters or to the model itself.  
10.2.4.2. Demand Process Dependent Value of CDIS 
The simulation results showed that, for the optimal forecasting methods, the value of 
CDIS depends on the nature of the process. These results were validated in the 
empirical analysis not only for the 6 demand processes used in simulation but for all 
12 demand processes analysed in the empirical analysis. 
10.2.4.3. Effect of Demand Parameters and Standard Deviation 
The simulation results showed that, for optimal forecasting methods, the value of 
CDIS increases with the increasing value of the autoregressive parameter. The 
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relationship is exactly the opposite when non-optimal forecasting methods are 
considered. In terms of the moving average parameter, simulation findings showed 
that the value of CDIS is a decreasing function of the moving average parameter for 
optimal forecasting methods. However, there is no effect of the moving average 
parameter on the value of CDIS for non-optimal forecasting methods. For the effect 
of standard deviation, it was found that the value of CDIS is an increasing function 
of the standard deviation in the demand. 
In the empirical analysis, it was found that, for processes where only one parameter 
needs estimation (AR (1) and MA (1)), the empirical results agree with the 
simulation findings. However, the empirical results do not agree with the simulation 
findings for the processes where two parameters need estimation (AR (2), MA (2) 
and ARMA (1, 1)).  
The effect of parameter estimation in the simulation experiment was analysed by 
keeping the standard deviation of the noise constant. One reason for difference in 
findings from the empirical analysis could be the dual effect of the demand 
parameters and the standard deviation. An analysis to investigate the dual effect and 
any non-linear effects should be based on larger data sets.   
10.2.4.4. Effect of Lead Time 
The empirical findings validated the simulation results that the value of CDIS is an 
increasing function of the lead time. Thus, there are more benefits of centralising the 
demand information when lead times are longer. This is quite logical, as the forecast 
for shorter lead times would be less variable than longer lead times, thus making 
information sharing less critical. 
10.2.4.5. Effect of Cost Ratio 
The results from the empirical analysis showed that the value of CDIS is an 
increasing function of the cost ratio for stationary processes. However, for non-
 stationary processes, the value of CDIS decreases with the increasing value of the 
cost ratio. Similar results were found in the simulation experiment and thus the 
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empirical findings agree with the simulation results in terms of the effect of cost ratio 
on the value of CDIS. 
10.2.4.6. Effect of Forecasting Parameters for Non-Optimal Methods 
For SMA and SES, the empirical results show that when the manufacturer utilises 
more history in the forecasting method, the value of CDIS goes down. This is 
because the order from the retailer already contains some information about the 
retailer?s demand. When the manufacturer is utilising more history in its forecast, it 
is already using more demand information, resulting in a lower value of CDIS. Thus, 
in SMA, high values of the moving average term ?n? and in SES, lower values of the 
smoothing constant, ? , will yield lower values of CDIS, as in both cases more 
history is being used in the forecast. These results are consistent with the findings 
from the simulation experiment. 
10.2.5. Summary of Conclusions of the thesis 
This thesis critically analyses the demand information sharing approaches and supply 
chain models presented in the literature. A stream of research papers propose the 
Downstream Demand Information (DDI) approach and claim that using the DDI 
approach will result in no value of demand information sharing. We argue in this 
thesis that the model assumptions made in these papers are clearly unrealistic. All 
models must make assumptions, but it is desirable that they are robust to deviation 
from these assumptions. It has been shown in this thesis that a slight change to the 
assumptions in the supply chain model of these papers leads to the opposite 
conclusion: DDI is not feasible. The remaining assumptions may also be criticised 
for their lack of fidelity to real world assumptions. Further relaxation would not 
change the conclusion that DDI is not feasible.  
This thesis has progressed on the basis of simulation, using both theoretically 
generated and empirical data. The challenge remains to establish more general 
theory, with less restrictive assumptions. This is further discussed in section 10.4. 
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10.3. Managerial Implications 
Many companies are embarking on strategies to share consumer sales data among 
supply chain members. This is a move away from being ?customer centric? towards 
being ?consumer centric?. Previous case studies of such supply chains show how this 
increases forecasting accuracy, thus resulting in lower inventory costs and increased 
revenues. Reduction of inventory levels up to 50% (Disney and Towill, 2002) and 
reduction in inventory costs up to 40% (Ireland and Crum, 2006) have been reported. 
The high savings in cost justifies the implementation of systems and structures to 
support sharing of information. Mentzer (2001) argues that, although a great deal of 
discussion takes place on supply chain collaborations, the discussion on specifics on 
how it should be done is missing. This research analyses how supply chain 
collaborations should be conducted through demand information sharing.   
Four demand information sharing approaches have been compared in this research: 
NIS and NIS-Est approaches when the supply chain strategy is not to share demand 
information, and DIS and CDIS for a demand information sharing strategy. The 
theoretical and empirical analyses in this research show that sharing demand 
information results in lower forecast error, Bullwhip Ratio, inventory holdings and 
inventory cost for the upstream member. On comparing the two approaches for 
demand information sharing strategy, DIS and CDIS, the analysis shows that the 
CDIS approach performs best in terms of the four performance metrics.  
The above results imply that, in order to achieve reduced supply chain costs, 
organisations should share the consumer demand with their upstream members and 
should consider the CDIS approach as an alternative to the DIS approach. It is 
especially beneficial to share information, using CDIS, in supply chains with long 
lead-times to the upstream member, and which have high stock-out penalty costs. 
Since the magnitude of savings in real applications does not necessarily reflect those 
found from simulations on theoretically generated data, if organisations wish to 
quantify the benefit of CDIS, they should simulate its effect using their own supply 
chain demand data. The need for simulation is particularly acute for supply chains 
with three or more levels, or those with multiple entities at one level, as these were 
not investigated in the thesis. If simulations on real demand data confirm the benefit 
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of CDIS, and the approach is to be implemented, further detailed simulations on real 
data are needed for seasonal items or those for which the Anti-Bullwhip Effect may 
prevail, as these were not analysed in the simulation and empirical parts of the thesis 
The foundation of supply chain collaboration is information sharing (Lee et al, 
2000); decisions on collaborations are strongly based on what information should be 
shared. In the CDIS approach, the manufacturer produces their forecast by not only 
utilising the demand but also the forecast of the retailer. Thus, when organisations 
have in place a formal information sharing mechanism with their downstream 
members, they can share both the demand and the forecast and utilise both in their 
forecasting process. CDIS is operationally a better method as the forecasting process 
takes place once only, either at the retailer or the manufacturer. In fact, the forecast 
can be produced collaboratively by both the manufacturer and the retailer. Both 
members can bring in their expertise in the process and produce a better forecast 
using the actual consumer demand. Empirical research into 54 manufacturers in the 
Food and Consumer Package Goods (F&CPG) industry have shown that the highest 
profit margin companies are not simply exchanging information but using this as a 
vehicle for supply chain collaborations (Kulp et al, 2004). Finally, CDIS encourages 
companies to pay more attention to consumer demand, which may contribute to a 
more consumer-centric approach. 
This research focuses on the benefits of demand information sharing for the 
manufacturer or an upstream member in a supply chain. Previous studies have shown 
that when two supply chain links share information on the demand of the 
downstream member, it is the upstream member who gets the direct benefits from 
this information sharing (Simchi-Levi and Zhao, 2003; Kulp et al, 2004). These 
manufacturer benefits have been quantified in this research. However, various 
authors have suggested that, in return, the retailer can negotiate indirect benefits from 
the manufacturer in terms of cost and lead time reduction (Lee et al, 2000), VMI 
programs (Yu et al, 2002) or by getting subsidies for sharing information 
(Raghunathan, 2003). This issue has not been investigated in this thesis. 
Nevertheless, if the issue is resolved, both parties will benefit from this demand 
information sharing strategy.  
M. Ali, 2008, Chapter 10  211 
 
Recently, a steady stream of research papers has argued that upstream members can 
extract the sales data from the history of orders they receives from retailers. It this is 
possible, no formal information sharing mechanism would be required to share sales 
data. In this research, adopting more realistic assumptions, we show that an upstream 
link in the supply chain cannot infer the consumer?s sales from its order history if the 
supply chain links utilise SES or MMSE forecasting methods. In the case of SMA 
and ARMA demand, the demand information can be extracted by the upstream 
member if the number of historical terms used in the SMA forecast is known to the 
upstream member. The business forecasting approach most organisations take is 
based on forecasting various demand forecasting units which may be stock keeping 
units (SKUs) or an aggregate of various SKUs (Holmstrom, 1998). The historical 
data for each of these demand forecasting units is analysed to determine the average, 
trend and seasonal demand components (e.g. SAP, 2004) and then the appropriate 
forecasting method is selected for each of these demand forecasting units based on 
the historical data. Thus, when a retailer places an order on the manufacturer of 
various products, the order generation process may involve different forecasting 
methods for different products e.g. SMA for some products and SES or MMSE for 
others. In order to know the retailer?s demand, the manufacturer, in the case of 
MMSE and SES, will have to make use of some formal information sharing 
mechanism. On the other hand, if the retailer has employed SMA for some products, 
the demand can be mathematically calculated. But if the manufacturer already has in 
place a formal information sharing mechanism (e.g. an integrated ERP solution) for 
information sharing, there is no need for them to use another mechanism 
(mathematical calculation) for products forecasted with the SMA method. They can 
simply use the information system to find the demand of such products at the retailer. 
Hence, we conclude that companies have to resort to formal information sharing 
systems to extract the consumer?s sales data and reduce the Bullwhip Effect.  
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10.4. Limitations and Further Research 
In this section, suggestions for future research are discussed from theoretical, 
simulation and empirical perspectives.  
In Chapter 2, we discussed a stream of research that focuses on evaluating the causes 
of the Bullwhip Effect. The literature review reflects four major causes, which are 
Demand Signal Processing, Rationing and Shortage Gaming, Batch Ordering and 
Price Fluctuations. This research analyses Demand Signal Processing in isolation. An 
avenue for further research would be to examine the interaction between these four 
causes of the Bullwhip Effect.  
One major limitation of the supply chain model in this thesis is the assumption of an 
Order up to (OUT) inventory policy. Although we have provided empirical evidence 
of usage of the OUT policy, it is obvious that companies resort to various different 
inventory policies. A major area of further research is to investigate the effect of 
inventory policies on the value of demand information sharing.  
The comparison of demand information sharing in this research is based on the 
assumption of a two stage supply chain with one entity at each stage. An interesting 
area of research would be to check whether the results are valid in more complex 
supply chain systems such as a multi-stage supply chain with more than one entity at 
each stage.  
Another limitation of this research is the assumption of non-seasonal demand. In 
practice, demand for certain products show seasonal variations. The time series of 
demand for such products exhibit a seasonal periodic component which repeats after 
every s observation (Chatfield, 2003). In order to generalise ARIMA demand models 
to deal with seasonality, Box et al (1994) have derived seasonal ARIMA or 
SARIMA models. Another interesting avenue for further research would be to 
analyse upstream demand translation for SARIMA models, and to assess the CDIS 
approach for such models.  
One of the limitations of the research is that we have limited the investigation of the 
effect of demand parameters on the value of CDIS to stationary ARIMA processes. 
The reason for this limitation is that the mathematical analysis of the Bullwhip region 
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in the literature is limited to stationary ARIMA processes. Thus, one important 
avenue for further research is to generalise the mathematical analysis of the Bullwhip 
region to all ARIMA (p, d, q) processes. 
As this research focuses on reduction in the demand variance amplification, the 
choice of parameters in the simulation experiment is limited to regions where the 
Bullwhip Effect takes place. Similarly, in the empirical analysis, all series that 
resulted in decrease in demand variability were ignored. However, in real life supply 
chains, a decrease in demand variability or Anti-Bullwhip Effect may occur (Li et al, 
2005). Thus, another avenue for further research would be to investigate the effect of 
demand information sharing when Anti-Bullwhip Effect occurs in supply chains. 
In chapters 3 and 7, we discussed the complexities of mathematically comparing the 
four demand information sharing approaches. Thus the performance of the demand 
information sharing approaches has been compared only in simulation and empirical 
analysis. Another future direction is to analyse the four approaches and compare the 
performance metrics mathematically. For example in Chapter 8, we observed that the 
effect of cost ratio is different for stationary and non-stationary processes. Thus, an 
interesting avenue would be to model the effect of cost ratio on the value of CDIS 
mathematically. This will also help in better understanding the reasons for better 
performance of the CDIS approach.  
The survey of forecast practice showed that most practitioners use non-optimal 
forecasting methods. Based on this survey, we examined two non-optimal 
forecasting methods, SMA and SES. As the survey revealed high usage of some 
other non-optimal forecasting methods as well, the value of CDIS can further be 
quantified by examining other non-optimal forecasting methods. The upstream 
translation of demand in the case of non-optimal forecasting methods have been 
generalised to an ARMA (p, q) demand process. Further research is required to 
generalise the upstream demand translation to ARIMA (p, d, q) demand processes.  
In sub-section 7.3.7, the series splitting rules were presented and it was discussed 
that the process identification and parameter estimation is performed on a one-time 
basis from the data on the first half of the series while the second half is used for 
performance measurement. We have also discussed in Chapter 9 that some series in 
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the empirical data may be subject to parameter and model changes. An avenue for 
further research could be to update the parameter and model at every time period 
during the performance measurement part. 
The existing supply chain models in the literature are based on various strict 
assumptions. Some severe limitations such as known demand process and known 
demand parameters have been broken in this research. The Centralised Demand 
Information Sharing (CDIS) approach, as presented in this thesis, results in reduced 
inventory costs when the demand is non-seasonal for a two stage supply chain 
utilising an OUT inventory policy. We now need to assess whether the CDIS 
approach results in cost savings for supply chain models with more relaxed 
assumptions.  
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Appendix 4A: Proof of Equations 4-9 ? 4-15 
In this Appendix, for reasons of simplicity, we replace R? with? . 
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n n 4
 4 1 3 2 2 3 1
 5 2 3 3 2 4 1
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 Now as in our simulation , =0 for n > 3, the equations for  onwards are reduced to 
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Appendix 4B: Upstream Propagation for SMA 
Suppose the demand ( td ) at the retailer follows an ARMA (p, q) process: 
1 1 2 2 1 1 2 2..... .....t t t p t p t t t q t qd d d d? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ?= + + + + + ? ? ? ?                 (4B-1) 
and the forecasting method used by the retailer is the Simple Moving Average 
(SMA) of the n most recent demands given by: 
?
 n
 t i
 t
 i
 d
 D
 n
 ?
 ?
 +
 =
 =?11
 0
  
The lead time demand forecast, ? LtD , is given by: 
?
 n
 L t i
 t
 i
 d
 D L
 n
 ?
 ?
 =
 = ?1
 0
  
Now, the order-up-to level is calculated by: 
? L
 t tS D z ??= +
 2  
where z is the safety factor and 2?? is the variance of the noise in the lead time 
demand. 
The order from the retailer to the manufacturer can be calculated by summing the 
demand at the retailer plus any change in the order-up-to level in the current period. 
t t t tY S S d?= ? +1  
? ?L L
 t t t tY D z D z d? ?? ??= + ? ? +
 2 2
 1  
( )t t t n
 L L
 Y d d
 n n ?
 = + ?1               (4B-2) 
Substituting the expression for dt from equation 4B-1 into equation 4B-2, 
M. Ali, 2008, Appendix 4B  232 
 
( )
 ( )
 ... ...
 ... ...
 t t t p t p t t t q t q
 t n t n p t n p t n t n t n q t n q
 L
 Y d d d
 n
 L
 d d d
 n
 ? ? ? ? ? ? ? ? ? ? ?
 ? ? ? ? ? ? ? ? ? ? ?
 ? ? ? ? ? ?
 ? ? ? ? ? ? ? ? ? ? ? ? ?
 ? ?
 = + + + + + + ? ? ? ?? ?? ?
 ? ?
 ? + + + + + ? ? ? ?? ?? ?
 1 1 2 2 1 1 2 2
 1 1 2 2 1 1 2 2
 1
  
( )
 ( )
 ...
 ...
 ...
 t t t n
 p t p p t n p
 t t t q t q
 t n t n t n q t q n
 L L
 Y d d
 n n
 L L
 d d
 n n
 L
 n
 L
 n
 ? ? ?
 ? ?
 ? ? ? ? ? ? ?
 ? ? ? ? ? ? ?
 ? ? ?
 ? ? ?
 ? ? ?
 ? ? ? ? ? ? ?
 ? ?? ? ? ?
 = + + ? +? ? ? ?? ?? ? ? ?? ?
 ? ?? ? ? ?
 + + ? +? ? ? ?? ?? ? ? ?? ?
 ? ?
 + ? ? ? ?? ?? ?
 ? ?
 ? ? ? ? ?? ?? ?
 1 1 1 1
 1 1 2 2
 1 1 2 2
 1
 1
 1  
Recalling equation (4B-2) and letting 1 t t
 L
 a
 n
 ?
 ? ?
 + =? ?? ? the equation for the order to the 
manufacturer becomes: 
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               (4B-3) 
which is an ARMA (p, n+q) process. 
Therefore, if the demand at the retailer follows an ARMA (p, q) process, and the 
retailer uses the Simple Moving Average of the n most recent observations as the 
forecast, the order generated for the manufacturer will follow an ARMA (p, n+q) 
process. 
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Appendix 4C: Upstream Propagation for SES 
Suppose the demand at the retailer follows an ARMA (p, q) process given by: 
1 1 2 2 1 1 2 2..... .....t t t p t p t t t q t qd d d d? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ?= + + + + + ? ? ? ?                           
and the forecasting method used by the retailer is Single Exponential Smoothing 
(SES) given by: 
( )? ?t t tF d F? ?+ = + ?1 1 . 
Assuming F1=d0 and solving the above equation recursively we get: 
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Calculating the lead time forecast 1?
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Now, the order-up-to level is calculated by: 
? L
 t tS F z ??+= +
 2
 1  
where z is the safety factor and 2?? is the variance of the noise in the lead-time 
demand. 
The order from the retailer to the manufacturer can be calculated by summing the 
demand at the retailer plus any change in the order-up-to level in the current period. 
t t t tY S S d?= ? +1  
? ?L L
 t t t tY F z F z d? ?? ?+= + ? ? +
 2 2
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 t
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The order from the retailer to the manufacturer is: 
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Re-arranging the terms, we get: 
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We note that using a similar argument to Alwan et al (2003), and substituting ARMA 
(p, q) expressions for dt, dt-1,?, d1 in the above, and summarising terms that equate to 
, ,...,t t p t pY Y Y? ? ?? ? ?1 1 2 2  we get: 
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which is an ARMA (p, t-1), plus another term, namely: 
[ ( ) ( ) ( ) ]
 p
 t t i
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 2
 1 1  
Therefore, if the demand at the retailer follows an ARMA (p, q) process, and the 
retailer uses SES to forecast, the order generated for the manufacturer would follow 
ARMA (p, t-1) + other term. 
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Appendix 6A: Proof of Rule for Downstream Demand 
Calculation 
Suppose a manufacturer realises the following order from the retailer identified as an 
ARIMA (p, d, qM) demand process. 
( ) ( ) ( )? ?? =d Mt tB Y B a  
where 
( ) ...
 ( ) ...
 2
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 ? ? ? ?
 ? ? ? ?
 = ? ? ? ?
 = ? ? ? ?
 M
 M
 p
 p
 M M M M q
 q
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1 2, ,..., p? ? ? are the autoregressive parameters chosen to ensure stationarity. 
Mqttt
 aaa
 ?
 ?
 ,...,, 1 are the noise terms in the manufacturer?s demand and 
1 2, ,...,? ? ? MM M M q are the moving average parameters in the manufacturer?s demand 
chosen to ensure invertibility. 
If qR > qM, the order at the retailer would be a unique ARIMA (p, d, qM + L) model: 
( ) ( ) ( )? ? ?? =d Rt tB d B  
where 
( ) ...
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where 1, ,...,t t t pd d d? ?  are the observed demands at time period t, t-1,?, t-p, 
1 ( )
 , ,...,? ? ?
 ?
 ? +Mt t t q L
  are the noise terms. The noise terms are independent and 
identically distributed with mean zero and variance ??
 2 . 
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In order to calculate the demand at the retailer, the manufacturer would need to 
calculate the following moving average terms 1 2, ,...,? ? ? +M
 R R R
 q L
  and the following 
noise terms 1 ( ), ,...,? ? ?? ? +Mt t t q L .  
Zhang (2004b) has shown that for any ARMA (p, q) demand process, when qR > qM, 
the moving average terms at the retailer ( R? ) can be calculated by using the 
following relationship. 
? ?+ = 0R ML s sK                 6A-1 
where s = 1, 2, 3, ? , qM + L, L is the lead time from the supplier to the 
manufacturer and 0K is the amount with which the moving average term is amplified  
as defined in Chapter 4.  
The above relationship can easily be shown to exist for an ARIMA (p, d, q) using the 
moving average parameter equations in Gilbert (2005: 307). Looking at these 
equations it is obvious that the manufacturer has qM equations. However, the 
manufacturer has qM + L unknown moving average terms. As the manufacturer has 
to calculate qM + L unknowns but only has qM equations, they are unable to 
accurately calculate all the moving average parameter terms. Using the same 
argument, we can show that the manufacturer would be unable to accurately 
calculate all the noise terms at the retailer. Thus, in this case the manufacturer is 
unable to calculate the demand at the retailer.  
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Appendix 8A: Results for Optimal Method: Stage I 
Mean Squared Error 
Percentage Reduction by 
using CDIS compared to 
Demand Process 
NIS DIS 
NIS-
 Est CDIS  NIS  DIS NIS-Est 
AR(1) 
971 500 488 441 54.6% 11.8% 9.8% 
AR(2) 
451 297 306 251 44.4% 15.5% 18.0% 
ARMA(1,1) 
433 443 451 414 4.3% 6.5% 8.0% 
MA(1) 
109 109 109 100 8.0% 8.0% 7.1% 
MA(2) 
234 234 234 217 7.1% 7.1% 7.1% 
ARIMA(0,1,1) 
2144 1730 1949 1341 37.5% 22.5% 31.2% 
ARIMA(1,1,1) 
7651 4238 4621 3170 58.6% 25.2% 31.4% 
ARIMA(1,1,2) 
3469 1834 2347 1427 58.9% 22.2% 39.2% 
ARIMA(0,2,2) 
10177 7503 9133 3562 65.0% 52.7% 61.0% 
 
 
Bullwhip Ratio 
Percentage Reduction by 
using CDIS compared to 
Demand Process 
NIS DIS 
NIS-
 Est CDIS  NIS  DIS NIS-Est 
AR(1) 
3.1 2.8 2.8 2.5 18.7% 9.5% 11.5% 
AR(2) 
2.3 2.0 2.0 1.8 21.5% 9.8% 7.8% 
ARMA(1,1) 
2.1 2.1 2.1 2.0 3.8% 3.8% 3.8% 
MA(1) 
1.2 1.2 1.2 1.1 9.4% 9.4% 9.4% 
MA(2) 
2.8 2.8 2.8 2.5 9.8% 9.8% 9.8% 
ARIMA(0,1,1) 
4.9 3.6 4.1 2.9 42.0% 21.6% 29.5% 
ARIMA(1,1,1) 
5.4 2.3 3.4 1.9 65.0% 18.7% 44.2% 
ARIMA(1,1,2) 
5.7 3.2 4.2 2.6 54.0% 18.0% 37.5% 
ARIMA(0,2,2) 
5.9 2.1 2.5 1.3 78.0% 39.3% 48.5% 
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Inventory Holdings 
Percentage Reduction by 
using CDIS compared to 
Demand Process 
NIS DIS 
NIS-
 Est CDIS  NIS  DIS NIS-Est 
AR(1) 
1072 724 736 665 38.0% 8.2% 9.6% 
AR(2) 
3296 1428 2281 1095 66.8% 23.3% 52.0% 
ARMA(1,1) 
996 1813 1680 524 47.4% 71.1% 68.8% 
MA(1) 
478 478 478 466 2.6% 2.6% 2.6% 
MA(2) 
422 422 422 386 8.4% 8.4% 8.4% 
ARIMA(0,1,1) 
24169 3521 2921 1542 93.6% 56.2% 47.2% 
ARIMA(1,1,1) 
218840 27264 40900 16413 92.5% 39.8% 59.9% 
ARIMA(1,1,2) 
100814 17641 32983 11765 88.3% 33.3% 64.3% 
ARIMA(0,2,2) 
116069 27480 29906 16598    85.7%   39.6%   44.5% 
 
 
Inventory Cost 
Percentage Reduction by 
using CDIS compared to 
Demand Process 
NIS DIS 
NIS-
 Est CDIS  NIS  DIS NIS-Est 
AR(1) 
1087 798 827 738 32.1% 7.6% 10.8% 
AR(2) 
3138 1493 2234 1318 58.0% 11.7% 41.0% 
ARMA(1,1) 
853 610 606 580 32.0% 4.9% 4.4% 
MA(1) 
537 537 537 525 2.3% 2.3% 2.3% 
MA(2) 
488 488 488 451 7.5% 7.5% 7.5% 
ARIMA(0,1,1) 
6853 2326 3515 1912 72.1% 17.8% 45.6% 
ARIMA(1,1,1) 
112299 25508 88971 18417 83.6% 27.8% 59.9% 
ARIMA(1,1,2) 
115527 16168 30696 12708 89.0% 21.4% 58.6% 
ARIMA(0,2,2) 
141698 34401 42208 17854 87.4% 48.1% 57.7% 
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Appendix 8B: Results for Optimal Method: Stage II 
Mean Squared Error 
Percentage Reduction 
by using CDIS 
compared to Demand Process 
DIS NIS-Est CDIS  DIS NIS-Est 
AR(1) 
964 1486 706 26.8% 52.5% 
AR(2) 
621 520 365.3 41.2% 29.8% 
ARMA(1,1) 
598 854 403.2 32.6% 52.8% 
MA(1) 
226 420 152.5 32.5% 63.7% 
MA(2) 
380 423 256.3 32.5% 39.4% 
ARIMA(0,1,1) 
1852 2187 1389 25.0% 36.5% 
ARIMA(1,1,1) 
6911 8882 3020 56.3% 66.0% 
ARIMA(1,1,2) 
4593 9171 2898 36.9% 68.4% 
ARIMA(0,2,2) 
7098 12642 3464 51.2% 72.6% 
 
Bullwhip Ratio 
Percentage Reduction 
by using CDIS 
compared to Demand Process 
DIS NIS-Est CDIS  DIS NIS-Est 
AR(1) 
3.9 7.2 2.5 35.6% 65.3% 
AR(2) 
2.6 3.0 1.9 25.8% 36.5% 
ARMA(1,1) 
3.3 3.8 2.2 33.3% 42.5% 
MA(1) 
2.0 4.3 1.6 19.5% 62.5% 
MA(2) 
2.8 3.2 1.5 45.8% 52.8% 
ARIMA(0,1,1) 
3.9 3.9 2.9 25.9% 25.9% 
ARIMA(1,1,1) 
4.9 3.0 1.8 63.2% 39.6% 
ARIMA(1,1,2) 
5.1 10.5 3.6 29.8% 65.8% 
ARIMA(0,2,2) 
6.1 12.0 2.9 52.6% 75.8% 
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Inventory Holdings 
Percentage Reduction 
by using CDIS 
compared to Demand Process 
DIS NIS-Est CDIS  DIS NIS-Est 
AR(1) 
1338 2157 906 32.3% 58.0% 
AR(2) 
2559 4891 1213 52.6% 75.2% 
ARMA(1,1) 
970 1373 652 32.8% 52.5% 
MA(1) 
719 1544 582 19.1% 62.3% 
MA(2) 
1564 1945 807 48.4% 58.5% 
ARIMA(0,1,1) 
4948 7841 3152 36.3% 59.8% 
ARIMA(1,1,1) 
63191 57094 19526 69.1% 65.8% 
ARIMA(1,1,2) 
22519 86364 15200 32.5% 82.4% 
ARIMA(0,2,2) 
41700 121282 17222 58.7% 85.8% 
 
Inventory Cost 
Percentage 
Reduction by using 
CDIS compared to 
Demand Process 
DIS 
NIS-
 Est CDIS  DIS NIS-Est 
AR(1) 
1327 2662 985 25.8% 63.0% 
AR(2) 
2502 5406 1546 38.2% 71.4% 
ARMA(1,1) 
952 1273 652 31.5% 48.8% 
MA(1) 
878 1705 689 21.5% 59.6% 
MA(2) 
1382 1760 887 35.8% 49.6% 
ARIMA(0,1,1) 
4190 6086 3256 22.3% 46.5% 
ARIMA(1,1,1) 
48105 74061 20589 57.2% 72.2% 
ARIMA(1,1,2) 
23310 59551 15245 34.6% 74.4% 
ARIMA(0,2,2) 
39016 105301 19586 49.8% 81.4% 
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Appendix 8C: Results for Optimal Method: Stage III 
Mean Squared Error 
Percentage Reduction 
by using CDIS 
compared to Demand Process 
DIS NIS-Est CDIS  DIS NIS-Est 
AR(1) 
1293 4488 736 43.1% 83.6% 
AR(2) 
929 12888 425.3 54.2% 96.7% 
ARMA(1,1) 
1081 1961 474.5 56.1% 75.8% 
MA(1) 
559 855 325.6 41.8% 61.9% 
MA(2) 
473 1436 260 45.0% 81.9% 
ARIMA(0,1,1) 
3930 4115 1568 60.1% 61.9% 
ARIMA(1,1,1) 
8059 13455 3256 59.6% 75.8% 
ARIMA(1,1,2) 
6607 6556 3363 49.1% 48.7% 
ARIMA(0,2,2) 
9673 10573 5794 40.1% 45.2% 
 
Bullwhip Ratio 
Percentage Reduction 
by using CDIS 
compared to Demand Process 
DIS NIS-Est CDIS  DIS NIS-Est 
AR(1) 
5.9 11.7 3.5 41.1% 70.0% 
AR(2) 
5.7 8.4 2.9 49.1% 65.6% 
ARMA(1,1) 
6.3 8.4 3.1 51.1% 62.9% 
MA(1) 
3.3 4.1 2.0 39.4% 51.2% 
MA(2) 
2.4 5.3 1.5 38.1% 71.9% 
ARIMA(0,1,1) 
8.7 6.1 3.6 58.8% 41.2% 
ARIMA(1,1,1) 
11.3 12.6 4.2 64.1% 65.0% 
ARIMA(1,1,2) 
11.4 13.1 4.5 60.4% 65.7% 
ARIMA(0,2,2) 
7.8 10.7 4.5 42.1% 58.0% 
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Inventory Holdings 
Percentage Reduction 
by using CDIS 
compared to Demand Process 
DIS NIS-Est CDIS  DIS NIS-Est 
AR(1) 
1987 3784 1192 40.0% 68.5% 
AR(2) 
5388 10927 3125 42.0% 71.4% 
ARMA(1,1) 
1714 2033 974 43.2% 52.1% 
MA(1) 
791 1336 465 41.2% 65.2% 
MA(2) 
1359 2514 875 35.6% 65.2% 
ARIMA(0,1,1) 
5487 8949 3177 42.1% 64.5% 
ARIMA(1,1,1) 
61520 105034 21532 65.0% 79.5% 
ARIMA(1,1,2) 
31246 76225 15245 51.2% 80.0% 
ARIMA(0,2,2) 
76199 132876 32156 57.8% 75.8% 
 
Inventory Cost 
Percentage Reduction 
by using CDIS 
compared to Demand Process 
DIS NIS-Est CDIS  DIS NIS-Est 
AR(1) 
2089 4939 1383 33.8% 72.0% 
AR(2) 
5519 12719 3256 41.0% 74.4% 
ARMA(1,1) 
1856 2617 1091 41.2% 58.3% 
MA(1) 
1008 1418 655 35.0% 53.8% 
MA(2) 
1270 2443 904 28.8% 63.0% 
ARIMA(0,1,1) 
6870 10221 3751 45.4% 63.3% 
ARIMA(1,1,1) 
57567 142095 22451 61.0% 84.2% 
ARIMA(1,1,2) 
37568 134173 17845 52.5% 86.7% 
ARIMA(0,2,2) 
103521 255759 43479 58.0% 83.0% 
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Appendix 8D: Results for SMA 
Mean Squared Error Demand Process 
NIS CDIS 
Percentage Reduction 
by using CDIS 
compared to NIS 
AR(1) 
1759 603 65.7% 
AR(2) 
1566 543 65.3% 
ARMA(1,1) 
2239 1041 53.5% 
MA(1) 
995 377 62.2% 
MA(2) 
989 289 70.8% 
ARIMA(0,1,1) 
1042 500 52.0% 
ARIMA(1,1,1) 
1138 443 61.1% 
ARIMA(1,1,2) 
1650 591 64.2% 
ARIMA(0,2,2) 
2895 1242 57.1% 
 
 
Bullwhip Ratio Demand Process 
NIS CDIS 
Percentage Reduction 
by using CDIS 
compared to NIS 
AR(1) 
8.7 3.9 55.2% 
AR(2) 
8.4 3.8 54.2% 
ARMA(1,1) 
8.3 5.0 39.5% 
MA(1) 
8.7 3.0 65.3% 
MA(2) 
8.8 3.2 63.6% 
ARIMA(0,1,1) 
8.1 5.3 34.8% 
ARIMA(1,1,1) 
8.6 4.0 53.6% 
ARIMA(1,1,2) 
8.5 3.9 54.0% 
ARIMA(0,2,2) 
8.8 5.1 42.1% 
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Inventory Holdings Demand Process 
NIS CDIS 
Percentage Reduction 
by using CDIS 
compared to NIS 
AR(1) 
6587 1935 70.6% 
AR(2) 
5779 1830 68.3% 
ARMA(1,1) 
6785 2877 57.6% 
MA(1) 
4875 1261 74.1% 
MA(2) 
4797 1254 73.9% 
ARIMA(0,1,1) 
7525 3612 52.0% 
ARIMA(1,1,1) 
5035 1959 61.1% 
ARIMA(1,1,2) 
6031 2159 64.2% 
ARIMA(0,2,2) 
9235 3962 57.1% 
 
 
Inventory Cost Demand Process 
NIS CDIS 
Percentage Reduction 
by using CDIS 
compared to NIS 
AR(1) 
6588 3531 46.4% 
AR(2) 
5780 3185 44.9% 
ARMA(1,1) 
6790 4801 29.3% 
MA(1) 
4875 2048 58.0% 
MA(2) 
4797 2039 57.5% 
ARIMA(0,1,1) 
8956 6887 23.1% 
ARIMA(1,1,1) 
5035 2633 47.7% 
ARIMA(1,1,2) 
6033 3312 45.1% 
ARIMA(0,2,2) 
9584 6546 31.7% 
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Appendix 8E: Results for SES 
Mean Squared Error Demand Process 
NIS CDIS 
Percentage Reduction 
by using CDIS 
compared to NIS 
AR(1) 
1548 441 71.5% 
AR(2) 
1444 380 73.7% 
ARMA(1,1) 
1960 745 62.0% 
MA(1) 
1033 345 66.6% 
MA(2) 
953 278 70.8% 
ARIMA(0,1,1) 
854 301 64.8% 
ARIMA(1,1,1) 
1091 306 72.0% 
ARIMA(1,1,2) 
903 223 75.3% 
ARIMA(0,2,2) 
2895 1242 76.6% 
 
 
Bullwhip Ratio Demand Process 
NIS CDIS 
Percentage Reduction 
by using CDIS 
compared to NIS 
AR(1) 
9.7 2.9 70.6% 
AR(2) 
9.6 3.6 62.1% 
ARMA(1,1) 
9.1 2.5 72.1% 
MA(1) 
12.4 4.4 64.5% 
MA(2) 
12.6 3.0 76.2% 
ARIMA(0,1,1) 
11.8 4.8 59.4% 
ARIMA(1,1,1) 
9.2 2.0 78.0% 
ARIMA(1,1,2) 
12.8 4.6 63.8% 
ARIMA(0,2,2) 
10.5 4.0 62.2% 
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Inventory Holdings Demand Process 
NIS CDIS 
Percentage Reduction 
by using CDIS 
compared to NIS 
AR(1) 
7110 2169 69.5% 
AR(2) 
7986 3280 58.9% 
ARMA(1,1) 
7954 3261 59.0% 
MA(1) 
7865 1840 76.6% 
MA(2) 
6819 1282 81.2% 
ARIMA(0,1,1) 
10425 3617 65.3% 
ARIMA(1,1,1) 
15422 4657 69.8% 
ARIMA(1,1,2) 
18720 5597 70.1% 
ARIMA(0,2,2) 
10279 2734 73.4% 
 
 
Inventory Cost Demand Process 
NIS CDIS 
Percentage Reduction 
by using CDIS 
compared to NIS 
AR(1) 
8325 2864 65.6% 
AR(2) 
8265 3281 60.3% 
ARMA(1,1) 
8954 2794 68.8% 
MA(1) 
8008 2891 63.9% 
MA(2) 
7433 2156 71.0% 
ARIMA(0,1,1) 
11452 4478 60.9% 
ARIMA(1,1,1) 
17660 5139 70.9% 
ARIMA(1,1,2) 
21240 8475 60.1% 
ARIMA(0,2,2) 
12458 4834 61.2% 
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Appendix 8F: Effect of Autoregressive Parameters on the 
value of CDIS for AR (2) process 
 
Percentage Reduction in CDIS compared to 
DIS for MMSE (Stage I) 
2?  1?  
0.2 0.4 0.6 
0.2 0.6 9.5 15.8 
0.4 3.9 11.7  
0.6 6.1   
 
 
Percentage Reduction in CDIS compared to 
DIS for SMA 
2?  1?  
0.2 0.4 0.6 
0.2 67.8 66.0 58.3 
0.4 66.5 64.1  
0.6 52.0   
 
 
Percentage Reduction in CDIS compared to 
DIS for SES 
2?  1?  
0.2 0.4 0.6 
0.2 70.1 64.4 32.2 
0.4 43.2 33.7  
0.6 51.8   
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Appendix 8G: Effect of Moving Average Parameters on the 
value of CDIS for MA (2) process 
 
Percentage Reduction in CDIS compared to 
DIS for MMSE (Stage I) 
2?  1?  
-0.6 -0.4 -0.2 
-0.6 15.0 12.4 3.8 
-0.4 9.8 7.5 1.6 
-0.2 6.9 2.5 0.6 
 
 
Percentage Reduction in CDIS compared to 
DIS for SMA 
2?  1?  
-0.6 -0.4 -0.2 
-0.6 68.9 69.8 70.0 
-0.4 70.8 71.2 70.9 
-0.2 70.4 70.5 70.5 
 
 
Percentage Reduction in CDIS compared to 
DIS for SES 
2?  1?  
-0.6 -0.4 -0.2 
-0.6 69.9 70.8 70.5 
-0.4 69.8 70.8 70.9 
-0.2 70.8 71.2 70.5 
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Appendix 8H: Percentage Reduction in Inventory Cost by 
using CDIS compared to DIS in Stages II and III 
Identification & 
Estimation by the 
Retailer 
Percentage Reduction in inventory in 
using CDIS compared to DIS 
Accurate 45.8% Value of CDIS is greater 
Inaccurate 45.1% Value of CDIS is lesser 
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Appendix 9A: Results for Optimal Method 
Mean Squared Error 
Percentage Reduction by 
using CDIS compared to 
Demand Process 
No. of 
series 
DIS 
NIS-
 Est CDIS  DIS NIS-Est 
ARIMA(0,0,0) 113  127  249  127  0.0% 49.0% 
ARIMA(0,1,0) 76  996 1681  884 11.2% 47.4% 
AR(1) 295  196  338  182  7.1% 46.2% 
AR(2) 246  191  229  155 19.1% 32.4% 
ARMA(1,1) 76  202  231  105 48.0% 54.4% 
MA(1) 76  142  182  131  7.8% 28.1% 
MA(2) 71  101  125   88 12.8% 29.7% 
ARMA(2,1) 40  157  232  128 18.5% 44.8% 
ARMA(2,2) 29  454  587  421  7.3% 28.3% 
ARMA(1,2) 61  670 1188  608  9.3% 48.8% 
ARIMA(1,1,0) 195  841 2087  421 49.9% 79.8% 
ARIMA(2,1,0) 447  644  837  295 54.1% 64.7% 
 
Mean Absolute Percentage 
Percentage Reduction by 
using CDIS compared to 
Demand Process 
No. of 
series 
DIS 
NIS-
 Est CDIS  DIS NIS-Est 
ARIMA(0,0,0) 113 36.1 47.2 36.1 0.0% 23.5% 
ARIMA(0,1,0) 76 31.7 39.7 28.9 9.1% 27.2% 
AR(1) 295 42.6 49.0 39.2 7.9% 20.3% 
AR(2) 246 41.9 47.5 37.5 10.5% 21.1% 
ARMA(1,1) 76 64.7 76.1 55.0 15.0% 27.7% 
MA(1) 76 41.7 44.1 36.2 13.2% 17.9% 
MA(2) 71 38.2 43.2 32.5 14.9% 24.8% 
ARMA(2,1) 40 41.9 43.7 35.4 15.6% 19.1% 
ARMA(2,2) 29 34.3 46.5 32.1 6.5% 31.0% 
ARMA(1,2) 61 43.3 52.7 42.5 2.0% 19.4% 
ARIMA(1,1,0) 195 39.5 51.4 33.2 16.0% 35.4% 
ARIMA(2,1,0) 447 85.1 96.3 52.2 38.7% 45.8% 
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Bullwhip Ratio 
Percentage Reduction by 
using CDIS compared to 
Demand Process 
No. of 
series 
DIS 
NIS-
 Est CDIS  DIS NIS-Est 
ARIMA(0,0,0) 113 2.4 4.0 2.4 0.0% 40.0% 
ARIMA(0,1,0) 76 2.0 2.8 1.6 19.5% 42.8% 
AR(1) 295 2.3 3.3 1.8 23.3% 44.8% 
AR(2) 246 2.3 2.3 1.7 27.6% 25.8% 
ARMA(1,1) 76 3.3 2.5 1.9 42.9% 25.4% 
MA(1) 76 1.9 1.8 1.3 32.2% 28.9% 
MA(2) 71 2.4 3.3 1.9 19.8% 41.8% 
ARMA(2,1) 40 3.4 4.9 2.9 13.8% 40.5% 
ARMA(2,2) 29 2.1 2.0 1.5 29.8% 26.2% 
ARMA(1,2) 61 3.8 4.9 2.8 26.3% 42.5% 
ARIMA(1,1,0) 195 2.2 3.3 1.9 12.7% 42.3% 
ARIMA(2,1,0) 447 4.8 4.9 2.9 39.2% 40.4% 
 
Inventory Holdings 
Percentage Reduction by 
using CDIS compared to 
Demand Process 
No. of 
series 
DIS 
NIS-
 Est CDIS  DIS NIS-Est 
ARIMA(0,0,0) 113 267 442 267 0.0% 39.6% 
ARIMA(0,1,0) 76 12524 26325 11967 4.4% 54.5% 
AR(1) 295 389 748 375 3.6% 49.9% 
AR(2) 246 398 450 366 8.0% 18.7% 
ARMA(1,1) 76 863 1412 686 20.5% 51.4% 
MA(1) 76 262 410 245 6.5% 40.2% 
MA(2) 71 342 477 353 -3.1% 26.0% 
ARMA(2,1) 40 1046 1496 745 28.8% 50.2% 
ARMA(2,2) 29 1063 1252 952 10.5% 24.0% 
ARMA(1,2) 61 865 1389 696 19.5% 49.9% 
ARIMA(1,1,0) 195 2147 3976 2097 2.3% 47.2% 
ARIMA(2,1,0) 447 1782 1997 1139 36.1% 43.0% 
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Inventory Cost 
Percentage Reduction by 
using CDIS compared to 
Demand Process 
No. of 
series 
DIS 
NIS-
 Est CDIS  DIS NIS-Est 
ARIMA(0,0,0) 113 308 461 308 0.0% 33.2% 
ARIMA(0,1,0) 76 14258 32694 12221 14.3% 62.6% 
AR(1) 295 454 723 426 6.2% 41.1% 
AR(2) 246 472 525 438 7.2% 16.6% 
ARMA(1,1) 76 991 1639 843 14.9% 48.6% 
MA(1) 76 453 587 383 15.5% 34.8% 
MA(2) 71 442 526 406 8.1% 22.8% 
ARMA(2,1) 40 1148 1636 830 27.7% 49.3% 
ARMA(2,2) 29 1165 1328 1041 10.6% 21.6% 
ARMA(1,2) 61 921 1541 763 17.2% 50.5% 
ARIMA(1,1,0) 195 3662 5556 2819 23.0% 49.3% 
ARIMA(2,1,0) 447 2090 2139 1528 26.9% 28.5% 
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Appendix 9B: Results for Single Exponential Smoothing 
All results in Appendix 9B show the percentage reduction in inventory cost by using 
CDIS instead of NIS. 
Mean Squared Error Demand Process 
No. of 
series 
NIS CDIS 
Percentage 
Reduction  
ARIMA(0,0,0) 113 306.5 100.1 67.3% 
ARIMA(0,1,0) 76 473.2 156.6 66.9% 
AR(1) 295 352.1 105.6 70.0% 
AR(2) 246 297.8 87.0 70.8% 
ARMA(1,1) 76 298.5 79.4 73.4% 
MA(1) 76 283.2 53.0 81.3% 
MA(2) 71 309.3 110.7 64.2% 
ARMA(2,1) 40 304.2 99.5 67.3% 
ARMA(2,2) 29 238.4 83.4 65.0% 
ARMA(1,2) 61 229.3 76.3 66.7% 
ARIMA(1,1,0) 195 387.2 124.5 67.8% 
ARIMA(2,1,0) 447 350.0 111.9 68.0% 
 
Mean Absolute 
Percentage Error 
Demand Process 
No. of 
series 
NIS CDIS 
Percentage 
Reduction  
ARIMA(0,0,0) 113 73.2 56.2 23.2% 
ARIMA(0,1,0) 76 69.2 37.9 45.2% 
AR(1) 295 55.2 37.1 32.7% 
AR(2) 246 52.3 39.4 34.6% 
ARMA(1,1) 76 48.7 30.9 36.6% 
MA(1) 76 53.4 28.9 45.8% 
MA(2) 71 56.6 40.0 29.4% 
ARMA(2,1) 40 52.1 31.8 39.0% 
ARMA(2,2) 29 59.8 47.1 21.2% 
ARMA(1,2) 61 61.2 45.5 25.6% 
ARIMA(1,1,0) 195 48.7 32.9 32.4% 
ARIMA(2,1,0) 447 59.6 26.8 55.0% 
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Bullwhip Ratio Demand Process 
No. of 
series 
NIS CDIS 
Percentage 
Reduction  
ARIMA(0,0,0) 113 14.6 3.1 79.0% 
ARIMA(0,1,0) 76 14.0 2.6 81.4% 
AR(1) 295 14.8 2.8 81.3% 
AR(2) 246 15.1 3.1 79.7% 
ARMA(1,1) 76 14.9 2.6 82.4% 
MA(1) 76 14.8 2.6 82.1% 
MA(2) 71 14.6 2.8 81.1% 
ARMA(2,1) 40 14.6 2.6 82.5% 
ARMA(2,2) 29 14.2 1.9 86.6% 
ARMA(1,2) 61 14.6 3.1 78.9% 
ARIMA(1,1,0) 195 14.9 3.0 80.2% 
ARIMA(2,1,0) 447 14.1 2.1 85.2% 
 
Inventory Holdings Demand Process 
No. of 
series 
NIS CDIS 
Percentage 
Reduction  
ARIMA(0,0,0) 113 8025 2149 73.2% 
ARIMA(0,1,0) 76 13477 3803 71.8% 
AR(1) 295 8895 2458 72.4% 
AR(2) 246 7818 2123 72.8% 
ARMA(1,1) 76 7897 2072 73.8% 
MA(1) 76 7488 1904 74.6% 
MA(2) 71 7965 2124 73.3% 
ARMA(2,1) 40 6781 1847 72.8% 
ARMA(2,2) 29 6138 1575 74.3% 
ARMA(1,2) 61 7202 1815 74.8% 
ARIMA(1,1,0) 195 9398 2661 71.7% 
ARIMA(2,1,0) 447 9170 2381 74.0% 
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Inventory Costs Demand Process 
No. of 
series 
NIS CDIS 
Percentage 
Reduction  
ARIMA(0,0,0) 113 8025 2181 72.8% 
ARIMA(0,1,0) 76 13477 3942 70.7% 
AR(1) 295 8900 2518 71.7% 
AR(2) 246 7818 2153 72.5% 
ARMA(1,1) 76 7897 2115 73.2% 
MA(1) 76 7488 1921 74.3% 
MA(2) 71 7965 2163 72.8% 
ARMA(2,1) 40 6781 1904 71.9% 
ARMA(2,2) 29 6138 1583 74.2% 
ARMA(1,2) 61 7202 1853 74.3% 
ARIMA(1,1,0) 195 9409 2804 70.2% 
ARIMA(2,1,0) 447 9172 2437 73.4% 
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Appendix 9C: Results for Simple Moving Averages 
All results in Appendix 9C show the percentage reduction in inventory cost by using 
CDIS instead of NIS. 
Mean Squared Error Demand Process 
No. of 
series 
NIS CDIS 
Percentage 
Reduction  
ARIMA(0,0,0) 113 425.7 187.3 56.0% 
ARIMA(0,1,0) 76 545.3 223.6 59.0% 
AR(1) 295 158.3 96.6 39.0% 
AR(2) 246 415.0 253.6 38.9% 
ARMA(1,1) 76 376.8 243.4 35.4% 
MA(1) 76 280.3 153.3 45.3% 
MA(2) 71 414.8 237.7 42.7% 
ARMA(2,1) 40 366.3 168.5 54.0% 
ARMA(2,2) 29 451.6 185.2 59.0% 
ARMA(1,2) 61 290.3 116.1 60.0% 
ARIMA(1,1,0) 195 514.9 216.3 58.0% 
ARIMA(2,1,0) 447 391.1 144.7 63.0% 
 
Mean Absolute 
Percentage Error 
Demand Process 
No. of 
series 
NIS CDIS 
Percentage 
Reduction  
ARIMA(0,0,0) 113 66.6 32.0 52.0% 
ARIMA(0,1,0) 76 66.0 41.0 37.9% 
AR(1) 295 64.9 47.0 20.6% 
AR(2) 246 59.1 48.0 18.7% 
ARMA(1,1) 76 49.2 37.9 23.0% 
MA(1) 76 62.1 42.1 32.2% 
MA(2) 71 66.8 47.6 28.8% 
ARMA(2,1) 40 57.2 40.0 30.0% 
ARMA(2,2) 29 55.3 27.7 50.0% 
ARMA(1,2) 61 58.6 40.1 31.5% 
ARIMA(1,1,0) 195 79.6 46.1 42.1% 
ARIMA(2,1,0) 447 64.5 27.5 57.4% 
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Bullwhip Ratio Demand Process 
No. of 
series 
NIS CDIS 
Percentage 
Reduction  
ARIMA(0,0,0) 113 8.9 2.8 69.0% 
ARIMA(0,1,0) 76 8.2 2.5 70.0% 
AR(1) 295 7.9 3.5 54.8% 
AR(2) 246 7.2 3.6 50.0% 
ARMA(1,1) 76 8.6 5.5 35.5% 
MA(1) 76 7.5 2.8 62.8% 
MA(2) 71 8.6 3.2 62.8% 
ARMA(2,1) 40 8.9 3.1 65.0% 
ARMA(2,2) 29 8.2 3.4 58.0% 
ARMA(1,2) 61 7.8 4.9 37.0% 
ARIMA(1,1,0) 195 8.6 3.3 61.0% 
ARIMA(2,1,0) 447 8.3 2.2 74.0% 
 
Inventory Holdings Demand Process 
No. of 
series 
NIS CDIS 
Percentage 
Reduction  
ARIMA(0,0,0) 113 11185 6375 43.0% 
ARIMA(0,1,0) 76 18003 8641 52.0% 
AR(1) 295 12002 6001 50.0% 
AR(2) 246 11199 6585 41.2% 
ARMA(1,1) 76 11012 6607 40.0% 
MA(1) 76 9986 3994 60.0% 
MA(2) 71 11403 4778 58.1% 
ARMA(2,1) 40 9605 5859 39.0% 
ARMA(2,2) 29 9223 5073 45.0% 
ARMA(1,2) 61 10252 6254 39.0% 
ARIMA(1,1,0) 195 13529 5411 60.0% 
ARIMA(2,1,0) 447 12901 7999 38.0% 
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Inventory Costs Demand Process 
No. of 
series 
NIS CDIS 
Percentage 
Reduction  
ARIMA(0,0,0) 113 11194 3557 68.2% 
ARIMA(0,1,0) 76 18993 6447 66.1% 
AR(1) 295 12068 6963 42.3% 
AR(2) 246 11296 6812 39.7% 
ARMA(1,1) 76 11771 7898 27.9% 
MA(1) 76 10747 4514 58.0% 
MA(2) 71 11432 5213 54.4% 
ARMA(2,1) 40 9644 3000 68.9% 
ARMA(2,2) 29 9246 2698 70.8% 
ARMA(1,2) 61 10468 3081 70.6% 
ARIMA(1,1,0) 195 13630 4487 67.1% 
ARIMA(2,1,0) 447 12977 3983 69.3% 
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Appendix 9D: Effect of Smoothing Constant on Percentage 
Reduction in Inventory Cost by using CDIS  
The following table indicates the average percentage reduction in inventory cost by 
using CDIS instead of NIS, averaged over all twelve demand processes analysed in 
the empirical analysis of this research.  
alpha Percentage Reduction in inventory Cost 
by using CDIS instead of NIS 
0.1 35.0% 
0.3 72.2% 
0.8 78.8% 
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Appendix 9E: Effect of Number of Terms in SMA on 
Percentage Reduction in Inventory Cost by using CDIS  
The following table indicates the average percentage reduction in inventory cost by 
using CDIS instead of NIS, averaged over all twelve demand processes analysed in 
the empirical analysis of this research.  
Number of Terms (n) Percentage Reduction in inventory Cost 
by using CDIS instead of NIS 
3 38.7% 
6 56.3% 
12 75.6% 
 

