
Downloaded from: https://bucks.repository.guildhe.ac.uk/

This document is protected by copyright. It is published with permission and all rights are reserved. 

Usage of any items from Buckinghamshire New University’s institutional repository must follow the 
usage guidelines. 

Any item and its associated metadata held in the institutional repository is subject to 

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) 

Please note that you must also do the following; 

• the authors, title and full bibliographic details of the item are cited clearly when any part of the work is
referred to verbally or in the written form
• a hyperlink/URL to the original Insight record of that item is included in any citations of the work
• the content is not changed in any way
• all files required for usage of the item are kept together with the main item file.

You may not 

• sell any part of an item
• refer to any part of an item without citation
• amend any item or contextualise it in a way that will impugn the creator’s reputation
• remove or alter the copyright statement on an item.

If you need further guidance contact the Research Enterprise and Development Unit 
ResearchUnit@bucks.ac.uk  



1 

 

 
 

Reproducibility in Forecasting Research 

 

John Boylan* 

Buckinghamshire New University 

United Kingdom 

john.boylan@bucks.ac.uk 

 

Aris Syntetos 

Cardiff University 

United Kingdom 

 

syntetosA@cardiff.ac.uk 

 

Mona Mohammadipour 

Buckinghamshire New University 

United Kingdom 

eng_mmp@yahoo.com 

 

Paul Goodwin 

University of Bath 

p.goodwin@bath.ac.uk 

 

 

*corresponding author 

  

mailto:john.boylan@bucks.ac.uk
mailto:syntetosA@cardiff.ac.uk
mailto:eng_mmp@yahoo.com
mailto:p.goodwin@bath.ac.uk


2 

 

 

Reproducibility in Forecasting Research 

 

 

Abstract 

The importance of replication has been recognised across many scientific disciplines. Reproducibility 

is a necessary condition for replicability because an inability to reproduce results implies that the 

methods have been insufficiently specified, thus precluding replication. This paper describes how two 

independent teams of researchers attempted to reproduce the empirical findings of an important paper, 

“Shrinkage estimators of time series seasonal factors and their effect on forecasting accuracy” (Miller 

& Williams, 2003, IJF). The teams of researchers proceeded systematically, reporting results before 

and after receiving clarifications from the authors of the original study. The teams were able to 

approximately reproduce each other’s results but not those of Miller & Williams. These discrepancies 

led to differences in the conclusions on conditions under which seasonal damping outperforms 

Classical Decomposition. The paper specifies the forecasting methods employed using a flowchart. It 

is argued that this approach to method documentation is complementary to the provision of computer 

code, as it is accessible to a broader audience of forecasting practitioners and researchers. The 

significance of this research lies not only in its lessons for seasonal forecasting but, more generally, in 

its approach to the reproduction of forecasting research.  

 

Keywords 

Forecasting practice; Replication; Seasonal Forecasting; Empirical research 

 

Instead of imagining that our main task is to instruct a computer what to do, let us concentrate rather on explaining to 

human beings what we want a computer to do (D.E. Knuth, Stanford University). 

 

1. Introduction and research background 

Replication is one of the cornerstones of science. With replication, scientific claims may be 

challenged. In the medical field, Ioannidis (2005) examined 45 highly-cited articles from 

clinical journals and found that seven were contradicted by subsequent research and another 

seven were found to have initially stronger effects. Prasad et al. (2013) analysed 363 articles 

testing standard of care, and found that 146 medical practices were reversed in 10 years of 

publications.  
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In the absence of replication, scientific claims rest on the results of single, ‘one shot’, studies 

and hence carry risks and limitations. Researchers may have inadvertently made errors in their 

application of methods. They may have made mistakes in data entry, committed arithmetic or 

data transcription errors or written computer code that contains bugs. They may also have 

made assumptions that are not stated explicitly and their findings may be sensitive to changes 

in these assumptions. Other assumptions, and even further errors, may be embedded in 

commercial software so that researchers are unaware of them (McCullough, 2000). In 

addition, results may apply only to the specific data that have been analysed and hence will be 

subject to sampling error. When statistically insignificant results are obtained, researchers 

may be tempted to “hunt for p-values less than 0.05” (Hubbard & Armstrong, 1994) and 

hence inflate the true probability of committing type I errors. This problem is avoided by 

replication studies, as statistical significance is not a measure of replicability. Finally, the 

extent to which the findings generalize to situations or populations beyond those investigated 

in the original study will be unknown. 

These potential risks and limitations suggest a range of approaches to replication. Definitions 

of replicability vary across disciplines, but a special case is reproducibility. If findings are 

reproducible, then independent researchers are able to obtain the same results as the original 

study using the same data and the same methods. Reproducibility is a first step towards 

replication and so, if it cannot be achieved, the generalizability of findings is likely to be in 

doubt. Of course, perfect reproduction of results may not be possible. For example, 

improvements in the algorithms embedded in software may lead to differences between the 

original numbers reported and those obtained using later versions of the software. However, 

approximate reproducibility, discussed later in this paper, may still be attainable. Findings 

that have been successfully reproduced have a much lower risk of being subject to human 

error. Further, the process of trying to reproduce findings is likely to reveal the extent to 
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which the original results were based on unstated assumptions and hence the extent to which 

the findings will change if alternative assumptions are made.   

Despite these potential benefits, the frequency of papers reporting reproduction or replication 

of results is low in some disciplines. Evanschitzky, Baumgarth, Hubbard, & Armstrong 

(2007) found that, in marketing, the percentage of papers based on replication studies had 

halved to 1.2% in the period 1990 to 2004 when compared with 1974 to 1989. A similar study 

of empirical research papers in forecasting, published between 1996 and 2008, found an 8.4% 

rate (Evanschitzky & Armstrong, 2010). Although this was relatively high compared to other 

areas of management science, the authors argued that the rate needed to increase, given that 

the findings of about 20% of the original papers were not supported in the replications.  

In recent years there have been several developments to support replication in forecasting 

research. Data sets, such as those used in the M1 forecasting competition, are easily 

accessible (Makridakis, Andersen, Carbone, Fildes, Hibon, Lewandowski, Newton, Parzen, & 

Winkler, 1982). The M1 data set has since been used in several other studies. In addition, 

authors publishing papers in the International Journal of Forecasting are required to make 

their data publicly available via the journal’s website. Indeed, in its inside cover the journal 

states that “It encourages replication studies” and requires that “For empirical studies, the 

description of the method and the data should be sufficient to allow for replication.”  

However, whether or not research is truly replicable may not be apparent until a full 

replication is formally attempted. Only then is the absence of important details or the 

imprecision of definitions or measurements likely to become apparent. For example, 

Simmons (1986) attempted to reproduce some of the M1 competition results for the Naïve2 

method. His initial attempt, based on information in the article alone, was unsuccessful. It was 

only after written communication with Professor Makridakis that sufficient details were 

clarified for the results to be reproduced. While, in general, it is relatively easy to disclose 
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data, making methods transparent is more problematical. Even the original authors are likely 

to be unaware of how much documentation of methods is required to allow an independent 

researcher to reproduce their results. 

This paper is about the process of reproducing results in forecasting research. We describe the 

process whereby two independent teams of researchers attempted to reproduce the findings of 

an award winning study, “Shrinkage estimators of time series seasonal factors and their effect 

on forecasting accuracy” (Miller & Williams, 2003). We then identify issues that arose during 

the process and discuss how these issues may be resolved.  

The remainder of the paper is organized as follows: in the next section, the relationship 

between reproducibility and replicability is discussed in more detail. In Section 3, the original 

research is described, the process of reproducing the results and the sources of discrepancies 

are explained, and the impact of these differences on Miller & Williams’ findings are 

discussed. A more detailed explanation of this process is given in Appendices A and B. 

Section 4 compares different approaches to the specification of forecasting methods and 

Section 5 concludes the paper. A comprehensive flowchart of the forecasting process is given 

in Appendix C and references to supplementary material in Appendix D.     

2. Reproducibility vs. replicability 

Following on from the discussion in the previous section, we propose the following 

definitions of reproducibility and replicability in forecasting research. If results are 

reproducible then independent researchers are able to obtain the same numerical results by 

repeating the original study using the same methods on the same data. If findings are 

replicable then independent researchers are able to reach the same qualitative conclusions by 

repeating the original study using the same methods on different data. It should be possible 

for independent researchers to reproduce or replicate without any additional information from 

the author(s) of the original study (King, 1995).    
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Evanschitzky and Armstrong (2010) use the term “re-analysis” to refer to an application of 

different methods on the same data or a sub-sample of the data. This constitutes a third 

category, in addition to “reproduction” and “replication”, as shown in Figure 1 below.  

 
Same Methods Different Methods 

Same Data Reproduction Re-Analysis 

Different Data Replication  

 

                  Fig. 1. Reproduction, Replication and Re-Analysis 

 

Similar distinctions between reproducibility and replicability have been drawn in other 

scientific disciplines (e.g. in psychology by Asendorpf et al., 2013). However, it should be 

noted that these terms are sometimes used differently by other authors. For example, 

Drummond (2009) used the terms in the opposite way to the above definitions. Evanschitzky 

et al. (2007), used the term “replication with extension” to indicate replication (in our 

terminology) but with a greater emphasis on generalisation. 

Reproducibility is a necessary condition for replicability. An inability to reproduce the 

numerical results of a study implies that the methods used in that study have been 

insufficiently specified, thereby precluding replication. However, it is not a sufficient 

condition because the availability of further data meeting the necessary conditions is also 

required for a replication study to be conducted and for the qualitative findings to be 

replicated (e.g., in a forecasting context, method A is more accurate than method B under 

certain conditions.) 

Another important issue that has not been addressed in forecasting research is ‘exact 

reproducibility’. Does precision to, say, the second decimal place only but not to the third, 

constitute a reproduction of a previous result or not? Such differences may arise from the use 
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of different optimisation algorithms in different software packages. In this paper, a further 

distinction is drawn between ‘exact reproducibility’ and ‘approximate reproducibility’. Exact 

reproducibility corresponds to our previous definition of reproducibility. On the other hand, if 

it is claimed that findings are approximately reproducible to a certain percentage, then 

independent researchers should be able to obtain results that differ by no more than that 

percentage by repeating the original study.  

3. The study by Miller & Williams  

As previously discussed, the International Journal of Forecasting (IJF) is among those 

journals that support replication studies. Given that reproducibility is a necessary condition 

for replicability, we have focused on reproducing an important study published in the IJF, 

namely “Shrinkage estimators of time series seasonal factors and their effect on forecasting 

accuracy” (Miller & Williams, 2003). This paper won an outstanding paper award, 2002-

2003, by the International Journal of Forecasting1, and has been cited more than 25 times 

according to Google Scholar. It is also referred to in the well cited review by De Gooijer & 

Hyndman (2006) of the most important advancements in the recent history of forecasting.  

The paper by Miller & Williams (2003) is not untypical in its documentation of forecasting 

procedures. The authors give details of their dataset, methods for estimating seasonal factors 

and accuracy measures. They also provide some information on parameter specification and 

prediction methods (although further details are needed on these topics, as discussed in 

Appendix A).  

The authors suggested two shrinkage methods to adjust the Classical Decomposition (CD) 

seasonal factors towards 1.0: the James-Stein (J-S) estimator and the Lemon-Krutchkoff (L-

K) estimator (see Miller & Williams, 2003, pp. 671-672). 

                                                      
1 The International Journal of Forecasting Best Paper Award for 2002–2003, International Journal of 

Forecasting, 22(4), p.825 (http://www.sciencedirect.com/science/article/pii/S0169207006000781). 
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Using simulation on theoretically generated data, the conditions under which each of these 

methods are more accurate than Classical Decomposition were identified and guidelines for 

choice of method (CD, J-S, or L-K) were developed. In the empirical investigation on data 

series from the M1-Competition, each of the data series were categorized according to the 

recommended method, based on the proposed guidelines (Miller & Williams (2003), Table 5, 

p. 678). Forecasting accuracy results were presented for the set of all 55 series and subsets for 

which each of the methods had been recommended (Table 6, p. 680).   

Some of the co-authors of the present paper tried to replicate the forecasting methods 

suggested by Miller & Williams on different data sets for another project funded by the 

Engineering and Physical Sciences Research Council (EPSRC, UK). As a precursor to this 

replication, they attempted to reproduce the results first. However, the results achieved were 

considerably different from the original ones. Consequently, another independent team was 

invited to attempt to reproduce the results. Hereafter, these two teams of forecasting experts 

will be called team A (team that commenced the study) and team B (team invited at a later 

stage). 

This background motivated the following two research questions: i) how feasible is it to 

reproduce the results of this forecasting research paper?, and ii) how accurate (exact) is the 

reproduction? The remainder of this section is devoted to answering these questions.  

3.1. The process of reproducing Miller & Williams’ results 

Team A used MATLAB (7.12) while team B used Visual Basic embedded in Microsoft Excel 

2003. (Miller & Williams also used Microsoft Excel.)  This choice was based on the expertise 

of the teams, but later proved to be beneficial to the research, as it allowed for the 

quantification of the effects of different optimisation routines.    
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The assumptions and methodological stages of the original research paper are explained in 

page 679 of Miller & Williams (2003). Both teams fully documented all the working methods 

and assumptions made in the process of generating the results. The reproduction process is 

depicted graphically in Figure 2 and is explained below.  

 

    

  

 

 

 

 

Fig. 2. Reproduction process 

 

First, team A contacted Professors Miller and Williams (MW) seeking clarifications with 

regard to the data series. The authors provided team A with the exact 55 series out of the 66 

monthly series used in the M1-competition which they used in their study. Subsequently, 

team A produced the first set of results by making various assumptions regarding those issues 

about which they were unclear (see Appendix A.1). Then, they contacted MW again to resolve 

the issues raised in the first run and, based on this new information, they produced the second 

set of results (see Appendix A.2).  

On the other hand, team B generated their first set of results using only the information given 

in the original paper and the 111 series from the M1 dataset without any contact with MW 

(see Appendix A.4). They selected the same series used by Team A, showing that MW had 

provided sufficient information to allow specification of the exact 55 series. Then, team A 

provided team B with the additional information gained through their communication with 

MW and, based on that, team B produced their second set of results (see Appendix A.5).  

 

Authors 

(MW) 

 

Team A  

1st set of results 

Team A  

3rd set of results 
 

 

 

Team A  

2nd set of results 

 

 

Team B 

1st set of results 
Team B 

2ndset of results 

 

 

Team B 

3rdset of results 
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After the first set of results were presented by team B and upon a review of the documented 

stages of their replication, team A found other discrepancies (see Appendix A.3). In their third 

run, team A attempted to repeat what team B did, by amending their experimental structure to 

match the assumptions and methods of team B. These stages along with the results produced 

in each of them are explained in detail in Appendix A. The notations used are the same as in 

Miller & Williams (2003). 

As mentioned in Appendix A.5, even after further communications among the two teams, 

there were still discrepancies between their results (team A third set of results and team B 

second set of results in Table A.1). In order to investigate this issue, each of the 55 series has 

been checked individually (manually) to identify the series for which the Mean Absolute 

Percentage Error (MAPE) results produced by the two teams were different. The results are 

provided in Appendix B. It is found that the difference in the results is because different 

optimisation tools produce different smoothing parameters. The biggest difference related to 

one series (series 37) for which the Excel Solver optimisation stops at a local minimum. (This 

issue of Solver stopping at a point that is not a solution but reporting it as a solution was noted 

by McCullough & Wilson (2005)). As shown in Appendix B, the problem was addressed by 

changing the starting values and the results for team B were once again updated. 

Comparing team A’s and team B’s third sets of results in Table A.1, it can be seen that now 

the results of team A and B are close. Out of 60 MAPE results, 23 are slightly different (with 

the absolute difference of two MAPEs ranging from 0.5% to 5.0%), 12 of which have an 

absolute difference of only 0.5% to 1.5%. It should be mentioned that this remaining 

difference is also due to utilisation of different optimisation tools which result in different 

smoothing parameters (see Appendix B). When the same parameters are used, the results of 

the two teams are exactly the same. Thus, approximate reproduction of results between team 

A and team B was obtained, and exact reproduction with identical parameters.  
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However, these final results of the two teams (team A’s and team B’s third sets of results in 

Table A.1) are very different from the results of MW (Table 6, p. 680). Reproduction of 

MW’s results was not attained and the next sub-section reviews the reasons for these 

discrepancies.    

3.2. Sources of discrepancies 

As discussed in the previous sub-section, a number of issues were raised when trying to 

reproduce the results by Miller & Williams (2003). These can be classified as follows: 

1. Data clarification: Team A had some difficulties identifying the exact 55 out of the 66 

monthly series of the 111 series used in M-competition. Therefore, they asked the authors 

of the original paper for clarification and they were kindly provided with the exact 55 

series. Team B, on the other hand, had no problem identifying the 55 series under concern 

using only the information provided in the original paper (bearing in mind that the 111 M-

competition series are publicly available). 

2. Methods clarification: As discussed in Appendix A (A.1 and A.3), the calculation of the 

coefficient of skewness, initialisation of the smoothing method and the use of rolling or 

non-rolling forecasts, which were not clarified in the original study, also resulted in 

discrepancies among the results.  

3. Different software: The use of different software by teams A and B accounted for some of 

the differences. Results are reported in Appendix B showing that optimised parameters 

may differ between Excel and MATLAB, with Excel sometimes identifying local minima.   

4. Accuracy measures: The fact that team A used the out-of-sample MAPE (for the first two 

sets of results) while team B used the in-sample MAPE for the purpose of selecting which 

exponential smoothing method to use, also played an important role in obtaining different 

results.   
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All but one of the above issues could have been resolved by the provision of more 

information in the original study. Using different software is a separate issue, but this may 

also be accounted for by discussing the details of the package used for producing the results.  

3.3. Implications for the findings by Miller & Williams 

The emphasis of this paper has been on reproducing the numerical results of Miller & 

Williams (2003) and not their qualitative conclusions. However, in this section, the impact of 

the discrepancies (between the results produced by the two teams and the original results) on 

the conclusions reached by Miller & Williams are discussed. 

Miller & Williams’ primary hypothesis is that damping of seasonal factors improves on 

Classical Decomposition (CD), and this hypothesis is supported by our research. In Appendix 

A, Table A.1 (team A’s and team B’s third sets of results) shows that the Lemon-Krutchkoff 

(L-K) method produces lower MAPEs than CD when all 55 series are considered. However, 

Table A.1 (team A’s and team B’s third sets of results) also shows that the James-Stein (J-S) 

method produces higher MAPEs than CD for longer horizons, in contradiction to Miller & 

Williams.      

Regarding the magnitude of the improvements resulting from the use of the seasonal damping 

methods, MW mentioned that, compared to CD, J-S provided reductions in average MAPE 

ranging from 0 to 2.2% (which we believe should be 0 to 4.4% for their results). However, the 

two teams’ results agree on only one case of improvement, for a 3-month horizon, which is no 

more than 1.6% . (Team A also identified a 0.12% improvement for a 6-month horizon).  

MW also mentioned that L-K provided reductions in average MAPE ranging from 1.6% to 

6.7%, when compared to CD, which is different to our results showing reductions in average 

MAPE ranging from 0.4% to 5.2%. We do agree with MW that, when applied to all 55 series, 

L-K is the most accurate method on average. 
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As shown in Appendix A (A.1, A.2 and A.4), the numbers of series in each of the categories 

(L-K recommended, J-S recommended, and CD or J-S recommended) are different to those 

suggested by Miller & Williams. Teams A and B both report 30, 9 and 16 series, respectively, 

compared to 31, 10 and 14 series reported by Miller & Williams. MW concluded that, for the 

31 series for which the recommended method of seasonal adjustment is Lemon-Krutchkoff, 

the use of L-K indeed leads to the smallest average MAPE. However, based on our results, 

there are two exceptions to this: for 12 and 18-months horizons, CD has the lowest MAPE 

rather than L-K.  

For the 10 series for which the James-Stein method is recommended, MW mentioned that the 

use of J-S generally produces more accurate forecasts than the other two methods (there is 

only one exception to the rule which is for the 1-month horizon). On the other hand, our 

results show that this finding is valid only for the 3-month horizon.  

For the 14 series for which the recommended method is J-S, but CD is also considered 

suitable, MW claimed that the choice of method for seasonal adjustment did not make a 

substantial difference in forecasting accuracy. Their results also show that the use of J-S leads 

to the smallest average MAPE. However, our results show that, compared to L-K, J-S 

provides more accurate forecasts for none of the series (L-K is the best method for all the 

horizons). Also, the results of the methods for seasonal adjustment are not insubstantial (for 

MW results, the difference between results are at most 3.7%, but this gets as high as 11.48% 

for our results).  

To conclude this section, the results from teams A and B support the hypothesis that the 

Lemon-Krutchkoff method is more accurate than Classical Decomposition but not that the 

James-Stein method is more accurate than Classical Decomposition. Moreover, our results do 

not support the guidelines suggested by Miller & Williams (Table 5, p. 678). This is because, 

based on our results, there are many exceptions for each category: for L-K recommended 
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series there are 2 out of 5 horizons for which L-K is not the best method; for J-S 

recommended series J-S is best only for 1 out of 5 horizons; and, for CD or J-S recommended 

series, J-S does not perform better than the other two methods for any of the horizons. More 

work is needed on understanding the conditions under which seasonal damping methods 

outperform Classical Decomposition.  

4. Specification of forecasting methods 

4.1. Comparison of approaches  

It is common for authors of forecasting papers to include statements of methods, including 

assumptions, in words (textual descriptions). However, it may be very difficult for others to 

translate these words into an unambiguous form for reproduction of results, replication of 

findings or adaptation of methods. To address this issue, some alternative approaches are 

discussed in this section. 

One way of presenting methods is through the use of flow charts. A flow chart is a type of 

diagram that presents a method in algorithmic form, showing the steps as boxes of various 

kinds, and their order by connecting them with arrows. They are used extensively in 

simulation modelling (e.g. Hayes, Leal, Gray, Holman, & Clarke, 2013) but not so widely in 

forecasting. Another alternative is that the code itself may be offered alongside an academic 

paper. The internet is a significant aid to those who wish to make their data and algorithms 

available, for example by the use of journals’ electronic companions2.  

Both flowcharts and code have advantages and disadvantages in facilitating reproduction and 

replication. Making code available guarantees exact reproduction of results while a flowchart 

                                                      
2 For example, recently, “Information and Inference: A Journal of the IMA”, which publishes mathematically-

oriented papers, has asked authors of papers with computational simulations / plots / tables to include their code 

in a format with a reference manual or a brief user guide. To encourage this, the journal has followed an existing 

standard that papers with accompanying code are marked as ‘reproducible’, which is indicated by a small 

diamond containing the letter R (see, for instance, http://imaiai.oxfordjournals.org/content/2/1/69.full.pdf+html).  

 

 

 

http://imaiai.oxfordjournals.org/content/2/1/69.full.pdf+html
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may allow for only approximate reproduction. Nevertheless exact reproduction using 

provided code may conceal errors, which might otherwise be revealed if new independent 

code is developed. In replication some small changes to code may be needed to cater for new 

data sets (e.g. different sample sizes), but the effort involved in carrying out the replication 

will be relatively small.  Providing a flowchart will necessitate the development of new code 

with the attendant dangers of introducing programming errors, which may be less easy to 

identify than in reproduction, given the absence of a set of earlier results based on the same 

data. 

If the methods need to be adapted, using flowcharts and developing new code may be easier 

than adjusting code developed by other researchers. A flowchart is more accessible than code 

and requires only a basic understanding of the flowcharting rules and conventions. It is easy 

and quick to read and apprehend. On the other hand, using code requires an understanding of 

the language of the code, which may need a significant time to acquire. Another concern 

about provision of code is that people’s knowledge will affect its accessibility. For example, 

there are fewer people today who are able to read code in APL3 than 30 years ago.   

Flowcharting and provision of code are not mutually exclusive. On the contrary, they are 

complementary. Some researchers may wish to reproduce or replicate without adaptation of 

methods. Other researchers may wish to experiment with adaptations of forecasting methods. 

Provision of flowcharts and code caters for both research audiences.  

To summarise, textual description of methods and assumptions has been a common approach 

in forecasting studies. This approach was also adopted by MW in the research analysed in this 

paper. However, our results in Section 3 show that reproduction of the results of MW’s 

research was not possible based on the information provided in the paper. As discussed in this 

sub-section, alternative approaches, such as flowcharts and provision of code, may facilitate 

                                                      

3 A Programming Language (K. E. Iverson, A Programming Language, John Wiley and Sons, Inc., 1962)  
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reproduction, replication and adaptation. The application of flowcharting to the research 

presented in this paper will be discussed in the next sub-section.  

4.2. Flowchart for reproducibility  

As explained, flowcharts are very accessible and easy to understand and, although they have 

not been widely used in forecasting studies, they can be easily implemented.  

We have presented the detailed flowchart for the methods analysed in this paper in Appendix 

C using the information gathered from the authors of the original paper and the 

communications between the two teams. The flowchart consists of four blocks as shown 

below (Figure 3). 

 

 

  

 

 

 

 

 

 

 

Fig. 3. Flowchart of the forecasting process 

 

Each of the four blocks contains sequences of stages shown in detail in Appendix C. The 

blocks could be used for a variety of forecasting approaches. For example, parameter 

specification for smoothing methods (which has been used here) includes initialisation and 

Start 

Parameter Specification 

Prediction 

Accuracy Assessment 

End 

Reading and Cleaning Data  



17 

 

optimisation whereas, for the Box-Jenkins approach, it contains identification and estimation. 

Distinguishing these blocks in the code would also increase the clarity of the code and 

facilitate understanding and adaptation for reproducing the results and/or replicating the 

findings.  

We believe that any independent researcher who wishes to approximately reproduce our 

results should be able to do so based on the flowcharts (see Figure 3 and Figures C.1, C.2, C.3 

and C.4 in Appendix C). In addition, in order to facilitate exact reproduction of the methods 

used in our research, both the MATLAB code used to generate the results by team A and the 

Visual Basic (embedded in Microsoft Excel 2003) code and the Excel analysis used by team 

B are available in the electronic companion to this paper (please refer to Appendix D).  

5. Conclusions and implications  

In this study we have attempted to reproduce the results provided by Miller & Williams (MW, 

2003). Our aim was to assess the feasibility and accuracy of doing so. It is important to 

emphasize that the methods in the MW paper were not untypical in their fullness of 

documentation, compared to other papers in the forecasting literature. Hence, the MW paper 

may be regarded as representative of method documentation in forecasting research.  

We have worked in two teams (each of which attempted independently to reproduce the MW 

results) and in a structured way that allowed for the progressive accumulation of information 

relevant to the data and methods used in the MW study. Although the two teams reached 

almost the same results, those were different from the results provided by MW and we have 

not arrived at the same conclusions as the original paper. This provides an example of where 

lack of reproduction of results matters in terms of replication of the findings and conclusions. 

It is also important to note that the two teams did not achieve exact reproduction of each 

other’s results, because of differences in software optimisation methods.    
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Based on the outcomes of this work, we believe that there is considerable scope for improving 

the reproducibility of forecasting research papers in general and papers published by the 

International Journal of Forecasting (IJF) in particular. The IJF requires that “for empirical 

studies, the description of the method and the data should be sufficient to allow for 

replication”. However, in practice, it is uncommon for the reviewers or the editorial office to 

request details that are sufficient to reproduce the results. Consequently, there is an 

overreliance of the academic community on the goodwill of the authors of the original studies 

to answer simulation related queries, provide empirical data and clarify methodological 

issues.  

In an attempt to enable other researchers to reproduce, replicate or adapt the methods used by 

MW, we have provided a fully documented flowchart of the methods in the paper. We argued 

that flow-charts are accessible to a broader audience of forecasting practitioners and 

researchers than provision of code. However, we suggested that flowcharts and codes are 

complementary in providing high level understanding and granular appreciation of forecasting 

methods. To that end, we have supplemented our paper with electronic companions that 

include both the flowcharts and the code written by the two teams of researchers.  

We would like to close our paper by inviting other researchers to attempt to reproduce our 

results. This would enable the approach to reproducibility proposed in this paper to be tested 

and commented upon by others. We also acknowledge that the issues discussed in this paper 

arise from a single research study and we would encourage researchers to attempt to 

reproduce other important forecasting studies and expand on the recommendations made in 

this paper. Finally, and most importantly, we would encourage authors (including ourselves) 

to consider the issues of reproducibility and replication when documenting forecasting 

procedures and experimental structures employed for their research. 
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APPENDIX A. Reproduction of results 

This appendix presents the results produced by team A and B in each round as shown in 

Figure 2.  

A.1. Team A first set of results 

Team A first attempted to reproduce the empirical results of the original study using the exact 

55 series obtained from the authors and by making some assumptions regarding the issues 

about which they were unclear. In particular, assumptions were made with regards to: 

 The formula used to calculate the coefficient of skewness. 

 The initialisation of the three exponential smoothing methods, namely: simple 

exponential smoothing (SES), Holt’s method, and damped-trend. 

 Whether the J-S and L-K seasonal factors should also be adjusted to average 1.0 

(similar to the adjustment by MW for CD). 

Team A used the MATLAB function to calculate the coefficient of skewness: 
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      (A.1) 

where iX  is the observation at time n,...,1i  , and X is the sample mean of the n

observations. It was also assumed that, by skewness, MW meant absolute skewness. 

The SES method was initialized by assuming that the first forecast for the deseasonalised 

series was the first deseasonalised value, 
1 1

F X (Makridakis, Wheelwright, & Hyndman, 

1998). For Holt’s method and damped-trend, it was assumed that the initial level ( 1L ) is the 

first deseasonalised observation, 
1 1

L X , and the initial trend ( 1b ) is the difference between 

the first two deseasonalised observations,  
1 2 1

b X X  (Makridakis et al., 1998). The fmincon 

function in MATLAB was used to obtain the smoothing parameter values that minimize the 
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in-sample Mean Squared Error (MSE) (with the constraints being identical to the authors’ 

bounds on these parameter values). 

Team A assumed that the J-S and L-K seasonal factors should be adjusted to average 1.0. 

(This was not specified by MW.)   

The first set of team A’s results, based on the above assumptions and formulae, is presented in 

Table A.1. All results relate to Mean Absolute Percentage Errors (MAPEs). Comparing this to 

Table 6 of Miller & Williams (2003), it can be seen that not only are the MAPE results very 

different, but also the number of series in each category (L-K, J-S, and CD or J-S 

recommended) are not the same. Given the inconsistencies, team A further contacted the 

authors to resolve a number of issues which may have resulted in these discrepancies. 

A.2. Team A second set of results 

In the second communication with MW, some important points were clarified. The authors 

advised team A that they used the following formula to calculate the coefficient of skewness: 
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       (A.2) 

where S is the sample standard deviation (A.3). The difference between equations (A.1) and 

(A.2) is that in equation (A.2) the standard deviation is calculated by: 
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Also, MW used the following equations to initialise trend and level respectively: 
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The second set of team A’s results were generated based on the above information (see Table 
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A.1). Despite the additional information, both the actual MAPE results and the number of 

series identified in each category were different to those reported by MW. At this point, team 

A invited an independent team (Team B) to reproduce the results (see Appendix A.4).  

A.3. Team A third set of results 

After team B produced their first set of results and following communications between teams 

A and B, some other sources of discrepancy were identified:  

 Use of in-sample or out-of-sample MAPE to select the exponential smoothing method: 

Team A had used out-of-sample MAPE in their first two attempts, while team B used 

in-sample MAPE.  

 Use of rolling or non-rolling forecasts for the hold-out data: Team A had used rolling 

forecasts, while team B used non-rolling forecasts.  

 Team A also realised that using different starting values when optimizing the 

parameters for the smoothing methods would result in different optimum parameters. 

Therefore they used the same starting value as team B for all parameters (which was 

0.1) except for the damping parameter (which was 0.9).  

In an attempt to reach agreement with the results produced by team B, team A ran a third 

experiment using the in-sample MAPE for methods’ selection, non-rolling forecasts and the 

above discussed starting value for optimisation. The third set of team A results are presented 

in Table A.1. 

A.4. Team B first set of results 

Initially, team B was provided with only a copy of the paper and the entire M1 dataset and 

asked to reproduce the empirical results without any further information. They were asked to 

disclose their working methods and assumptions in doing so. The results provided by team B 

did not match either team A’s results or the ones provided by MW.  

Based on the fact that MW used Excel 2003 for their study, team B assumed that the Excel 
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coefficient of skewness should be used: 



 
  

   


3
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Excel i 1

X Xn
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(n 1)(n 2) S
     (A.6) 

where the notation is unchanged. It can be seen that equation (A.6) is different from both 

equations (A.1) and (A.2). Further, team B assumed that the coefficient of skewness was only 

measured on the CD seasonal factors and that MW meant absolute skewness when describing 

their shrinkage selection criteria (otherwise strong negative skewness would be regarded as 

symmetry according to the authors’ stated criterion). 

With regards to initialization, team B used the same initialization that team A employed in 

their first attempt (see Appendix A.1). The Excel Solver was used to identify the MSE-

minimizing parameter values. (The Solver Options were as follows: Max Time = 100 

seconds; Iterations = 100; Precision = 0.000001; Tolerance = 5%; Convergence = 0.0001; do 

not assume linear model, automatic scaling, or non-negative; Estimates = Tangent; 

Derivatives = Forward; Search = Newton).  Team B used the same approach as team A in 

adjusting the J-S and L-K seasonal factors to average 1.0.  

The first set of team B’s results were generated based on the above initialization and 

skewness related assumptions and are shown in the Table A.1. Both the MAPE results and the 

number of series identified in each category were different to those of MW and team A’s first 

and second round results. After further communication with team A, team B received the 

additional information team A had received from MW (discussed in Appendix A.2) and made 

a second attempt to reproduce the results. 

A.5. Team B second set of results 

In the second round, team B was provided with the coefficient of skewness formula and 

starting estimates of the levels and trends that MW used. The second set of team B’s results is 

presented in Table A.1. Comparing these results with the third set of team A results, the two 
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teams managed to achieve the same number of series assigned to different shrinkage methods 

which is still different to that reported by MW. However, there were discrepancies between 

their final results and this issue is further investigated in Appendix B. 
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Table A.1 

 

Mean Absolute Percentage Errors for Team A and Team B 

 

 

The results from team A were produced with their own initialisation procedure and the use of 

MATLAB for the calculation of the coefficient of skewness. The results for ‘All 55 series’ are shown 

to three decimal places, for consistency of presentation with Table 6 of Miller & Williams (2003). 

 

 

  
 

Horizon 
L-K recommended J-S recommended CD or J-S recommended All 55 series 

 CD J-S L-K CD J-S L-K CD J-S L-K CD J-S L-K 

Team A  

1st set of results 
34 series 8 series 13 series 55 series 

 1 8.99 9.05 8.91 8.22 7.56 7.82 5.37 5.32 5.39 8.024 7.954 7.919 

 3 9.53 9.63 9.45 9.38 8.54 8.82 5.55 5.42 5.50 8.566 8.476 8.425 

 6 10.20 10.40 10.13 10.82 9.86 10.16 5.94 5.82 5.92 9.284 9.236 9.142 

 12 11.08 11.40 10.99 11.46 10.64 10.89 6.77 6.63 6.75 10.113 10.160 9.975 

 18 11.04 11.20 10.74 14.00 14.23 13.95 7.86 7.66 7.80 10.715 10.804 10.511 

Team A  

2nd set of results 
30 series 9 series 16 series 55 series 

 1 8.95 8.94 8.86 7.48 6.88 7.11 6.76 6.69 6.67 8.071 7.949 7.936 

 3 9.49 9.52 9.45 8.58 7.82 8.06 6.99 6.92 6.86 8.615 8.486 8.470 

 6 10.26 10.32 10.22 9.95 9.08 9.34 7.60 7.54 7.49 9.434 9.308 9.284 

 12 11.05 11.00 11.03 10.85 10.09 10.33 8.61 8.49 8.51 10.306 10.122 10.181 

 18 10.97 10.62 10.77 12.92 12.98 12.80 9.62 9.64 9.44 10.896 10.725 10.717 

Team A  

3rd set of results 
30 series 9 series 16 series 55 series 

 1 7.15 7.24 6.73 7.53 8.98 8.93 6.47 6.97 6.17 7.016 7.446 6.929 

 3 8.00 7.95 7.53 10.96 10.06 10.40 7.34 7.49 7.04 8.291 8.160 7.860 

 6 9.49 9.51 9.18 11.48 11.41 11.34 7.45 7.42 7.25 9.222 9.211 8.969 

 12 12.35 12.61 12.45 13.42 13.37 13.12 8.66 8.48 8.44 11.451 11.533 11.396 

 18 13.96 14.10 14.05 14.92 15.08 14.65 10.14 10.01 9.93 13.004 13.071 12.950 

Team B 

1st set of results 
36 series 8 series 11 series 55 series 

 1 7.21 7.32 6.90 8.22 9.38 9.55 5.86 5.74 5.86 7.085 7.301 7.078 

 3 7.82 7.88 7.43 12.11 10.84 11.43 6.85 6.64 6.95 8.249 8.065 7.915 

 6 9.21 9.25 8.86 12.66 12.53 12.59 7.01 6.88 7.08 9.270 9.251 9.045 

 12 11.80 11.66 11.47 14.31 13.78 13.92 8.34 8.20 8.43 11.475 11.276 11.222 

 18 13.34 13.06 12.90 15.39 15.19 15.17 9.83 9.71 9.92 12.939 12.698 12.633 

Team B 

2nd set of results 
30 series 9 series 16 series 55 series 

 1 7.14 7.24 6.72 7.53 8.98 8.93 6.31 6.97 6.01 6.964 7.446 6.874 

 3 7.99 7.95 7.52 10.96 10.06 10.40 7.18 7.49 6.88 8.239 8.160 7.804 

 6 9.46 9.51 9.15 11.49 11.41 11.34 7.30 7.42 7.09 9.164 9.211 8.908 

 12 12.31 12.61 12.42 13.43 13.37 13.12 8.50 8.48 8.29 11.388 11.533 11.330 

 18 13.91 14.10 14.00 14.93 15.08 14.65 9.99 10.01 9.79 12.937 13.071 12.880 

Team B 

3rd set of results 
30 series 9 series 16 series 55 series 

 1 7.14 7.24 6.72 7.53 8.98 8.93 6.47 6.97 6.17 7.010 7.446 6.922 

 3 7.99 7.95 7.52 10.96 10.06 10.40 7.34 7.49 7.04 8.284 8.160 7.851 

 6 9.46 9.51 9.15 11.49 11.41 11.34 7.45 7.42 7.25 9.209 9.211 8.955 

 12 12.31 12.61 12.42 13.43 13.37 13.12 8.65 8.48 8.44 11.431 11.533 11.375 

 18 13.91 14.10 14.00 14.93 15.08 14.65 10.13 10.01 9.93 12.978 13.071 12.923 
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Appendix B. Comparison of team A’s and team B’s results 

In order to examine the differences between team A’s (third set) and B’s (second set) results, 

each of the 55 series has been checked individually (manually) to identify the series for which 

the MAPE results produced by the two teams were different. This was the case for 10 series. 

The accuracy measure used was the absolute difference (AD) of the MAPE produced by the 

two teams: 
teamA teamB

|MAPE MAPE | . 

All the intermediate results were compared for those 10 series and this enabled the 

classification of the sources of discrepancy into three categories: 

 The smoothing parameters, which give the smallest in-sample MSE, are not very 

different but this affects the selection of the smoothing method which in turn affects 

the final results (0.01 to 0.09 in terms of absolute difference) (series 46); 

 The smoothing parameters are very different but although the same smoothing method 

is selected, the final results are very different too (up to 2.63 in terms of absolute 

difference) (series 8 and 37); 

 The smoothing parameters are slightly different and this does not affect the selection 

of smoothing method, but the final results are also different (0.01 to 0.15 in terms of 

absolute difference) (series 5, 9, 17, 18, 29, 32 and 35). 

The two teams realised that using different optimisation tools (fmincon in MATLAB by team 

A and Excel Solver by team B) is the reason for obtaining different smoothing parameters. 

This is despite the fact that both tools are minimizing the same function and using the same 

boundaries for the parameters. It has been found that, in all cases, the MATLAB-produced 

parameters give the smallest in-sample MSE. This could result in a different smoothing 

method as for series 46. In this case, the 0.0019 absolute difference of the in-sample MAPE 

for the Holt’s method between the two teams, results in team A selecting Holt’s method while 

team B selects the damped trend.  
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On the other hand, series 32 from the third category which has the highest absolute difference 

(0.15) may be considered. Both teams have selected the Holt’s method for Classical 

Decomposition but the 0.0044 AD in   (the smoothing constant for smoothing the level in 

Holt’s method) and 0.0144 AD in   (the smoothing constant for smoothing the trend in 

Holt’s method) leads to 0.0056 AD for the in-sample MAPE and 0.15 to 0.07 AD for the out-

of-sample MAPEs for horizons 1 to 18 respectively.  

For the second category, which has the highest amount of discrepancies, series 37 has the 

highest difference in MAPEs between the two teams. Again, both teams have selected Holt’s 

method for L-K seasonal adjustment, but there is a 0.3418 AD in  . This leads to 0.0676 AD 

in the in-sample MAPEs but 2.63 to 2.35 AD in the out-of-sample MAPEs for horizons 1 to 

18 respectively. 

Further examination reveals that the difference in smoothing parameters for series 37 (CD and 

LK results) was because the Excel solver optimisation stops at a local minimum when starting 

from   equal to 0.1 (for Holt’s method). It can be seen in Table B.1 that changing the starting 

value to 0.01 would result in selecting 0.01 which is the global optimum for the specific range 

of    (0.01 0.9).  

Table B.1  

The effect of using different starting values in EXCEL optimisation. 

 

 Holt’s CD Holt’s LK 

Starting Value 0.1 0.01 0.1 0.01 

  0.249703 0.01 0.351805 0.01 

  0 0 0 0 

In-sample MSE 963415.8 937052.1 978913.5 964858.5 

 

Correcting for series 37, the third and final set of results by team B is summarized in Table 

A.1. 
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Appendix C. Flowchart  

The flowchart of the forecasting process (Figure 3) is expanded in this Appendix.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. C.1. Reading and Cleaning Data  

  

Remove the annual and quarterly series from 111 series of M-competition (Makridakis and Hibon, 1979) to get 68 

monthly series 

Remove the following series: 
6 series with fewer than 36 observations: MNB2, MNB38, MNI4, MNG1, MNG19, MND50 
1 series with bizarre behaviour (It drops from 5000 to 200 over 10 months): MND23 
6 series which were judged to be non-seasonal because the variance of the deseasonalised series exceeded that of 

the original series. We assume that  these variances were based on the series excluding the last 18 observations 

and that they were based on the CD seasonal indices (using the  seasonal indices derived though the 

recommended shrinkage method resulted in more or less than 6 series failing this test): MNI112, MRG8, MRC27, 

MRC36, MNC35, MNC44 

Read the data for the remaining 55 series: 
MRM7, MRM17, MRB8, MRB17, MRB26, MNF3, MNM6, MNM15, MNM24, MNM33, MNM43, MNM52, MNM61, 

MNM70, MNB11, MNB20, MNB29, MNB47, MNB56, MNB65, MRI2, MRI11, MNI13, MNI22, MNI31, MNI40, MNI49, 

MNI58, MNI67, MNI76, MNI85, MNI94, MNI103, MNI122, MNI131, MNI140, MNI149, MNI158, MNI167, MRG17, 

MRG26, MRC9, MRC18, MNG10, MNG28, MNG37, MNC8, MNC17, MNC26, MND5, MND14, MND32, MND41, 

MND59, MND68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Reading and Cleaning Data 
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Fig. C.2. Parameter Specification 
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Withhold last 18 months of data and use the remaining data to estimate the seasonal factors (SFs) using: CD, J-S and L-K 

CD 

SFs? 
J-S 

SFs? 
L-K 

SFs? 
No No 

 As explained in p 670, MW 

 Normalize seasonal factors 

to sum to 12 by multiplying 

each of them by: 

12/(sum of non-normalized 

indices) 

 As explained in p 671 

 Normalize seasonal factors 

to sum to 12 by multiplying 

each of them by: 

12/(sum of non-normalized 

indices) 
  

 As explained in p 672 

 Normalize seasonal factors 

to sum to 12 by multiplying 

each of them by: 

12/(sum of non-normalized 

indices) 
  

Calculate absolute skewness from:  

Yes Yes Yes 

Calculate the deseasonalized data based on each set of seasonal estimates. 
  

Forecast each deseasonalized series using simple exponential smoothing (SES), Holt’s method and damped trend. 

Categorize series into three categories based on Table 5, using the absolute skewness (above equation) and 𝑊𝐽−𝑆 

(equation 3): L–K recommended series                    J-S recommended series                    CD or J-S recommended 

series 
  
  
  

SES Holt’s 

method 
Damped 

Trend 
No No 

 Initialize level as 5.5 times the trend 

subtracted from the first mean. 

  
  
 α is between 0.01 and 0.9. 

 Optimize parameters so that the 

one-step-ahead in-sample MSE is 

minimized with 0.1 as the starting 

value.  

 Exclude first observation from the 

MSE calculations to ensure 

comparability between SES and the 

other two methods. 

  

 Initialize level as SES. 

 Initialize trend as the difference 

between the mean of the first and 

second years, divided by 12. 

 α is between 0.01 and 0.9; β is 

between 0 and 0.15.  

 Optimize parameters so that the 

one-step-ahead in-sample MSE is 

minimized with 0.1 as the starting 

value.   

 Exclude first observation from the 

MSE calculations. 

  
  

 Initialize level as SES. 

 Initialize trend as the difference 

between the mean of the first and 

second years, divided by 12. 

 α is between 0.01 and 0.9; β is 

between 0 and 0.15; ϕ is between 

0.9 and 1.0.  

 Optimize parameters so that the 

one-step-ahead in-sample MSE is 

minimized with 0.1 as the starting 

value. 

 Exclude first observation from the 

MSE calculations. 

  

Yes Yes Yes 
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Fig. C.3. Prediction 

 

 

 

 

 

 

 

Fig. C.4. Accuracy Assessment 

 

 

 

 

Appendix D. Supplementary material 
 

The following supplementary material related to this article is included in the website of the 

International Journal of Forecasting:  

1. A colour version of the flow chart presented in Figure 2 and Appendix C; 

2. The MATLAB (7.12) code used to generate the results produced by team A; 

3. The Visual Basic (embedded in the Microsoft Excel 2003) code and the Excel analysis 

used to generate the results produced by team B. 

  

Reseasonalize the forecasts by multiplying the deseasonalized forecasts by each set of seasonal estimates        
(CD, J-S, L-K). 
  

Calculate non-rolling forecasts for hold-out sample.  

 Select the exponential smoothing method that produces the smallest in-sample MAPE for each series and set of 
seasonal factors. 

 Exclude the first observation from the in-sample MAPE calculations to ensure comparability between SES and the 
two Holt’s methods. 

  

 Calculate the out-of-sample MAPEs for all 55 series. 

 Calculate the out-of-sample MAPEs for the three categories (L–K recommended, J-S recommended, or CD or J-S 
recommended series) based on the information about which series belongs to which category.  

 Compare the out-of-sample MAPEs in order to evaluate the seasonal estimates.  

 Evaluate each forecast over five horizons: 1, 3, 6, 12, and 18 months based on equations 12 and 13 (MW). 
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