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Abstract: 

Although it is commonly assumed that biomass allometric models are site specific, evaluations 

of site-effects are rarely undertaken. In this paper we develop biomass-allometric models to 

determine site influences. This study is based on data from 240 Norway spruce trees (Picea 

abies (L.) Karst.), growing in 24 early-growth plantations. A multilevel modelling approach was 

adopted and intraclass correlation was used to evaluate site effects. Results indicated that 

biomass allometric models were highly specific to sites and that, depending on the biomass 

component and the type of predictor adopted, some 33% and 86% of overall model variance 

could be attributed to forest stand effects. The remaining variance was attributable within stand 

variability. Stem biomass was the most site-specific biomass component whereas branch 

biomass was the least influenced by site effects. Diameter at collar height (D) was less site-

specific than height (H) in predicting biomass. Using D and H within the same model as distinct 

predictors, although improving the model fit, increased the model site-specificity. However, 

when D and H were combined in one predictor expression (i.e. D2H), this reduced model site 

specificity, despite requiring fewer parameters than other models. This also compensated for 

undesirable collinearity effects amongst predictor variables. Furthermore, for the sampled 

diameter range, the site-specificity was mainly driven by biomass allocation pattern (to 

branches, needles and roots). The considerable between site variability of allometric 

relationships suggests that consideration of stand effects is essential for the robust prediction of 

biomass. 

 

Keywords: site-specific biomass model; tree components; allometric equation; tree diameter; 

tree height; intraspecific variability 
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1. Introduction 

Forests play an important role in the global carbon cycle [1,2], and it is well established that 

increasing forest area can immediately influence rates of carbon sequestration by increasing 

capacity for carbon dioxide uptake through the accumulation of new plant biomass [3]. 

European forests have expanded in area by 21.2 million hectares since 1990, increasing at a rate 

of 0.85% per year, as a result of afforestation and natural regeneration [4]. However, despite 

apparent increase in forest area, other research suggests that the European forest carbon-sink 

may be at the point of saturation [5], and this is believed to be due to decrease in stem volume 

increment rate. An increased rate of afforestation is therefore needed if earlier net gains in the 

forest carbon sink are to be maintained [5]. As one of the most extensively grown and 

economically important species in Europe, Norway spruce (Picea abies [L.] Karst.), it is widely 

used in afforestation schemes for production, protection and erosion control [6,7]. 

Biomass allometric models are commonly used to estimate carbon accumulation in 

forests [1,8]. Despite recent advances in remote sensing and other survey instruments, 

allometric models remain fundamental to biomass prediction and for calibrating emerging 

technologies and new approaches to estimation [9–11]. Biomass allometric models are 

regression models that use tree diameter and/or height to predict biomass [12,13], and due to the 

importance of Norway spruce throughout Europe, there is considerable interest in their 

application to this species [14–20]. 

Developing generalized biomass allometric models with high prediction accuracy and 

precision is widely regarded to be a challenging undertaking [21–24]. Among other refinements 

wood density has been used to improve biomass prediction [24,25], as it is well known that 

wood density is highly heritable [26]. This is consistent with a view that interspecific genetic 

variability is related to, and can be explained by wood density variation. Height-diameter (H–D) 

ratio is also used to improve prediction accuracy of allometric models [21,23,24]. As each forest 

site has particular environmental conditions, and because it is widely understood that H–D ratio 

is in part affected by environmental conditions [27–29], it follows that the inclusion of height 

(together with diameter) in allometric models may explain the site effect. However, wood 

density and height has been shown to make relatively little contribution to improving prediction 

of biomass at particular forest stands [30]. It is therefore unlikely that either accurate 

generalized allometric models will be developed or predictions will improve without first 

understanding the factors that drive variation in such models and how the variance is partitioned 

within and between stands. 

Because site-specificity is an important constraint in developing accurate generalized 

allometric models, the development of new allometric models often involves an investment of 
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substantial resources to record and model biomass at individual sites. Investigating the site-

specificity of allometric models is potentially useful in many ways, such as: (i) identifying the 

conditions under which it is fact possible to apply any one given allometric model to other forest 

stands; (ii) guiding the selection of statistical means and modelling algorithms appropriate to 

circumstances. Because range of covariates (i.e. diameter at breast height, DBH; tree height) is 

often limited within a forest stand, researchers commonly sample trees from more than one 

forest stand. Sampling more than one tree from each of multiple stands, results in clustered data. 

The decision to allow or adjust for a clustering effect (of forest stand on allometric model), is 

determined by the extent to which variance is attributable to a forest stand effect. If there is no 

discernible site-specificity effect, then it is acceptable to apply methods that disregard 

clustering. Conversely, disregarding site-specificity/forest-stand effects when they are apparent 

is likely to bias standard errors with downstream consequences for model uncertainty and 

hypothesis testing. 

The aim of this paper was to develop biomass allometric models for Norway spruce 

trees based on data sampled from multiple forest stands and to evaluate site effects on allometric 

models, with a view to determining the following: 

i) the extent of site-specificity in biomass allometric models; 

ii) how site-specificity varies with each of the biomass components being predicted;  

iii) how site-specificity varies between individual predictors/indicators;  

iv) the underlying causes and possible consequences of site-specificity in allometric models. 

 

2. Material and methods 

 

2.1. Study sites 

The study area, in Eastern Carpathians of Romania (Fig. 1), extends some 330 km between 

southerly and northerly latitudinal extremes of 45.44°N and 47.77°N respectively. Sample site 

elevations were between 641 and 1543 m above sea level, with mean annual temperature 

ranging from 2.6 to 7.3 °C and mean annual precipitation from 643 to 933 mm. Data was 

collected from 24 randomly selected plantations between 2009 and 2010. Ages of sampled trees 

ranged from 4 to 15 years (Table 1). Species composition was entirely Norway spruce, planted 

at an initial stand density of 5,000 saplings per hectare (on a grid of 2.0 m × 1.0 m). However, 

due to mortality, stand density at the time of sampling was found to be between 3100 and 4800 

trees per hectare. Sampled stands had not been subject to thinning or other forest management 

intervention to reduce stocking levels. 
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Fig. 1. Locations of sampled plantations in the Eastern Carpathians of Romania. 

 

Table 1 
Summary characteristics of sampled plantations 

Plantation 
number Aspect Slope (°) Altitude (m) Stand density1 Age of trees 

(years) 
1 South-East 5.7 1107 4800 4 
2 East 14.0 1371 4750 6 
3 South-West 2.9 1024 4700 6 
4 South-East 38.7 1048 4750 7 
5 East 26.6 818 3750 7 
6 North 8.5 706 4050 7 
7 North 9.1 1350 3050 7 
8 North-East 17.7 989 3300 8 
9 North 1.1 1094 4600 8 

10 North-East 2.3 937 4800 8 
11 South 12.9 999 4700 8 
12 West 1.7 941 4500 8 
13 South 15.6 1004 3950 9 
14 North-West 6.8 641 4800 9 
15 South-West 8.5 1142 4750 9 
16 West 33.0 742 4700 11 
17 North-West 5.7 1114 3850 11 
18 South-West 11.3 961 3400 11 
19 South 42.0 1563 3100 12 
20 South 11.3 1122 4300 12 
21 South-West 1.7 688 4750 12 
22 North-East 16.7 901 4400 13 
23 East 2.9 942 3550 13 
24 South-West 2.9 1085 4550 15 

1 number of trees per hectare. 

 

 

 



7 
 

2.2. Biomass measurements 

In each plantation, a 200 m2 sample plot was selected as being representative of the overall 

conditions of the immediate forest stand. Root collar diameter and height measurements were 

taken for all trees and used to calculate the ‘mean height’ (i.e. the height of tree of mean collar 

area; this is analogous to mean basal area but measured at collar instead of breast height). At 

each stand, ten trees with dimensions that of ‘mean height’ were selected and destructively 

sampled for biomass measurements that also included roots. A total of 240 trees were sampled, 

with root collar diameter (referred hereafter as diameter - D) ranging from 0.6 to 10.0 cm, and 

height (H) between 53.0 and 552.0 cm. This dataset, therefore, satisfies the minimum 

requirement that samples should represent a range of one order of magnitude to be useful for 

allometric studies [31]. Root collar diameter was used instead of diameter at breast height 

because approximately 50% of sampled trees were less than 1.3 m in height. For each sampled 

tree total biomass was divided in four categories (stem - ST, branches - BR, needles - ND and 

roots - RT), which was oven dried at 80°C to constant weight, and then electronically weighed 

to a precision of ±0.1 g. 

 

2.3. Statistical analysis 

All variables were expressed as natural log transformations (ln) to ensure a linear relationship 

between variables and to correct for heteroskedasticity and thereby meet assumptions for 

purposes of applying a Random Intercept Model. Dependent variables were: ln(TB), ln total 

biomass; ln(AB), ln aboveground biomass (calculated as the sum of stem, branch and needle 

biomass); ln(ST), ln stem biomass; ln(BR), ln branch biomass; ln(ND), ln needle biomass; and 

ln(RT), ln needle biomass. Independent variables were: ln(D), ln root collar diameter; ln(H), ln 

height; and ln(D2H), the natural logarithm of the product diameter squared and height. 

A multilevel modelling approach was used to differentiate the effects of between and 

within stand variance. The study was designed so that a Random Intercept Model (RIM) could 

be applied. Within stands, sampled trees were of similar height, maximizing therefore the 

likelihood of observing the entire range of height-diameter variability (within-stand variability). 

The RIM allowed intercepts to vary with the forest stand, whereas the slope is fixed for all 

stands. The distribution of intercepts is assumed to be normal with the mean value 𝛼𝛼 and 

standard deviation 𝜎𝜎𝛼𝛼. The allometric models tested for ln biomass (ln(B)), in their log-linear 

form, were: 

ln (𝐵𝐵)𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽 × ln (𝐷𝐷)𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖     (Eq. 1) 

ln (𝐵𝐵)𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽 × ln (𝐻𝐻)𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖     (Eq. 2) 

ln (𝐵𝐵)𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽 × ln(𝐷𝐷2𝐻𝐻)𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖    (Eq. 3) 
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ln (𝐵𝐵)𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽 × ln (𝐷𝐷)𝑖𝑖𝑖𝑖 + 𝛾𝛾 × ln (𝐻𝐻)𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖   (Eq. 4) 

where 𝛽𝛽 and 𝛾𝛾 are the fixed slopes; 𝛼𝛼 is the fixed part of the intercept (the overall intercept); 𝑢𝑢𝑖𝑖 

is the random error component of the intercept, 𝑢𝑢𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝛼𝛼2), and represents the error 

component at level 2 (at forest stand level); 𝜖𝜖𝑖𝑖𝑖𝑖 is the random residual error, 𝜖𝜖𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝜖𝜖2); j = 

1…N (number of stands); i = 1…nj (the trees within stand). 

Furthermore, the ratios of tree component categories were modelled as: 

𝑅𝑅𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝑢𝑢𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖       (Eq. 5) 

Where R is the dependent variable and is represented by the proportions of tree components (i.e. 

Root-to-Shoot ratio calculated as RT/AB; and comparable treatments for ST/TB, BR/TB, 

ND/TB and RT/TB). The parameters may be interpreted similarly to those presented in Eqs. 1-

4. To find if R was significantly influenced by age, the following model was used: 

𝑅𝑅𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽 × 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖      (Eq. 6) 

The use of multilevel model for assessing the effect of age (Eq. 6) is justified by the need to 

correct p-values for the ‘nuisance effect’ of data clustering caused by greater homogeneity of 

trees within stands than between trees in the overall sample. 

 

2.3.1. Intraclass correlation coefficient (ICC) 

ICC expresses the proportion of total model variance attributable to stand effects: 

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝜎𝜎𝛼𝛼2

𝜎𝜎𝛼𝛼2+𝜎𝜎𝜖𝜖2
        (Eq. 7) 

where 𝜎𝜎𝛼𝛼2 is the variance of the intercept (𝜎𝜎𝛼𝛼is the random effect of the intercept) due to 

differences between forest stands and 𝜎𝜎𝜖𝜖2 is the residual variance (𝜎𝜎𝜖𝜖 is residual random effect), 

due to tree differences within stands. ICC was used to evaluate the site-specificity of models. 

 

2.3.2. Variance inflation factor (VIF) 

The VIF was calculated to assess the collinearity of ln(D) and ln(H) in predicting biomass, 

following Zuur et al. [32] R script. 

 

2.3.3. Akainke Information Criterion (AIC)  

AIC was used for model selection: 

𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑘𝑘 − 2ln (𝐿𝐿)       (Eq. 8) 

where k is the number of model parameters, L is the maximum likelihood estimation. 

 

The data was analysed using R version 3.3.0, package ‘nlme’ (Linear and Nonlinear Mixed 

Effects Models) [33]. 
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2.4. How to use the models for prediction of biomass? 

To use model for prediction, a back transformation of linear models is required. Therefore, the 

biomass (B, expressed in grams) can be predicted by independent variable (P, which could be D 

– expressed in cm, H – in cm or D2H – in cm3) using the following equation: 

𝐵𝐵 = 𝑒𝑒𝛼𝛼 × 𝑃𝑃𝛽𝛽 × 𝜆𝜆       (Eq. 9) 

Where 𝛼𝛼 and 𝛽𝛽 are the coefficients derived from Eqs. 1-3. However, when two independent 

variables are used (Eq. 4) the back transformed equation is: 

𝐵𝐵 = 𝑒𝑒𝛼𝛼 × 𝐷𝐷𝛽𝛽 × 𝐻𝐻𝛾𝛾 × 𝜆𝜆       (Eq. 10) 

Because in logarithmic scale the distribution of errors is different to that in arithmetic scale, the 

back transformation requires a bias correction to the intercept: 𝜆𝜆 = exp (𝑅𝑅𝑅𝑅𝑅𝑅2/2), where RSE is 

the residual standard error [34,35]. The standard errors computed in logarithmic scale should 

not be used as they are, in the arithmetic scale (back transformed). Instead, the arithmetic 95% 

confidence interval can be computed by back transformation of logarithmic 95% confidence 

interval limits (e.g. 𝑒𝑒(𝛼𝛼±1.96𝑆𝑆𝑆𝑆), not 𝑒𝑒𝛼𝛼 ± 𝑒𝑒1.96𝑆𝑆𝑆𝑆).  

 

2.5. The impact of site-effects on biomass prediction at stand level 

To assess site-effects on biomass prediction, the total biomass stock (Mg ha-1) for each 

plantation, was calculated by measuring D and H in each of the 200 m2 sample plots, then by 

applying (i) the generic models that are based on a single intercept value (α, in Eqs. 1-4) derived 

from all intercepts (one for each plantation); and (ii) the specific models based on specific 

values of the intercept for each plantation. In summary, the specific models are tailored for each 

plantation, however, the slope is common to all plantations. Furthermore, the percent difference 

(Diff (%)) between these two stocks was calculated: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (%) = 𝐵𝐵�𝑔𝑔−𝐵𝐵�𝑠𝑠
𝐵𝐵�𝑠𝑠

× 100      (Eq. 11) 

Where 𝐵𝐵�𝑔𝑔 is the predicted biomass using the generic models (i.e. (i) above) and 𝐵𝐵�𝑠𝑠 is the 

predicted biomass using specific models (i.e. (ii) above). 

 

3. Results  

 

The parameters of the multi-site allometric models are presented in Table 2. The ICC (Eq. 7) 

values for site-specificity of allometric models ranged between 0.3273 and 0.8574 (Table 2). 

Forest stand effects therefore accounted for between 33% and 86% of total model variance, the 

remained being attributable to within stand tree effects. ICC values were greater for those 

models that included height as a predictor. Diameter was therefore less site-specific than height 
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in predicting biomass. In one model (Eq. 4) the use of both independent variables site-

specificity was greater than when using D alone (Eq. 1), but less than when using H alone (Eq. 

2) to predict biomass. However, combining both predictors (Eq. 3), resulted in a reduced ICC, 

compared to Eq. 4. For one response variable (i.e. stem biomass), the ICC value was even less 

than that obtained for Eq. 1. Stem biomass demonstrated the greatest site-specificity among 

biomass components, whereas branch biomass was the least site-specific. 

 

Table 2 
Biomass Allometric Models. Notes: (i) dependent variables were ln(TB), ln(AB), ln(ST), ln(BR), ln(ND) 

and ln(RT), and predictors were ln(D) (Eq. 1), ln(H) (Eq. 2), ln(D2H) (Eq. 3) and ln(D)+ln(H) (Eq. 4); (ii) 

regression parameters are presented with their standard errors; (iii) each model is presented with the 

variance of the intercept, total model variance, Intraclass Correlation Coefficient (ICC, Eq. 7), Akaike 

Information Criterion (AIC, Eq. 8) and residual standard error (RSE). 
Dependent 
variable Predictor Eq. 𝜶𝜶 (SE) 𝜷𝜷 (SE) 𝜸𝜸 (SE) Intercept 

variance 
Total 

variance ICC AIC RSE 

ln(TB) ln(D) 1 4.0980 (0.0491) 2.2778 (0.0376) N.A. 0.0182 0.0412 0.4405 -155.2 0.1519 
ln(H) 2 -5.8505 (0.5590) 2.4558 (0.1101) N.A. 0.1421 0.1658 0.8574 -106.8 0.1538 
ln(D2H) 3 0.7644 (0.1003) 0.8035 (0.0134) N.A. 0.0196 0.0374 0.5229 -207.3 0.1337 
ln(D)+ln(H) 4 -0.1377 (0.5343) 1.4115 (0.1082) 1.0239 (0.1265) 0.0263 0.0436 0.6038 -207.5 0.1314 

ln(AB) ln(D) 1 3.8371 (0.0445) 2.3264 (0.0342) N.A. 0.0142 0.0388 0.3647 -145.3 0.1570 
ln(H) 2 -6.3653 (0.5597) 2.5165 (0.1103) N.A. 0.1424 0.1663 0.8566 -105.2 0.1544 
ln(D2H) 3 0.4671 (0.0969) 0.8158 (0.0129) N.A. 0.0179 0.0366 0.4893 -199.0 0.1368 
ln(D)+ln(H) 4 -0.5992 (0.5405) 1.3999 (0.1097) 1.0764 (0.1280) 0.0264 0.0443 0.5964 -199.9 0.1337 

ln(ST) ln(D) 1 2.7209 (0.0487) 2.2564 (0.0371) N.A. 0.0119 0.0233 0.5102 -213.4 0.1068 
ln(H) 2 -7.7002 (0.4239) 2.5454 (0.0835) N.A. 0.0803 0.0965 0.8320 -200.9 0.1274 
ln(D2H) 3 -0.6700 (0.0711) 0.8084 (0.0095) N.A. 0.0095 0.0208 0.4543 -320.3 0.1067 
ln(D)+ln(H) 4 -2.4168 (0.3940) 1.2511 (0.0808) 1.2325 (0.0937) 0.0125 0.0227 0.5514 -336.7 0.1010 

ln(BR) ln(D) 1 2.3250 (0.0547) 2.5084 (0.0421) N.A. 0.0208 0.0634 0.3273 -17.9 0.2066 
ln(H) 2 -8.6705 (0.6571) 2.7123 (0.1295) N.A. 0.1904 0.2355 0.8086 38.8 0.2123 
ln(D2H) 3 -1.2879 (0.1323) 0.8767 (0.0177) N.A. 0.0332 0.0699 0.4746 -39.7 0.1916 
ln(D)+ln(H) 4 -1.3230 (0.7077) 1.7455 (0.1473) 0.8854 (0.1691) 0.0342 0.0710 0.4813 -38.0 0.1918 

ln(ND) ln(D) 1 3.0724 (0.0652) 2.2201 (0.0499) N.A. 0.0321 0.0719 0.4461 -24.8 0.1996 
ln(H) 2 -6.6488 (0.6568) 2.3985 (0.1294) N.A. 0.1935 0.2310 0.8376 -0.5 0.1937 
ln(D2H) 3 -0.1402 (0.1544) 0.7780 (0.0206) N.A. 0.0478 0.0817 0.5844 -49.3 0.1843 
ln(D)+ln(H) 4 -1.2124 (0.7657) 1.3277 (0.1530) 1.0391 (0.1805) 0.0605 0.0936 0.6462 -49.4 0.1820 

ln(RT) ln(D) 1 2.5280 (0.0723) 2.1599 (0.0553) N.A. 0.0395 0.0878 0.4502 21.4 0.2197 
ln(H) 2 -6.9264 (0.5826) 2.3328 (0.1148) N.A. 0.1443 0.1999 0.7217 78.5 0.2358 
ln(D2H) 3 -0.6427 (0.1438) 0.7633 (0.0192) N.A. 0.0389 0.0846 0.4592 11.4 0.2140 
ln(D)+ln(H) 4 -0.1957 (0.7718) 1.6202 (0.1615) 0.6548 (0.1847) 0.0379 0.0839 0.4513 12.6 0.2145 

 

Diameter-based models produced lower AICs, and diameter was a more reliable 

predictor for biomass than height. Including height as an additional independent variable (Eq. 4) 

to predict biomass, improved prediction for all models (with reduced AIC values compared to D 

or H alone, see Table 2). The improvement in prediction was associated with an increase in site-

specificity (indicated by greater ICC) compared to Eq. 1. However, combining D and H within a 

single independent variable (Eq. 3) although not reducing the AIC, resulted in a lower ICC than 

for Eq. 4. 
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The relationship between height and diameter was also highly site-specific. As much as 

77% of total variance in H–D relationship was attributable to differences between forest stands 

and only 23% was due to individual tree within-stand variation. 

Because ln(H) and ln(D) were highly correlated (Pearson r = 0.972) these variables 

were tested for collinearity effects in Eq. 4 using variance inflation factor (VIF). VIF values 

obtained were 6.38 when predicting TB, 7.21 when predicting ST, 8.37 when predicting BR, 

5.73 when predicting ND and 8.89 when predicting RT. These values indicate that ln(H) and 

ln(D) are highly collinear and, therefore, exhibit redundancy with respect to explaining the 

distribution of the dependent variable. This collinearity has resulted in increased standard errors 

for Eq. 4 compared to Eq. 3. 

Furthermore, when testing whether the relationship between ln(B) and ln(D) was 

affected by ln(H), it was found that with respect to predicting TB, the interaction was found to 

be significant (p = 0.031). The interaction effect was also significant for predicting AB (p = 

0.015), BR (p < 0.001) and ND (p = 0.027). However, the effect was not significant when 

predicting ST (p = 0.941) and RT (p = 0.181). 

The proportions of tree components revealed large site effects. Root-to-shoot ratio (Fig. 

2, a) greatly varied between-sites (ICC = 0.450), and significantly declined with age (p = 0.027). 

Furthermore, all individual tree components, when expressed as ratios of total tree biomass (Fig. 

2, b-e) were found to be highly site specific. ICC varied from 0.456 for RT/TB up to 0.755 for 

BR/TB. The values obtained for ST/TB and ND/TB were 0.634 and 0.494 respectively. ST/TB 

revealed a declining trend up to 8-9 years old trees (Fig. 2, b; plantation 12-13). This appeared 

to be followed by an upward recovery. Opposite trends to ST/TB were observed for ND/TB 

(Fig. 2, d). The proportion of branch biomass (i.e. BR/TB) increased with age (p < 0.001). 

Conversely, the proportions of needle biomass and root biomass (out of total tree biomass) 

significantly decreased with tree age (p = 0.026 and respectively p = 0.027). As the number 

code for each plantation also corresponds to an age gradient (Table 1), age trends in the data are 

also apparent from Fig. 2. 
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Fig. 2. Boxplot comparisons of distributions for (a) Root-to-Shoot, (b) ST/TB, (c) BR/TB, (d) ND/TB 

and (e) RT/TB ratios within and between plantations (numbered 1–24). Notes: (i) tree ages by plantation 

number were: #1, 4 years; #2–3, 6 years; #4–7, 7 years; #8–12, 8 years; #13–15, 9 years; #16–18, 11 

years; #19–21, 12 years; #22–23, 13 years; and #24, 15 years; (ii) Boxplot central lines represent median 

values, boxes represent the mid-quartile ranges; lines extend to values within upper and lower quartile 

limits; outliers beyond the interquartile range are represented as individual points. 

 

The consequences of site-effects on allometric models resides in the underestimation or 

overestimation of biomass at stand level. Data analyses revealed that when using D as a 

predictor (Fig. 3, a), the generic allometric model overestimated stand-level biomass by a 

margin of up to 27.2% (Table 3). The consequences of using H as predictor of biomass (Fig. 3, 

b), were more severe, yielding overestimations of up to 103.0% and underestimations by as 
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much as 75.9%. When both D and H were used to predict biomass, levels of over- and 

underestimations were somewhere between those produced by D and H alone. 

 

Table 3 
Total biomass (Mg ha-1) for each plantation, as predicted by Equations 1-4, and comparisons of values 

obtained using generic vs. specific models (Diff, Eq. 11). 

Plantation 
TB = f(D) TB = f(H) TB = f(D2H) TB = f(D, H) 

Generic 
Mg ha-1 

Specific 
Mg ha-1 

Diff. 
% 

Generic 
Mg ha-1 

Specific 
Mg ha-1 

Diff. 
% 

Generic 
Mg ha-1 

Specific 
Mg ha-1 

Diff. 
% 

Generic 
Mg ha-1 

Specific 
Mg ha-1 

Diff. 
% 

1 0.187 0.151 +23.8 0.321 0.162 +98.1 0.200 0.150 +33.3 0.207 0.150 +38.0 
2 0.131 0.144 -9.0 0.201 0.099 +103.0 0.133 0.126 +5.6 0.136 0.122 +11.5 
3 0.254 0.231 +10.0 0.501 0.483 +3.7 0.290 0.239 +21.3 0.305 0.241 +26.6 
4 0.452 0.400 +13.0 0.409 0.371 +10.2 0.404 0.380 +6.3 0.397 0.376 +5.6 
5 0.346 0.345 +0.3 0.542 0.404 +34.2 0.370 0.355 +4.2 0.381 0.359 +6.1 
6 0.783 0.766 +2.2 1.003 0.804 +24.8 0.807 0.766 +5.4 0.820 0.768 +6.8 
7 0.632 0.559 +13.1 0.509 0.505 +0.8 0.559 0.529 +5.7 0.544 0.522 +4.2 
8 0.407 0.320 +27.2 0.416 1.723 -75.9 0.379 0.317 +19.6 0.377 0.318 +18.6 
9 0.872 0.818 +6.6 0.478 0.795 -39.9 0.683 0.793 -13.9 0.644 0.792 -18.7 

10 1.166 1.192 -2.2 1.449 1.342 +8.0 1.193 1.206 -1.1 1.210 1.216 -0.5 
11 2.379 2.524 -5.7 1.463 2.677 -45.3 2.009 2.549 -21.2 1.921 2.571 -25.3 
12 1.965 1.855 +5.9 1.233 1.900 -35.1 1.652 1.827 -9.6 1.582 1.831 -13.6 
13 1.422 1.499 -5.1 0.851 1.528 -44.3 1.177 1.460 -19.4 1.121 1.463 -23.4 
14 4.508 4.430 +1.8 3.664 4.440 -17.5 4.208 4.356 -3.4 4.131 4.351 -5.1 
15 7.230 8.788 -17.7 8.057 8.278 -2.7 7.632 8.591 -11.2 7.725 8.554 -9.7 
16 2.855 3.146 -9.2 2.630 3.254 -19.2 2.740 3.116 -12.1 2.716 3.124 -13.1 
17 10.630 13.617 -21.9 11.934 13.454 -11.3 11.473 13.491 -15.0 11.645 13.491 -13.7 
18 18.836 16.500 +14.2 11.680 14.892 -21.6 17.203 15.691 +9.6 16.606 15.486 +7.2 
19 7.666 7.300 +5.0 5.002 7.115 -29.7 6.912 7.154 -3.4 6.680 7.132 -6.3 
20 16.100 15.686 +2.6 15.259 15.173 +0.6 16.603 15.385 +7.9 16.616 15.295 +8.6 
21 20.637 23.633 -12.7 20.750 22.617 -8.3 21.842 23.130 -5.6 21.992 23.016 -4.4 
22 16.872 17.307 -2.5 17.791 16.916 +5.2 18.029 17.055 +5.7 18.219 16.977 +7.3 
23 29.547 35.985 -17.9 38.889 34.598 +12.4 34.723 35.360 -1.8 35.879 35.162 +2.0 
24 24.978 26.047 -4.1 35.853 26.709 +34.2 29.891 26.310 +13.6 31.098 26.290 +18.3 

 

 

 

 

Fig. 3. Total tree biomass as a function of (a) D, (b) H, and (c) D2H, as predicted by Equation (7). Note: 

The bolded, black line represents the overall regression (generic allometric model), grey lines represent 

the models that are specific to each plantation. 
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4. Discussion 

This study is concerned with the development and evaluation of biomass allometric models for 

young Norway spruce trees that include a site-effect. The site-specificity of models is also 

assessed. Results demonstrate that parameter estimates are comparable to those published by 

Pajtík et al. [18] in their study of naturally regenerated Norway spruce trees (of similar height 

and diameter dimensions) in Slovakia. However, despite the larger sample of this study, the 

standard errors for our models were greater than those reported by Pajtík et al. [18]. This is due 

to the fact that in our study the effect of the forest stand was included, and standard errors were 

therefore adjusted accordingly. However, if no such adjustment of standard errors were 

included, the values reported here would remain comparable to those published by Pajtík et al. 

[18]. 

Although the level of site-specificity in biomass allometric models is commonly 

unknown, it is often assumed that models are site-specific [30,36]. However, developing 

individual allometric models for every forest stand is unrealistic. As a result, some researchers 

suggest that models may be safely applied at regional level [37,38], although in forestry 

practice, the same allometric models are often applied at country level. Such general application 

is often argued on the basis that much of the site effect is due to environment and, therefore, 

regional use of these models may be justifiable due to relatively low spatial variation in climate 

and soil conditions. We demonstrate, depending on the biomass category and type of predictor 

used, that for young Norway spruce trees, more than 33% of the total model variance may be 

attributable to between stand effects. The remaining variance was attributed to within stand 

(individual tree) effects. 

Understanding how variance is partitioned in allometric models is essential. If site-

specificity is found to affect the accuracy of biomass prediction by generic biomass allometric 

models, such specificity may lead to the inaccurate prediction of biomass in other forests stands 

due to the level 2 (forest stand) errors. Although the regression line demonstrates how the mean 

biomass changes with a predictor, this mean response represents the overall ‘multi-group’ mean 

for all forest stands (Fig. 3, bold, black line). However, because of site-specificity, the intercept 

of each group was different, thus the mean biomass response for each group/stand was also 

different (Fig. 3, grey lines). This difference represents the forest stand error at level 2 (𝑢𝑢𝑖𝑖, Eqs. 

1-4). However, level 2 errors are assumed to be normally distributed with mean zero and 

standard deviation (𝜎𝜎𝛼𝛼2). Therefore, testing the accuracy of a generic allometric model in a 

specific forest stand [30,39,40] would yield a result that strictly depends on the magnitude of 

this error (which is random). Thus, whether or not a generic biomass allometric model (that has 

ICC > 0) is reliable or inaccurate estimator of biomass for a particular stand is largely a matter 
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of chance. Results demonstrate that, because of site specificity, biomass prediction errors at 

level 2 could be considerable, and that the use of generic model instead of one specific to the 

site in question resulted in prediction bias of up to 103%. On the other hand, if site-specificity 

were zero, then the intercepts of all forest stands would coincide (errors at level 2 would be 

zero), resulting in accurate predictions of biomass for all stands. Our findings strongly indicate 

that the application of allometric models to other forest stands within the same region (without 

testing for within region effects) may be unsafe.  

From a site-specificity perspective, the most suitable predictor candidate for developing 

generic biomass allometric models would be the one that has very low site-specificity (ICC = 0 

or close to zero), thereby minimizing level 2/forest-stand error. In our study, diameter exhibited 

less site-specificity than height, and would therefore appear to be a more suitable predictor of 

biomass in generic allometric models. 

The main drivers of site specificity in allometric models are H–D ratio, biomass 

allocation pattern (to vegetative organs) wood density, and these three are moderated by 

genotype [41], competition [42–44] and environmental conditions [27,45–47]. Therefore, it can 

be expected that unique stand-level interactions between genotype, competition and 

environmental factors will influence H–D ratios, biomass allocation patterns and wood 

densities, and such stand level effects will be further reflected by the site-specificity of biomass 

allometric models. 

 

4.1. Why did site-specificity vary between the different biomass components?  

Stem biomass is highly dependent on H–D ratio [48]. Assuming a constant taper form and a 

constant wood density, stem biomass would be exclusively dependent on D2H (when D is 

measured at the base of the stem). For those species where taper form and wood density is 

relatively constant, stem biomass remains strongly correlated with diameter and height. In our 

sample, for any constant diameter, the H–D ratio was found to vary between sites (ICC = 0.77), 

thus strongly indicating that tree height was responsible for the high site-specificity of stem 

biomass component. In contrast, branch and needle biomass are less dependent on H–D ratio 

and may be more sensitive to competition with the neighbouring trees [42,49], which is why 

they exhibit greater within stand variability and, consequently, are less prone site-specific 

effects when modelled.  

 

4.2. Why was height more site-specific than diameter in predicting biomass? 

The greater site-specificity of height as predictor is in part captured by between stand variation 

in H–D ratio. Assuming that stem biomass is proportional to D2H [12], it follows that the 
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proportional effect of diameter on biomass is twice as great as that of height. For models where 

biomass is a function of height, B = f(H), between stand effects (for a given tree height) are due 

to diameter variation. Thus, for any constant tree height across stands, corresponding diameter 

would vary between stands (due to site specificity of H–D). As diameter exerts a more powerful 

influence on tree biomass, diameter explains a greater proportion of biomass variance than 

height. It therefore follows that a biomass-diameter relationship will be less influenced by site 

effects than that for biomass-height. Because height is a more site-specific predictor of biomass 

than diameter it would be ill-advised to develop generic biomass allometric models based on 

height alone. Nevertheless, regarding the use of other possible biomass predictions, the 

combination of crown diameter (not considered in this study) with height is also attractive 

because of potential for data collection by remote sensing means [11]. 

 

4.3. The underlying drivers of site-specificity in allometric models 

Many workers suggest that including height in models will offset site effect 

[21,23,24,37,50,51]. The rationale is clear; given that H–D relationship is site-specific, it is 

likely that for any constant diameter, height will vary between stands. It therefore follows that 

trees of similar diameter (and taper) but greater height will possess greater stem biomass. It is 

also assumed that there is a strong relationship between stem biomass and total tree biomass. 

Therefore, the inclusion of height in models would be expected to reduce their site-specificity. 

Findings reported here do demonstrate that height inclusion reduces model site-specificity, but 

only for stem biomass and only when the combined expression for D and H was applied (i.e. 

D2H). However, for total tree and total aboveground biomass, our results indicate an entirely 

opposite pattern that including height increased the site-specificity of models. To explain this 

seemingly anomalous finding requires a deeper analysis of the relationship between dependent 

variables. Firstly, site-specificity of the relationship ln(TB)–ln(ST) was found to be high (ICC = 

0.68), suggesting that factors other than H–D ratio may also be responsible. Additionally, on 

examining the site-specificity of ln(TB)–ln(BR), ln(TB)–ln(ND) and ln(TB)–ln(RT), it became 

apparent that these relationships were extremely site-specific (ICC = 0.98, 0.97 and 0.98 

respectively). This indicates that there is little within stand variation of the relationships TB–

BR, TB–ND, TB–RT (all of which demonstrate the pattern of biomass allocation), in contrast to 

considerable between stand variation. In comparison with large trees, where stem biomass forms 

the dominant component of total biomass, it is the tree components (i.e. branches, needles and 

roots) of smaller trees (the subject of this study) that account for a greater proportion of overall 

tree biomass. Therefore, for small trees, the main driver of site-specificity seems to be the 

allocation pattern to branch, needle and root biomass, and not height-diameter ratio as it was 
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previously suggested for large trees [24,27,37,51,52]. Summarising, the inclusion of height in 

allometric models did not compensate for or reduce the site-specificity of models because 

between site variation was largely driven by biomass allocation to branches, needles and roots. 

However, in mature trees, where stem proportion of total biomass is greater, one might expect 

H–D ratio be a more significant influence of between site variation than biomass allocation to 

other vegetative components, although this is not tested here. 

 

4.4. Ecological implications 

Variance in species-specific allometric models is indicative of the plasticity of biomass 

allocation, and is therefore indicative of a genotype capacity to respond with phenotypes that are 

adjusted to prevailing environmental conditions [47]. It is therefore only to be expected that the 

relationship between biomass and tree dimensions (morphological traits) will vary between 

forest stands (the source of between-stand allometric variance), in response to differences in: 

climate and soil conditions; levels of tree competition (which may depend on development 

stages within rotation cycles); and genotype (between-stand genetic variation). Site-specificity 

is expressed as the proportion of total model variance (the sum of within- and between-stands 

variance) that is attributable to between-stand variance. If within- is equal to between-stands 

variance, site-specificity is 50%. Our data revealed that forest stand variance could be 

considerably greater than that within stand effects. The most site-specific model encountered in 

this study (aboveground biomass predicted by height, see Table 2), demonstrated that forest 

stand effects were nearly six times greater than within-stand allometric variance. 

Both within- and between-stands allometric variances are produced by the spatial 

diversity of genotype, competition and environmental conditions. It is to be expected that 

because stands generally occupy relatively small and homogenous areas, within-stand 

environmental conditions will range less widely than between stands. In contrast, studies of 

genetic variation report greater within-stand effects for Norway spruce growing in 

autochthonous stands, than that between-stands [53,54]. Therefore, in natural forests, we may 

conjecture that the main vector driving within-stand allometric variability may be genotype, and 

that for between-stands variability is environment. However, this may not hold for planted 

forests, as many progenies may be seeded from the fewer trees, and therefore share a similar 

genotype. Our study was only of plantation stands, which have been demonstrated to be less 

genetically diverse than natural forests [55]. Since lower genetic variability within the forest 

stand also reduces morphological variation in tree dimension and in the allocation of biomass to 

tree parts, this may increase the relative proportion of overall variation explained by between 

stand effects. Therefore, as a consequence of their lesser genetic variation, plantations may 
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exhibit a greater proportion of site-specific variation when compared to natural forests. This is 

consistent with the findings of Chave et al. [24] who in studies of pantropical natural forests 

reports that only 21.4% of the variance in biomass allometry (for which aboveground biomass 

was predicted from D, H and wood density) was explained by between sites effects and that the 

remaining 78.6% was attributable to tree variation within sites. 

Intraspecific genetic variation accounts for the fact that individual trees may respond 

uniquely to similar environmental stimuli, resulting in variations in tree architecture and wood 

density (these two traits define tree biomass allometry). Trees with similar genotypes, may 

adopt different biomass according to prevailing environmental conditions. As a general rule, 

trees will allocate greater biomass to that component that will allow them to capture more of the 

resource that most strongly limit their growth [56]. Poorter et al. [46] demonstrated that, among 

the environmental factors they considered, irradiance had the strongest effect on allocation. As a 

result, competition for light stimulates trees to invest in height growth, which in turn, may 

confound expected H–D relationships. This is consistent with our findings of a highly site-

specific H–D ratio, and, as consequence, stem biomass was the most site-specific biomass 

component. 

The site-specificity of allometric models may be also be a function of genetic diversity 

whereby relatively high between site allometric (and tree growth-form) variation and low within 

site variation would also be indicative of low within stand genetic variation. Such allometric 

variation could therefore perhaps be useful as a subsidiary indicator of population genetic 

diversity. 

 

4.5. Collinearity in allometric models 

Equations 3 and 4 contain both independent variables (D and H). In equation 3 the two variables 

are combined in a single expression but are independently expressed equation 4. Collinearity is 

the phenomenon by which strong linear relationships exist between two or more explanatory 

(predictor or independent) variables in multiple regression [57,58]. This is clearly relevant to 

biomass allometric models, as D and H are always correlated. When highly correlated, D and H 

will inevitably be redundant or repetitious some proportion of biomass variation. In such cases, 

although models may express the combined predictive power of all the explanatory variables 

used, they may not provide reliable results as to the predictive value of a particular explanatory 

variable (here D or H) or of the degree to which it is redundant in relation to the other 

predictors. Thus, regression coefficients are not precise (less identifiable), as is reflected by their 

standard errors. However, a further concern of collinearity is that regression coefficients become 

sensitive to small changes in the dataset which destabilise models so that (in this case) such 
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changes alter coefficients and profoundly affect biomass prediction. Dormann et al. [57] 

demonstrated that the collinearity affects seriously model prediction when predictors are highly 

correlated (Pearson r > 0.7).  In our study ln(D) and ln(H) were also found to be very highly 

correlated (Pearson r = 0.972), and the variance inflation factor (VIF) of 6.38 for total biomass 

confirmed that predictors were highly collinear.  

As with data clustering, collinearity increases standard error [57] extending the range of 

confidence intervals and increasing model uncertainty. Such increases in standard error lead to 

underestimates in the calculated statistics (and confidence) in regression coefficients so that the 

probability of falsely accepting a null hypothesis in a t-test (t scores) is increased, leading to 

type II errors (false negatives). Therefore, collinearity increases the p-values (in ANCOVA or 

multiple regression) and conceals the main effect. 

Merging (or combining) two independent variables (e.g. D and H) in one (i.e. D2H) 

overcomes limitations of collinearity, and also results in a less complex ‘simple’ regression 

model. Our findings demonstrated that the combined expression for D and H also reduced the 

site-dependency of the model (i.e. improved its generic application) when compared to the 

equivalent multiple regression model. However, some further investigation is required to more 

fully understand the statistical consequences of combining such expressions, and whether this 

approach can reliably predict biomass.  

Therefore, we do not recommend using D and H as distinct independent variables to 

predict biomass (Eq. 4), because of high site-specificity and the collinearity that exists between 

D and H. However, our results suggest that diameter and height may be used together when 

combined as a single independent variable (D2H), providing interpretation proceeds with 

appropriate checks and due caution. 

 

4.6. Further directions 

The development of a reliable species-specific and generic biomass allometric model able to 

predict biomass across a diverse range of forest stand types will depend on discovering a 

predictor that fully accommodates forest stand effects (i.e. has zero or very low site-specificity). 

This will require an understanding of how allometry responds to genetic, competition and 

environmental variation as well as the effects of their interaction. 

 

5. Conclusions 

Having developed allometric models for Norway spruce trees and evaluated their site-

specificity, our findings indicate that site-specificity for models ranged between 33 and 86%, 

depending upon the predictor used and target biomass component to be predicted. Diameter was 
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demonstrated to be less site-specific than height. Branch biomass was the least site-specific 

biomass component whereas stem biomass was the highest (i.e. exhibited greatest between site 

variation). For the tree size classes represented by this study, site-specificity appeared to be 

mainly driven by differences in biomass allocation pattern to branches, needles and roots. The 

consequences of site-specificity are the potential for systematic errors in biomass prediction at 

stand level. In the sample evaluated by this study, the use of generic allometric models produced 

overestimations of total biomass at stand level of up to 103% and underestimations of up to 

76%. The level of bias depended on the type of predictor applied. The highly site-specific nature 

of allometric models indicates that site effects cannot be ignored by further studies if these are 

to result in reliable models for biomass prediction and inference. 
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