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Abstract

This paper investigates the consequences of ignoring the clustered data structure on allo-

metric models. Clustered data, in the form of multiple trees sampled from multiple forest

stands is commonly used to develop biomass allometric models. Of 102 reviewed papers

published between 2012 and 2016 that reported biomass allometric models, 84 (82%) have

used a clustered sampling design. However, in as many as 80% of these, the clustered data

structure was ignored, potentially violating the independence assumption in ordinary least

squares methods. The consequences of ignoring clustered data structure were empirically

validated using two clustered biomass datasets (of 110 and 220 trees, with the cluster size

of 5 and 10 trees respectively). We showed that when Intraclass Correlation Coefficient

(ICC) was higher than zero, ignoring the clustered data structure returned underestimated

standard errors, affecting further the confidence interval and t-test results. The underestima-

tion level depended on ICC (which shows the variance proportion that was caused by the

forest stand) and on cluster size (the number of trees sampled from one forest stand). We

also showed that using first-order autocorrelation tests, such as the traditional Durbin-Wat-

son statistic, to detect the autocorrelation due to clustered structure could be misleading as

the test may show lack of autocorrelation even though ICC is different from zero. In conclu-

sion, when ICC is higher than zero, ignoring the clustered data structure yields over-confi-

dent biomass predictions (due to underestimated confidence interval) and/or incorrect

research conclusions (due to overestimated evidence against null hypothesis in t-test).

Therefore, using a modelling approach that accounts for the hierarchical structure of the

data is highly recommended when any form of clustering can be identified, even if the auto-

correlation is not significant.

1. Introduction

Estimating carbon accumulation in forests, with great accuracy and precision, represents one

of the major challenges that the international scientific community is facing today, in the

PLOS ONE | https://doi.org/10.1371/journal.pone.0200123 August 2, 2018 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Dutcă I, Stăncioiu PT, Abrudan IV, Ioras, F

(2018) Using clustered data to develop biomass

allometric models: The consequences of ignoring

the clustered data structure. PLoS ONE 13(8):

e0200123. https://doi.org/10.1371/journal.

pone.0200123

Editor: Gang Han, Texas A&M University, UNITED

STATES

Received: May 15, 2017

Accepted: June 20, 2018

Published: August 2, 2018

Copyright: © 2018 Dutcă et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data underlying the

study are available from the data article "Biomass

data for young, planted Norway spruce (Picea

abies (L.) Karst.) trees in Eastern Carpathians of

Romania" (https://doi.org/10.1016/j.dib.2018.07.

033).

Funding: Biomass data collection: Romanian

Executive Agency for Higher Education, Research,

Development and Innovation Funding - FORLUC

project (31058) Data analysis: Leverhulme Trust

(Visiting Fellowship Award).

https://doi.org/10.1371/journal.pone.0200123
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200123&domain=pdf&date_stamp=2018-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200123&domain=pdf&date_stamp=2018-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200123&domain=pdf&date_stamp=2018-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200123&domain=pdf&date_stamp=2018-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200123&domain=pdf&date_stamp=2018-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200123&domain=pdf&date_stamp=2018-08-02
https://doi.org/10.1371/journal.pone.0200123
https://doi.org/10.1371/journal.pone.0200123
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.dib.2018.07.033
https://doi.org/10.1016/j.dib.2018.07.033


context of climate change. However, regardless of how accurate and precise these estimations

are, they have to be robust. Robustness does not imply low uncertainty, but assumes that all

uncertainty is known and transparently presented. The uncertainty is an essential component

that helps policy makers understand how much these estimations can be trusted in order to

make correct decisions regarding effective policies concerning climate change mitigation [1].

Quantifying and reducing the uncertainty in GHG estimations in forestry sector is becom-

ing increasingly important, especially in the context of result-based payments in REDD+ pro-

gramme (i.e. a mechanism for reducing emissions from deforestation and forest degradation,

under the United Nations Framework Convention on Climate Change), and of emission

reduction commitments under Kyoto Protocol. Estimating and reporting uncertainty under

IPCC (Intergovernmental Panel on Climate Change) guidelines [2], is mandatory for assessing

the performance in implementation of all these land related activities for emission reduction.

Despite the recent advances in remote-sensing based carbon monitoring [3], biomass allo-

metric models are widely used to estimate forest biomass [4,5] or to calibrate the remote-sens-

ing based methods [6]. The allometric models use easy-to-measure characteristics (e.g.

diameter, height) to predict tree biomass, and subsequently the carbon sequestered in biomass.

In forestry practice empirical allometric models are often used, since they offer more accurate

biomass prediction compared to theoretical models [7,8]. The empirical models are developed

based on destructive sampling of trees, which involves the measurement of biomass (including

all vegetative organs of the tree, both above and below ground) and of dendrometric character-

istics of the standing tree (e.g. diameter at breast height, root collar diameter, height, crown

diameter). The most common method of data analysis consists of logarithmic transformation

of the variables, followed by classic linear regression analysis (Ordinary Least Squares, OLS)

and a back-transformation [9]. Although logarithmic transformation has been criticized lately,

the goodness of fit for the proposed alternative (i.e. non-linear approach) depends on the type

of error distribution. A non-linear approach was shown to be better for additive, homoscedas-

tic normal error distributions, whereas logarithmic transformation was shown to give better

results for multiplicative lognormal errors, which occur more frequently in allometric models

[10]. To fully trust the results, several assumptions (i.e. independence, linearity, normality and

homogeneity of variance) should be fulfilled by the OLS regression [11]. However, the inde-

pendence of observations is one of the most important and one of the most widely-ignored

regression assumptions [12].

The range of covariate (i.e. diameter or height) in allometric models is recommended to be

large [13], with a suggested minimum range of one order of magnitude. However, the range of

covariate is often limited within relatively uniform forest stands, especially in even-aged,

planted forests where the trees have relatively similar sizes. Consequently, it is often necessary

to sample trees from more than one forest stand, resulting in clustered datasets (more gener-

ally called ‘nested’ datasets). The issue with clustered data resides in the violation of the inde-

pendence assumption [14], when OLS methods are used. Due to similarities in genotype,

environmental conditions and stand competition, the trees from the same stand (especially

from regular plantations) tend to be more similar to each other than trees from other forest

stands. Thus, when the data is clustered, the variance is produced both by the variability of the

trees within and between forest stands. If the variance produced by forest stands (between-

stands variance) is different from zero, the individual trees do not bring the full amount of

information, as OLS regression assumes for fully independent observations. Instead, the new

information each observation (i.e. tree) brings to the model, becomes weaker as the proportion

of between-stands variance gets larger. As a result, when OLS methods are used with clustered

data the standard errors are biased [15].

The consequences of ignoring the clustered data structure
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This work focuses on the following research questions: (i) How frequently is clustered data

structure ignored in biomass data analysis? (ii) What are the consequences of ignoring the

clustered data structure in allometric models? (iii) How effective is Durbin-Watson test in

detecting autocorrelation resulting from clustering?

2. Materials and methods

2.1. Review of published research

We assessed whether using clustered data to develop allometric equations and whether ignor-

ing the clustered data structure were common in published allometric models. A total of 102

papers published in the last five years (January 2012 to December 2016) that reported biomass

allometric equations were reviewed. Using specific keywords, the papers were searched online

in February 2017. The sampling design of each paper was evaluated, to check whether the sam-

pling design was clustered or not. The dataset was considered clustered (or nested) if data was

collected from more than one forest stand (or location) with more than one tree sampled in at

least one location. The dataset was also considered not independent, if biomass data for differ-

ent tree species was pooled together to develop a multispecies model. The sampling design was

considered independent if there was no or unclear information about clustered sampling.

Besides the sampling design, the use, or non-use, of statistical techniques that include the clus-

tering (e.g. multilevel models) was checked, for those papers suspected of independence

violation.

2.2. Theoretical modelling framework

Here we present the general modelling framework for the linear model (which ignores the

clustered data structure) and the multilevel model (which addresses the clustered data struc-

ture). Furthermore, the consequences of ignoring the clustered data structure (when using lin-

ear models) are derived from this framework.

2.2.1. Ignoring the clustered data structure: Linear model (LM). Ordinary least squares

linear model (LM) assumes that all observations are independent:

yi ¼ aþ bxi þ εi ð1Þ

where y is the dependent variable (e.g. tree biomass); x is the independent variable (e.g. tree

diameter or height); α is the intercept; β is the slope; ε is the error term. Therefore, the clus-

tered data structure is ignored, as the model cannot incorporate the dependency within the

data [15].

2.2.2. Addressing the clustered data structure: Multilevel model (MLM). The multilevel

model, also called the hierarchical or mixed-effect model, can incorporate the variance pro-

duced by forest stand, producing adjusted standard errors. It was also shown to produce also

correct type I error rates [16]. In multilevel analysis, the trees are referred to as level 1,

whereas the cluster (plantation or forest stand) is referred to as level 2. The prediction is made

at level 1 only (tree level). As the multilevel model provides different intercepts (one for each

analysed forest stand), using them for biomass prediction in other forest stands makes little

sense. Therefore, in this case, the role of level 2 is to allow the quantification of the noise gener-

ated by the forest stand [17], called also ‘nuisance effect’ [15]. Consequently, the best linear

unbiased predictor (BLUP) is derived from all intercept values, the resulting multilevel model

taking similar form to that of linear model, while accounting for correlation within the data

structure:

The consequences of ignoring the clustered data structure
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Level 1:

yij ¼ aþ uj þ bxij þ εij; for i ¼ 1; . . . ;N; εij � Nð0; s2Þ ð2Þ

Level 2:

uj � Nð0; t2Þ; for j ¼ 1; . . . ; J ð3Þ

Where α is the best linear unbiased predictor (BLUP) of the intercept, based on restricted

maximum likelihood method; uj is the random part of the intercept, which assumes a nor-

mal distribution, with mean zero and variance τ2; β is the fixed slope for the population; J is

the number of groups (forest stands); N is the total number of trees; yij is the biomass of the

tree i from forest stand j; xij is the diameter (or height) of the tree i from forest stand j; εij is

the error of tree i from forest stand j. The error variance is assumed normal with mean zero

and variance σ2; uj and εij are assumed to be mutually independent.

In multilevel models, the standard errors are adjusted by square root of design effect (Deff)

[14]:

Deff ¼ 1þ ðn � 1Þ � ICC ð4Þ

where n is the cluster size (number of trees sampled from one forest stand) and ICC is the

Intraclass Correlation Coefficient. ICC shows the proportion of variance that is due to differ-

ences between clusters (level 2), out of total residual variance (level 1 and level 2):

ICC ¼
t2

t2 þ s2
ð5Þ

where: τ2 is the random variance that is attributed to between cluster variation (τ is random

effect of the intercept); σ2 is the residual variance, caused by the difference between trees within

forest stand (σ is residual random effect). ICC varies between 0 and 1. When ICC = 0, all vari-

ance is due to differences between individuals within clusters. When ICC = 1, all individuals

within clusters are perfectly correlated and therefore, all variance of the model results from dif-

ferences between clusters.

The design effect also shows the ratio between the actual number of observations and the

effective number of observations [14]. The effective number of observations is a hypothetical

value, which can be defined as the number of fully independent observations that would offer

the same output as the non-independent observations (i.e. actual number of observations). If

n = 1, the effective number of observations equals the actual number of observations, therefore

the data is independent. The data is also considered independent when ICC = 0, regardless of

cluster size. However, when both ICC> 0 and n> 1, the independence assumption is violated,

and the effective number of observations becomes lower than the actual number of observa-

tions. When ICC = 1, the effective number of observations equals the number of clusters, as all

trees within one cluster will bring identical information to the model. In contrast, even when

ICC has reasonably low values, the effective number of observations can be very seriously

affected, if n is large.

2.2.3. The consequences of ignoring the clustered data structure. Because the trees are

likely to be more similar inside a particular forest stand, the autocorrelation in allometric mod-

els is expected to be only positive. Nevertheless, positive autocorrelation of residuals produces

underestimation of standard errors [18], since the number of effective observations is lower

than the actual number of observations. The underestimation of standard errors (SEu) was

The consequences of ignoring the clustered data structure
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defined as:

SEu ¼
SEmlm � SElm

SEmlm
� 100 ð6Þ

where SEmlm is the standard error of the multilevel model parameters (intercept and slope),

and SElm is the standard error of the linear model parameters. If the standard errors are

weighted by square root of design effect, Eq 6 can be written as a function of n and ICC:

SEu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðn � 1Þ � ICC

p
� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðn � 1Þ � ICC

p � 100 ð7Þ

However, the standard errors are generally used to compute the confidence intervals and

also the evidence against null hypothesis in t-test. The confidence intervals in logarithmic scale

are underestimated by the same rate as standard errors (Eq 7), due to the proportionality

between confidence interval and standard error. Instead, in null hypothesis tests of the slope

(t-test), the slope estimate is divided by its standard error to obtain t-score. Therefore, the

underestimation of standard errors produces an overestimation of evidence against null

hypothesis in t-test (called t-score). The relative overestimation of t-score (tovr), as resulted

from ignoring the clustered data structure, was calculated based on the t-score of linear model

(tlm) and the t-score of multilevel model (tmlm):

tovr ¼
tlm � tmlm

tmlm
� 100 ð8Þ

Incorporating the squared root of design effect (Eq 4) into Eq 8, the overestimation of t-
score, can be written as:

tovr ¼
blm

ffiffiffiffiffiffiffi
Deff

p
� bmlm

bmlm
� 100 ð9Þ

where βlm is the slope resulted from linear model and βmlm is the slope resulted from multilevel

model. Under the assumption that the difference between βlm and βmlm tends to zero, Eq 9

becomes:

tovr ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðn � 1Þ � ICC

p
� 1Þ � 100 ð10Þ

2.3. Empirical validation

The two theoretical models (Eqs 7 and 10) describe respectively the theoretical underestima-

tion of standard errors (and of confidence interval) and the theoretical overestimation of evi-

dence against null hypothesis in t-test, by ignoring the clustered data structure. These models

were validated using the biomass data collected from 22 plantations of Norway spruce located

in Eastern Carpathians of Romania (see S1 Appendix), for a total of 220 trees. In each planta-

tion a 200 m2 sample plot was established to determine the tree of average size, based on diam-

eter at collar height. From each plantation, ten trees with close dimensions to those of average

size were destructively sampled and measured for biomass (for detailed biomass measurement

method see [19]). For each tree, dried biomass of stem (ST), branches (BR), needles (ND) and

roots (RT) were measured (in grams). Diameter at collar height (in mm) and tree height (in

cm) were measured in situ before and respectively after tree felling. Access to plantations was

The consequences of ignoring the clustered data structure
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granted by the National Forest Administration—ROMSILVA and two private forest districts:

R.P.L.P. Kronstadt R.A. and O.S. Izvorul Somesului R.A.

The data produced was used to build two empirical biomass datasets:

• Dataset 1 (n = 5, n is the cluster size): this is a subset of the entire dataset produced.

Five trees from those 10 sampled in each plantation were randomly selected. Therefore,

the first dataset comprises 110 trees (22 plantations × 5 trees sampled from each

plantation).

• Dataset 2 (n = 10): this included all 220 sampled trees (22 plantations × 10 trees sampled

from each plantation).

The relationship between biomass and diameter (or height) is not linear, being widely

accepted that this relationship takes a power function [20]. Therefore, adopting logarithmic

transformation of variables is often done, in order to obtain a linear relationship between vari-

ables and to remove the heteroscedasticity. Transforming back from linear to ‘power’ form

equation results in a bias [21]. However, this bias can be counteracted by using a correction

factor [21,22], that is based on Residual Standard Error (RSE):

l ¼ e
RSE2

2

� �

ð11Þ

The dependent variables were represented by biomass components: stem biomass (ST);

branch biomass (BR); needle biomass (ND); root biomass (RT) and total tree biomass (TB)

resulted by adding together all tree biomass components. The independent variables are root

collar diameter (D) and height (H). All these variables were transformed using the natural log-

arithm (ln).

The observed underestimation of standard errors (and of confidence intervals) was calcu-

lated using Eq 6, for each dataset and for each model (10 models for each dataset, resulted

from combinations of 5 biomass components and 2 predictors: TB = f(D); TB = f(H); ST = f
(D); ST = f(H); BR = f(D); BR = f(H); ND = f(D); ND = f(H); RT = f(D); RT = f(H)). Also, the

observed overestimation of t-scores was calculated for each of the 10 models for each dataset,

using Eq 8.

2.4. Detecting the violation of independence assumption in linear models

The independence of residuals in linear models is usually checked using Durbin-Watson sta-

tistic (d) for spatial autocorrelation [23]:

d ¼
PN

i¼2
ðεi � εi� 1Þ

2

PN
i¼1
εi

2
ð12Þ

Where N is the total number of observations (trees). The value of d ranges between 0 and 4. If

d takes values between dL (lower critical value) and dU (upper critical value), then the test is

inconclusive. If d< dL then the null hypothesis of zero autocorrelation is rejected (accepting

the alternative hypothesis, i.e., autocorrelation is greater than zero). If d> dU, then the null

hypothesis of zero autocorrelation is accepted [24].

2.5. Software

The data was analysed using R version 3.3.0, packages nlme [25] and lmtest [26].

The consequences of ignoring the clustered data structure
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3. Results and discussion

3.1. Using clustered data with biomass allometric models: Review of

published research

The analyzed literature revealed that 84 papers out of a total of 102 (82%, see S2 Appendix)

used a clustered sampling design, and out of these 84 papers only 17 (20%) addressed the clus-

tered data structure in their statistical analysis. The rest of the papers (67 papers, representing

80%) used linear models, despite the clustered sampling design (S2 Appendix). The papers

ignoring the effect of clustered data in allometric models could have reported biased results

only if ICC values in these papers (unknown, as the value was not reported) are different than

zero. Otherwise (i.e. if ICC values are zero), the observations can be considered independent

and using LM is appropriate. Out of total number of reviewed papers, 66% could have reported

biased results.

3.2. The consequences of ignoring the clustered data structure

3.2.1 On parameter estimates. Although LM and MLM use different methods for param-

eter estimation, these methods were shown to produce relatively similar results in a wide range

of conditions [17]. Therefore, ignoring the clustered structure generally produces unbiased

parameter estimates [27], although less efficient [28]. However, small differences between

these two methods (i.e. LM and MLM) could appear. These differences were shown to be gen-

erally negligible, being lower than ±1.5% [17]. Nevertheless, we observed larger slope differ-

ences in our empirical example, of up to 4.5% (see S1 Table). A potential anomaly in the

structure of clustered data that could produce bias in parameter estimates is the systematic dif-

ference of allometric scaling (β in Eq 2) within- and between-stands. If the within-stand allo-

metric scaling is systematically lower (or larger) than between-stand scaling, the overall slope

of the model is affected, and could produce unrealistic parameter estimates. A solution would

be to use a random intercept only instead of random intercept and slope model (as the random

intercept model forces slope to be equal within and between-stands), or use the ‘within-stand

centering’ when appropriate [15].

3.2.2. On standard errors. Our results showed that when ignoring the clustered data

structure, the standard errors in logarithmic scale were underestimated by a rate that

depended on both ICC and cluster size. In Fig 1 it can be observed that, the higher the ICC

and cluster size, the higher the underestimation of standard errors. However, when ICC = 0

and n = 1, the underestimation is zero. Therefore, using LM with clustered data produces

underestimated standard errors, when both ICC is greater than zero and cluster size is greater

than one. For our empirical datasets, the observed underestimation of standard errors was

greater than 31% when cluster size was 5 and greater than 51% when cluster size was 10 (S1

Table). These observed values fall on the theoretical lines (Fig 1), validating the assumptions of

the study.

Testing whether the mean ICC observed in our empirical datasets equals zero (H0:

ICC = 0), the null hypothesis was rejected at P< 0.0001 (P = 1.8e-11). Therefore, is extremely

unlikely to observe these ICC values (see S2 Table) if ICC would have a mean of zero in the

population. In return, the alternative hypothesis (HA: ICC > 0) was accepted. Heretofore, the

ICC was never reported for allometric models. However, deriving the ICC values from

reported random effects in biomass allometric studies [29,30], the results supported the alter-

native hypothesis (i.e. the derived ICC values were larger than 0.5) and not the null hypothesis.

3.2.3. On confidence interval. Uncertainty caused by allometric model selection is con-

sidered among the main sources of uncertainty in forest biomass estimation [31,32].

The consequences of ignoring the clustered data structure
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Producing allometric models with narrow confidence intervals (therefore with low uncer-

tainty) is always preferred as long as that confidence interval was correctly estimated. Because

of direct proportionality between standard errors and confidence intervals, the underestima-

tion of confidence interval (of regression parameters) in logarithmic scale was similar to that

of standard errors (Eq 7). Therefore, when ICC was larger than zero, the confidence intervals

of parameters in logarithmic scale were underestimated as a function of ICC and cluster size

(see Fig 1). Fig 2, shows that when clustered data structure was ignored, the 95% confidence

interval of the model was narrower, producing overconfident biomass prediction.

In order to be used for biomass prediction, the linear allometric models require a back

transformation, that includes the correction factor (Eq 11). The back transformation does

not affect the slope (mean and confidence interval), but it does affect the intercept. After

back transformation, the confidence interval of the intercept becomes asymmetrical. The

reason is that standard error of the intercept resulted in logarithmic scale cannot be used as

it is in the arithmetic scale. Confidence interval of the intercept should be therefore com-

puted in logarithmic scale first and then the confidence interval bounds are back trans-

formed. This transformation process produces lognormal asymmetry of the confidence

Fig 1. The underestimation of standard errors. The underestimation of standard errors by Intraclass Correlation

Coefficient (ICC) for three cluster size values (n = 1, n = 5 and n = 10). The lines represent the theoretical standard

error underestimation as resulted from Eq 7, and the symbols denote the observed underestimation resulted from Eq 6

(see S1 Table).

https://doi.org/10.1371/journal.pone.0200123.g001
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interval of the intercept, yielding an asymmetric confidence interval of the model. The asym-

metry depends on the length of its confidence interval in logarithmic scale. Therefore, for

allometric models involving logarithmic transformation, the uncertainty is not symmetric to

the mean.

3.2.4. On null hypothesis test. Furthermore, the underestimation of standard errors

affected the results of null hypothesis tests. Testing the significance of independent variable to

predict biomass, involves the use of t-test (to test if the slope is different from zero). The t-
score shows the evidence against null hypothesis (based on which the P-value is calculated).

The false evidence against null hypothesis in t-test was removed by using the multilevel model.

Therefore, LM showed overestimated evidence against null hypothesis in t-test (Fig 3).

The overestimation of t-score increased with ICC and with cluster size, n (Fig 3). The

observed overestimation was greater than 46% when cluster size was 5 and greater than 108%

when cluster size was 10 (S2 Table). It followed well the theoretical overestimation resulted

from Eq 10. However, the observed differences between βlm and βmlm (see S1 Table) contra-

dicts our assumption that βlm = βmlm, and therefore the observed overestimation was slightly

larger compared to theoretical one (Eq 10).

Clustered data can create problems especially when the t-scores are close to critical t-scores.

As diameter (or height) and biomass are usually highly correlated [33], using just one indepen-

dent variable (diameter or height) to predict biomass does not create problems on significance

testing (as the slope’s t-scores are typically large enough not to concern). However, testing the

slope significance of additional continuous independent variables, e.g. crown diameter [34],

wood specific gravity [4], the t-scores could take values that are close to critical t-scores. In this

case, the null hypothesis can be rejected although it might actually be true, resulting in an

inflated type I error. Analysis of covariance (ANCOVA) which is often used to demonstrate

differences between groups, is affected by clustering the same way as t-test, when two groups

are involved.

Fig 2. The 95% confidence interval in logarithmic scale. Presented for ln(TB) = f (ln(D)) when using dataset 2

(n = 10) for both linear (a) and multilevel model (b). (TB—total tree biomass; D—root collar diameter).

https://doi.org/10.1371/journal.pone.0200123.g002
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3.3. Detecting the autocorrelation of residuals due to clustering

When multiple trees are sampled from multiple forest stands, each stand may induce a distinct

pattern of biomass allocation to its own trees. As a result of this distinct pattern, the residuals

in allometric models are not randomly located, but shifted in groups from the mean (regres-

sion line) (Fig 4a). This may create situations where consecutive residuals are located on the

same side of regression line more often than usual, which produces autocorrelation. In Fig 4b

is shown an example of how MLM approach can fix the autocorrelation.

Durbin-Watson statistic represents the traditional test for first-order spatial autocorrela-

tion, and is often used in forestry studies (including biomass allometric models). Within this

study, Durbin-Watson statistic (d) (Eq 12) showed values lower than 2.0 for all models (S2

Table). Based on the number of predictors, number of observations and significance level of

5%, the critical values were dL = 1.671 and dU = 1.707 for the first dataset, and dL = 1.770 and

dU = 1.788 for the second dataset. Compared to these critical values, the actual d values were

lower (showing positive autocorrelation), rejecting the null hypothesis of zero autocorrelation

for all models. As a result, all LMs, without exception, have violated the independence assump-

tion. Therefore, Durbin-Watson test has successfully detected the autocorrelation due to clus-

tered structure of the data. However, Durbin-Watson test has limitations. When d> dL (dL is

Fig 3. The overestimation of t-score when ignoring the clustering. The overestimation of t-score by Intraclass

Correlation Coefficient (ICC) for three cluster sizes (n = 1, n = 5 and n = 10). The lines represent the theoretical t-score

overestimation as resulted from Eq 10, and the symbols denote the observed overestimation as resulted from Eq 8 (for

each dataset and each of the 10 models, see S2 Table).

https://doi.org/10.1371/journal.pone.0200123.g003
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the lower critical Durbin-Watson value), the test is either inconclusive or shows lack of auto-

correlation [23]. Therefore, as the autocorrelation is not significant, there is a temptation of

ignoring the clustered structure and analyze the data using LM. This is not recommended, as

Durbin-Watson test can fail to detect small ICC values (that corresponds to d> dL). Because

the trees in the same forest stand are likely to be more similar, the test is likely to show positive

autocorrelation only. Therefore, d interval of interest for allometric models ranges between 0.0

and 2.0 (instead of 4.0). Assuming a linear relationship between ICC and d, as ICC interval

ranges between 0.0 and 1.0, ICC can be naively approximated as a function of d:

ICC ¼ 1:0 � 0:5� d ð13Þ

The observed relationship between ICC and d is displayed in Fig 5. Each of the 20 circles

(observations) on the graph represent a model (10 models for each dataset: TB = f(D); TB = f
(H); ST = f(D); ST = f(H); BR = f(D); BR = f(H); ND = f(D); ND = f(H); RT = f(D); RT = f(H)).

Testing whether observed intercept and slope significantly differed from parameters of Eq 13,

the results showed that both intercept and slope did not differ significantly from 1.0

(P = 0.098) and -0.5 (P = 0.156) respectively.

Using the dL values [24] in Eq 13, the ICC limits under which Durbin-Watson test fails to

detect the autocorrelation due to clustering (for models with one predictor) are shown in Fig

6. Therefore, the ICC values under the curves are likely to be disregarded, as Durbin-Watson

test shows lack of autocorrelation.

3.4. Sample size

3.4.1. How many trees in each forest stand?. When planning a sampling design with

clustered data, it is very important to know the ICC value. Although ICC is not usually known

in advance, a rough estimation would tell whether a large or a small cluster size was

Fig 4. The residuals of TB = f(D) model (for dataset 2). Resulting from linear model (a) and multilevel model (b). Each boxplot describes the

residuals within a cluster (10 residuals in each boxplot). (TB—total tree biomass; D—root collar diameter).

https://doi.org/10.1371/journal.pone.0200123.g004
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appropriate. Sampling more than one tree per stand, engages a loss in observation efficacy (i.e.

the loss of genuine information), which depends on ICC (Fig 7). When ICC> 0, every addi-

tional tree will bring less effective information into the model, compared to the previous sam-

pled tree (e.g. the third sampled tree within a stand brings less effective information compared

to the second sampled tree, and so on). In Fig 7, it can be observed that when ICC is very high,

there is a sharp loss in efficacy.

However, a sufficiently large number of level 1 (trees) and level 2 (of forest stands) units are

necessary in order to account for the variance within and between forest stands (which is

needed to correctly estimate the ICC). A small number of trees in each forest stand (cluster

size) can result in large bias in ICC estimation, which cannot be offset by increasing the num-

ber of forest stands [35]. Using just 2 trees per stand was shown to produce overestimated level

2 variance. However, sampling 5 trees or more in each forest stand was shown to produce

valid and reliable estimates [27].

On the other hand, when ICC is high, a large number of trees in each forest stand is not

cost-effective. Therefore, the perfect balance should be found between avoiding ICC bias and

the loss of genuine information when increasing the number of trees sampled from each forest

stand.

3.4.2. How many forest stands?. To be assured of unbiased parameters, the number of

forest stands should be higher than 50 when the models are used for inference [36]. However,

Fig 5. The observed relationship between Intraclass Correlation Coefficient (ICC) and Durbin-Watson statistic

(d).

https://doi.org/10.1371/journal.pone.0200123.g005
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when the parameter and their standard errors at level 1 are the principal interest (which is the

case for most allometric models used for biomass prediction), the number of clusters appears

less problematic. Even small numbers of forest stands and numbers of trees in each forest

stand (10 forest stands and 5 trees per forest stand respectively) can offer unbiased estimates

(parameters and standard errors) if ICC is higher than 0.1 [37]. Unequal numbers of trees in

each forest stand, although shown to produce a loss in efficacy (which usually did not exceed

10%), can be compensated by increasing the number of forest stands by 11% [38].

3.5. Recommendations

It is highly recommended that residual autocorrelation is checked, using specific tests (e.g.

Durbin-Watson), when there is no noticeable form of clustering (nesting) in the data. If the

data is significantly auto-correlated, then ordinary least squares methods should not be used,

due to increased risk of biased standard errors. The scientist should look for the cause of that

autocorrelation and identify it before proceeding further with data analysis. Nevertheless, it is

advisable that hierarchical models or other models that can account for the clustered data

structure (e.g. robust standard errors, generalized least squares, cluster bootstrap, Bayesian

hierarchical models [39,40]) are used when any form of clustering can be identified, even if the

autocorrelation is not significant. This is because, even at very low ICC values (when Durbin-

Fig 6. The Intraclass Correlation Coefficient (ICC) bounds under which Durbin-Watson test fails to detect the

clustering. The ICC limits by total number of observations, shown for models with one predictor, for two significance

levels (α = 0.01 and α = 0.05).

https://doi.org/10.1371/journal.pone.0200123.g006
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Watson test can indicate a lack of autocorrelation), the effect of clustering on standard errors

can be substantial.

In multilevel models, the relationship between the dependent variable (e.g. biomass) and

the independent variables (e.g. diameter, height) should be treated as a fixed effect. The ran-

dom effect should be represented by the second (or higher) hierarchy within the data. This

hierarchy could be represented by the forest stand, geographic region, tree species, position

within canopy, or any other clustering factor that could alter the relationship between biomass

and diameter (or height). Reporting the ICC value (or at least the random effects) with hierar-

chical allometric models is highly recommended.

We recommend adopting a sampling design based on large number of forest stands (at

least 10) and large number of trees sampled from each forest stand (at least 5). However, if the

number of forest stands is extremely low (e.g. lower than 4) as well as the number of trees in

each forest stand (e.g. lower than 3), the resulting ICC could be highly imprecise [27,41]. In

this case, for more accurate estimates, the standard errors resulting from LM may be manually

adjusted by square root of design effect (Eq 4). The ICC value needed in Eq 4 could be deduced

from random effects reported in the literature for similar species, forest stand characteristics

and model type.

Fig 7. The efficacy loss by cluster size. Presented for five values of Intraclass Correlation Coefficient (ICC = 0,

ICC = 0.01, ICC = 0.1, ICC = 0.5, ICC = 0.8). The efficacy loss was calculated using the function: Efficacy loss (%) = (1–
1/Deff) × 100.

https://doi.org/10.1371/journal.pone.0200123.g007
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When deciding upon a cluster size, the key is to find the best compromise between the

effort of measuring any additional tree within a forest stand, the ICC bias and the amount of

genuine information that tree can bring to the model. Additionally, since the literature so far

shows large variance attributed to forest stands [4,29,30], avoiding large cluster sizes is recom-

mended, because it is likely that the effort invested in measuring additional trees within a for-

est stand will not be rewarded accordingly.

4. Conclusions

The reviewed published research shows that hierarchical approach is rarely used in biomass

allometric models when the data is clustered. Our study demonstrates that, when ICC is differ-

ent from zero, ignoring the clustering yields underestimated standard errors. Underestimation

of standard errors has further consequences on model prediction and inference. The confi-

dence intervals are also underestimated, resulting in overconfident tree biomass predictions.

Additionally, the information against null hypothesis in t-test is overestimated, resulted in an

inflated type I error, which may lead to potentially incorrect research conclusions. However,

using first-order autocorrelation tests, such as the traditional Durbin-Watson statistic to detect

the harmful effect of clustering could be misleading as the test may show lack of autocorrela-

tion even though ICC is different from zero. Therefore, adopting a modelling approach that

accounts for the hierarchical structure of the data is highly recommended when any form of

clustering can be identified, even if the autocorrelation is not significant.
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