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Abstract 
 

Isometric exercise training is gaining recognition for its blood pressure (BP) lowering effects. The current 

thesis had four primary purposes, to: i) assess the reproducibility of various BP and heart rate variability (HRV) 

measures (ii) validate the CR-10 scale as a novel method for self-regulating the intensity of isometric handgrip 

(IHG) exercise and iii) determine the effects of self-regulated IHG exercise on resting and 24-hour ambulatory 

BP iv) investigate levels of participant adherence to self-regulated IHG training. Secondary to these purposes, 

indirect measures of autonomic function were recorded to provide insight into a possible mechanistic 

pathway for BP reductions.  

Study 1 (Chapter 4) assessed the reproducibility of 24-hour ambulatory BP, 24-hour HRV, resting HRV and 

resting systolic blood pressure variability (BPV). It was shown that i) the typical error in ambulatory systolic 

BP recordings reduced over consecutive pairs of measurements (3.8-2.8mmHg) and would therefore benefit 

from familiarisation periods ii) 24-hour HRV provided superior reproducibility to resting measurements and 

iii) resting systolic BPV displayed poor reproducibility (coefficient of variation, 27-60%)  . 

Study 2 (Chapter 5) determined the validity of self-regulating IHG exercise as an alternative to the commonly-

prescribed 30% maximal voluntary contraction (MVC). Findings showed that exercising at “Level-6” on the 

category-ratio scale (CR-10) enabled participants to produce an appropriate IHG exercise intensity (mean 

33% MVC). Thus, the CR-10 scale provides a valid means for participants to self-regulate the intensity of IHG 

exercise.  

Study 3 (Chapter 6) implemented an IHG training programme in a 2-phase training study design. Phase 1 

showed that 10-weeks of self-regulated IHG training (at CR-10 “Level 6”) induced clinically-relevant 

reductions in resting systolic BP (-6mmHg). However, no changes were observed in 24-hour ambulatory BP. 

The data also displayed trending changes in autonomic modulation of both heart (HRV) and systolic BP (BPV), 

these findings could offer some explanation for the reductions in resting BP. Phase 2 revealed excellent 

adherence (average, 95%) during both shorter-term (14 weeks) and longer-term (24 weeks) self-regulated, 

home-based, unsupervised IHG training. However, despite excellent adherence, the longer-term exercise 

group did not maintain their reduced resting BP upon completion of 24-weeks of isometric exercise training. 

Taken together, these findings demonstrate the appropriateness of self-regulated IHG training as a non-

pharmacological intervention for lowering resting BP. However, it seems that the reductions in resting BP 

may be lost with prolonged training and further investigation into the long-term effects of isometric exercise 

training on resting and ambulatory BP is required.  
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Chapter 1: Introduction 
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Blood pressure (BP) is the hydrostatic pressure that blood exerts onto the vasculature (Pappano and Wier 

2013). Following left ventricular contraction, blood is ejected into the aorta where maximal pressure is 

reached; this is termed systolic blood pressure (SBP). As the ventricle relaxes and refills, the pressure in the 

aorta falls to its lowest level; this is termed diastolic blood pressure (DBP) (Klabunde 2012). Normal resting 

SBP is classified at ≤120mmHg and normal resting DBP is classified at ≤80mmHg (Mancia, Fagard, Narkiewicz, 

et al. 2013). Hypertension is the persistent elevation of BP. In adults (≥18years), a systolic value of ≥140mmHg 

and/or a diastolic value of ≥90mmHg would be defined as hypertension (Mancia, Fagard, Narkiewicz, et al. 

2013; Chobanian, Bakris, Black, et al. 2003).  

Hypertension can be categorised into two primary types; essential hypertension and secondary 

hypertension. Essential hypertension does not have a clear cause and accounts for more than 90% of cases 

(Oparil, Zaman, and Calhoun 2003; Rimoldi, Scherrer, and Messerli 2014). In contrast secondary hypertension 

is due to an identifiable cause (i.e. obstructive sleep apnoea, renal artery stenosis, thyroid disease, Cushing’s 

syndrome) and only accounts for 5-10% of cases (Rimoldi, Scherrer, and Messerli 2014). The prevalence of 

hypertension (primary and secondary) in adults (≥18 years) is approximately 30-45%  (Piepoli, Hoes, Agewall, 

et al. 2016), with a steep rise associated with advancing age (Knott and Mindell 2011; Piepoli, Hoes, Agewall, 

et al. 2016; Franklin, Gustin, Wong, et al. 1997; Chobanian, Bakris, Black, et al. 2003); for example, 44% of 

55-64 year olds have hypertension, this prevalence rises to 72.6% of people aged ≥75years (Knott and Mindell 

2011).  

Accounting for 9.4 million deaths in 2010 (Lim, Vos, Flaxman, et al. 2012) and 10.4 million deaths in 2013 

(Forouzanfar, Alexander, Anderson, et al. 2015) the impact of hypertension on mortality rates is a growing 

concern worldwide. Bearing an independent and continuous relationship with the incidence of stroke, heart 

failure, peripheral artery disease and chronic kidney disease (Mancia, Fagard, Narkiewicz, et al. 2013), 

hypertension is considered one of the top five risk factors for death and disability . The treatment and 

management of hypertension-related conditions are estimated to cost the National Health Service £2.1 

billion per year (Optimity Matrix 2014), with a further £1 billion on antihypertensive drug costs (NICE 2011). 

Its economic burden and risk to quality of life and mortality ensures that appropriate diagnosis, management 

and prevention remains an important medical issue.  

Without exception, the management of hypertension includes the recommendation of appropriate lifestyle 

interventions (Mancia, Fagard, Narkiewicz, et al. 2013; NICE 2011; Piepoli, Hoes, Agewall, et al. 2016). Aerobic 

exercise is one the most widely recommended non-pharmacological therapeutic strategies. International 

guidelines suggest that those needing to lower their BP should engage in ≥30 minutes of moderate intensity 

aerobic exercise on 5-7 days of the week (Ghadieh and Saab 2015; Pescatello, Franklin, Fagard, et al. 2004a; 

Mancia, Fagard, Narkiewicz, et al. 2013; Brook, Appel, Rubenfire, et al. 2013; James, Oparil, Carter, et al. 

2014). However, with low compliance and dropout rates high between 3-6 months of exercise initiation 
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(Dishman, Sallis, and Orenstein 1984) aerobic exercise is reported as the most difficult lifestyle 

recommendation to be implemented (Riegel, Moreira, Fuchs, et al. 2012; Baynouna, Neglekerke, Ali, et al. 

2014; Ohta, Tsuchihashi, and Kiyohara 2011; Montesi, Moscatiello, Malavolti, et al. 2013). Common barriers 

to aerobic type exercise include access difficulties, inflexible work schedules, time commitment, competing 

priorities and lack of convenience  (Bethancourt, Rosenberg, Beatty, et al. 2014; Franco, Tong, Howard, et al. 

2015; Jefferis, Sartini, Lee, et al. 2014). In addition, older people whom are at the highest risk of hypertension, 

present with further aerobic exercise barriers including mobility issues, chronic health conditions and fear of 

injury (Jefferis, Sartini, Lee, et al. 2014; Franco, Tong, Howard, et al. 2015). It is therefore of no surprise that 

physical activity has been found to be particularly low in older adults (Jefferis, Sartini, Lee, et al. 2014). Recent 

research identified, as a top priority, a need to determine the optimal prescription of exercise that 

emphasises alternatives to walking/running for older individuals with and without arthritis or other health 

problems  (Khan, Bacon, Khan, et al. 2017). This emphasises a clear public interest in exploring additional 

exercise options that are more accessible to a variety of population groups.  

Research findings suggest that isometric training programmes, utilising handgrip exercises or bilateral 

quadriceps contractions, can successfully lower resting BP in young healthy adults (Wiley et al. 1992; Ray & 

Carrasco 2000; Howden et al. 2002; Millar et al. 2008; Wiles et al. 2010; Devereux et al. 2010; Devereux et 

al. 2011; Badrov, Bartol, et al. 2013; Devereux & Wiles 2015; Gill et al. 2015), non-medicated hypertensives 

and pre-hypertensives (Peters, Alessio, Hagerman, et al. 2006; Baross, Wiles, and Swaine 2012, 2013) and 

medicated hypertensives (Taylor, McCartney, Kamath, et al. 2003; McGowan, Levy, Millar, et al. 2006; 

McGowan, Visocchi, Faulkner, et al. 2007; Badrov, Horton, Millar, et al. 2013; Millar, Levy, Mcgowan, et al. 

2013). The typical isometric exercise programme prescribes three weekly exercise sessions, each lasting a 

total of 20 minutes. As compared with aerobic exercise recommendations, isometric exercise therefore poses 

a simple, time-effective alternative for the non-pharmacological management of hypertension.  

To date, the majority of isometric training has been prescribed using a percentage of maximal voluntary 

contraction (%MVC). Thirty percent is most typical and consistently effective after 6-10 weeks of training 

(Wiley, Dunn, Cox, et al. 1992; Taylor, McCartney, Kamath, et al. 2003; McGowan, Visocchi, Faulkner, et al. 

2007; Millar, Bray, McGowan, et al. 2007; Badrov, Horton, Millar, et al. 2013) with lower intensities showing 

a blunted or insignificant effect (Baross, Wiles, & Swaine, 2012; Devereux & Wiles, 2015; Gill et al., 2015). 

Unfortunately, this method of exercise prescription is currently limited to lab-based dynamometers or 

expensive programmable dynamometers that calculate and visually display the percentage of an individual’s 

MVC. Not only does this pose a financial barrier, the requirement of 2-3 maximal contractions prior to an 

exercise session is limited in some groups, particularly those with frailty.  

The problem of expensive monitoring of appropriate exercise intensity is not uncommon in aerobic exercise 

where the use of heart rate (HR) monitors provides accurate, real-time information on exercise intensity. For 
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this reason, the American College of Sports Medicine promotes the use of the Borg 6-20 perceived exertion 

scale for self-regulating exercise for the management of hypertension (Pescatello, Franklin, Fagard, et al. 

2004a). It would seem pertinent to determine the validity and effectiveness of using perceived exertion in 

the prescription of isometric exercise (Chapter 5). This would provide cost effectiveness and remove the 

necessity of maximal contractions.  

Although findings have revealed positive effects of isometric exercise on resting BP in both healthy and 

hypertensive populations, the effects on ambulatory BP measurements have not been fully determined. The 

National Institute for Clinical Excellence (NICE) recommends ambulatory BP monitoring (ABPM) as a gold 

standard measure for diagnosing hypertension and assessing treatment effects (NICE 2011). To date, only 

five studies have measured ambulatory BP (Stiller-Moldovan, Kenno, and McGowan 2012; Somani, Baross, 

Levy, et al. 2017; Ash, Taylor, Thompson, et al. 2016; Pagonas, Vlatsas, Bauer, et al. 2017; Goessler, Buys, 

VanderTrappen, et al. 2018) following isometric handgrip training over 8-10 weeks. Despite a similar exercise 

prescription amongst studies, findings have been contradictory with positive effects (Somani, Baross, Levy, 

et al. 2017), no effects (Stiller-Moldovan, Kenno, and McGowan 2012; Pagonas, Vlatsas, Bauer, et al. 2017; 

Goessler, Buys, VanderTrappen, et al. 2018) and negative effects (Ash, Taylor, Thompson, et al. 2016) all 

being reported. Considering the limited use of ambulatory measurements following an isometric training 

intervention it would be prudent to determine the effect of isometric exercise alongside resting 

measurements (Chapter 6). In addition, determining the variability within a 24-hour measurement and the 

need to habituate participants to the ambulatory monitoring process requires determination (Chapter 4).    

Little is known about the precise mechanisms responsible for isometric exercise induced reductions in resting 

BP. The autonomic nervous system is central to the regulation of BP (Chapter 2, section 2.02.i). For this reason 

the possible link between BP reductions and improved autonomic regulation has attracted the attention of 

some researchers (Taylor, McCartney, Kamath, et al. 2003; Wiles, Coleman, and Swaine 2010; Badrov, Bartol, 

Dibartolomeo, et al. 2013; Stiller-Moldovan, Kenno, and McGowan 2012). However, research to date has 

produced equivocal findings. Further investigation into autonomic regulation prior to and following an 

isometric training intervention is required (Chapter 6). Considering the large variation in resting 

measurements of autonomic function (Pinna, Maestri, Torunski, et al. 2007) it would be important to firstly 

determine the reproducibility and importance of habituation prior to the measurement of autonomic 

function (Chapter 4).  

Considering the simplicity, time-effectiveness and home-based possibilities of isometric exercise, it has been 

proposed that the prescription of isometric exercise would result in exercise sustainability and adherence as 

compared with aerobic exercise (Inder, Carlson, Dieberg, et al. 2016; Carlson, Dieberg, Hess, et al. 2014; 

McGowan, Proctor, Swaine, et al. 2017). However, to date, adherence to un-supervised, isometric exercise 
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has not been recorded. The long-term appropriateness and feasibility of isometric exercise is therefore 

unknown and is in need of investigation (Chapter 6).    

Understanding BP regulation and the pathophysiology of hypertension is central to gaining mechanistic 

insight into the effects of isometric exercise on BP. An overview of this is provided in chapter 2 (section 2.0). 

In addition, chapter 2 will detail: 1) previous research on the use of exercise for BP management, 2) The 

autonomic effects of exercise, 3) exercise adherence, 4) self-regulation of exercise. A particular emphasis will 

be placed on isometric exercise throughout.  

  



21 
 

2 Chapter 2: Literature review 
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2.0 Blood pressure regulation and pathophysiology of hypertension 

 

The relationship between arterial blood pressure (BP) and haemodynamics is clearly established. Cardiac 

output (heart rate*stroke volume) and total peripheral resistance (TPR; resistance offered by all systemic 

vasculature) are the two primary factors contributing to arterial BP (Pappano and Wier 2013). These factors 

are not constant; changes in behaviour (e.g. exercise, feeding, postural change), the environment (i.e. 

thermoregulation) and emotion (i.e. fright) (Guyenet 2006) alter circulatory demands. These demands are 

met by alterations in blood distribution which are mediated by changes in cardiac output and TPR. The 

influence of isometric exercise on circulatory demands is described in detail in section 2.6.  

There are a number of mechanisms that contribute to BP regulation. These mechanisms can be divided into 

three main categories: neural, humoral and vascular. Hypertension, a sustained rise in BP, is a sign that there 

is a dysfunction in one or more of the key mechanisms regulating BP (Navar 2010). As a way of further 

understanding this cardiovascular disease, the following section (2.0) will describe the key BP regulation 

pathways and how they may be involved in the development of hypertension. 

2.i Neural factors  
 

The autonomic nervous system has a key role to play in BP regulation. In a healthy organism, BP is tightly 

regulated by the dynamic interplay and relative balance between parasympathetic and sympathetic nerve 

activity (Shaffer, Mccraty, Zerr, et al. 2014).  

Sympathetic nerves innervate blood vessels and the sinoatrial (SA) node and myocardium of the heart 

(Klabunde 2012). Cardiovascular sympathetic activity is altered based on afferent sensory information 

received by the rostral ventrolateral medulla (RVLM) of the brainstem (Dampney, Coleman, Fontes, et al. 

2006). Efferent nerve impulses prompt the release of the neurotransmitter norepinephrine which binds to 

post synaptic alpha-adrenergic receptors in the vasculature and beta-adrenergic receptors in the heart and 

the juxtaglomerular apparatus of the kidneys (Klabunde 2012). Efferent sympathetic nerve activity produces 

systemic vasoconstriction and cardiac stimulation which results in increased cardiac conduction velocity in 

addition to increased rate and strength of cardiac contractions. 

The parasympathetic nervous system assists in regulating BP via vagal nerve fibres which innervate the 

atrioventricular (AV) and SA nodes of the heart. Afferent sensory information is received by cell bodies 

located within the medulla in the brain. The integration of this information results in parasympathetic 

efferent nerve impulses which trigger the release of acetylcholine, a neurotransmitter, that binds to 

muscarinic receptors in the heart (Klabunde 2012). This parasympathetic nerve activity acts to reduce SA 
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node firing and slow AV node conduction – both contributing to a slowing of heart rate (HR) and a reduction 

in the strength of contraction. 

The cardiovascular regulation centre in the medulla is responsible for making adjustments in the balance 

between levels of sympathetic and parasympathetic nerve activity. Adjustments are based on the integration 

of information from both the high brain centres and afferent sensory signals (Klabunde 2012). Afferent 

sensory signals originate from neural reflexes; these are negative feedback mechanisms that contribute to 

short term changes in BP that are necessary to meet metabolic demands. The primary neural reflexes include 

the baroreceptor and chemoreceptor reflexes, these are discussed in section 2.i.a.  

2.i.a Role of neural reflexes in the regulation of blood pressure   
 

The baroreflex is activated by cardiopulmonary and arterial baroreceptors that sense volume and pressure 

changes respectively. Cardiopulmonary baroreceptors are located in the walls of the atria and ventricles and 

the arterial baroreceptors are located in the carotid sinus and aortic arch. The arterial baroreceptors are the 

main contributors to the autonomic reflex control of both the heart (cardiac reflex) and blood vessels 

(vascular reflex) (Zimmer 2004). These were discovered by Heinrich Ewald Hering in 1924 (Zimmer 2004). 

Hering’s experimental work led to the discovery that pressure on the carotid sinus and aortic arch sent signals 

via the glossopharyngeal and vagus nerves, which led to decreases in HR, cardiac contractility, vascular 

resistance, venous return and thus an alteration in autonomic balance (a decrease in sympathetic activity 

and increase in parasympathetic activity) (Zimmer, 2004). In contrast to these discoveries, a reduction in 

pressure on the carotid sinus and aortic arch results in unloading of the baroreceptors (Kougias, Weakley, 

Yao, et al. 2010). This unloading, reduces the firing rate and leads to an increase in sympathetic outflow and 

therefore an increase in peripheral vascular resistance and cardiac tissue activity (increase rate and strength 

of contraction and conduction velocity). 

Under conditions whereby BP is required to increase to enable adequate blood flow (e.g. during exercise), 

the baroreceptor mechanism adjusts and operates around the prevailing BP (see section 2.6.3). This acute 

resetting is short-lived and the operating pressure returns to previous resting levels following the return of 

homeostasis.    

The second reflex involved in the neural regulation of BP is the chemoreceptor reflex. Chemoreceptors are 

also located within the aortic arch and carotid artery with their afferent fibres also running in the 

glossopharyngeal and vagus nerves (Klabunde 2012). Peripheral chemoreceptors primarily function to 

regulate respiration and thus maintain appropriate oxygen, carbon dioxide and pH within a narrow 

physiologic range. The chemoreceptors increase their firing rate in response to a fall in arterial PO2 and an 

increase in arterial PCO2 and hydrogen ion concentration. They reflexively increase ventilation and 

sympathoexcitation of cardiac tissue and blood vessels (Dampney, Coleman, Fontes, et al. 2006; Schultz, Li, 
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and Ding 2007). The increase in ventilation and sympathetic activity of the heart ensures that excess carbon 

dioxide is expired and oxygen is replenished, whilst the constriction of most vascular beds (excluding the 

brain and heart) aids in the conservation of available oxygen (Dampney, Coleman, Fontes, et al. 2006). 

2.i.b Role of neural reflexes in the pathophysiology of hypertension 
 

A reduction in baroreceptor sensitivity increases the pressure threshold required to activate a stretch 

sensitive baroreceptor. This phenomenon is known as chronic baroreceptor resetting and is thought to be 

responsible for sustained increases in BP (Carthy 2014). A lower sensitivity would result in reduced 

baroreceptor signalling in response to increased BP, which would in turn cause a reduction in the activation 

of parasympathetic efferent activity and inhibition of sympathetic outflow (Carthy 2014). Chronic 

baroreceptor resetting has been highlighted in the aetiology of essential hypertension (Kougias, Weakley, 

Yao, et al. 2010) with strong negative associations found between mean arterial pressure (MAP) and 

baroreceptor sensitivity (Hesse, Charkoudian, Liu, et al. 2007; Charkoudian and Rabbitts 2009). Research has 

also shown that the sensitivity of baroreceptors in those with essential hypertension is decreased (Parati, Di 

Rienzo, Bertinieri, et al. 1988; Grassi, Cattaneo, Seravalle, et al. 1998; Mussalo, Vanninen, Ikaheimo, et al. 

2002). 

One of the most widely accepted theories for chronic baroreceptor resetting/decreased baroreceptor 

sensitivity is reduced vascular compliance (Thrasher 2004). In the case of both aging and atherosclerosis there 

is a stiffening of the arteries (Sun 2014). This reduces the deformation of stretch sensitive receptors in 

response to increases in pressure. Research has highlighted the negative association between arterial 

stiffness and baroreflex sensitivity (Mattace-Raso, van den Meiracker, Bos, et al. 2007; Okada, Galbreath, 

Shibata, et al. 2012). These findings provide strong evidence for the role of aortic stiffness in the lowering of 

baroreceptor sensitivity and therefore its role in sustaining increases in BP. 

Chemoreceptor sensitivity has been found to be high in hypertensive populations (Tafil-Klawe, Trzebski, and 

Klawe 1985; Somers, Mark, and Abboud 1988) and therefore has also been proposed as a factor involved in 

the aetiology of essential hypertension (Schultz, Li, and Ding 2007; Paton, Ratcliffe, Hering, et al. 2013). 

Although the primary function of chemoreceptor activity is to increase alveolar ventilation and ensure 

adequate oxygen perfusion of vital organs, it also increases sympathetic activity to areas where oxygen is not 

urgently needed (i.e. muscles, splanchnic and renal beds). If chemoreceptor activity is enhanced in those with 

hypertension, this may in turn lead to tonic elevation of sympathetic outflow to some vascular and renal beds 

(Oparil, Zaman, and Calhoun 2003). Whether increased sympathetic drive originating from the 

chemoreceptors is contributing to the development of hypertension or whether chemoreceptors are active 

as a result of hypertension is a subject of debate (Schultz, Li, and Ding 2007). 
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Some research findings in favour of causation focus primarily on individuals with sleep apnoea; a condition 

characterised by a cessation of breathing due to airway obstruction during sleep (Narkiewicz and Somers 

1999; Smith and Pacchia 2007). Sleep apnoea has been shown to cause chronic intermittent hypoxic episodes 

and enhance chemoreceptor activity that lasts much longer than the hypoxic episode itself  (Narkiewicz and 

Somers 1999; Smith and Pacchia 2007). In a rat model researchers induced intermittent hypoxic episodes 

and showed that hypertension ensued from the repeated hypoxic episodes (Fletcher 2001). This research 

provided compelling evidence to support the contributory role of heightened chemoreceptor activity in the 

development of hypertension.  

Other theories, taken from findings in chronic heart failure patients and animal models suggest that the 

presence of sympathetic overdrive and Angiotensin II (Ang II) (see section 2.02.ii) in addition to a reduction 

in nitric oxide (NO) (see section 2.02.iii) would heighten the chemoreflex response (Ding, Li, and Schultz 2011; 

Schultz 2011; Li, Sun, Overholt, et al. 2004). This response would be a direct result of a reduction in carotid 

body blood flow which would in turn stimulate a response from the chemoreceptors suggestive of reduced 

oxygen levels.    

Either way, augmented chemoreceptor drive contributes to enhanced sympathetic neural drive (Schultz, Li, 

and Ding 2007). Its’ contributing role, either in the manifestation or maintenance of high BP is becoming 

more certain. Recent evidence supporting this showed that surgical excision of the carotid body in 

spontaneously hypertensive rats showed marked decreases in both BP and sympathetic activity (McBryde, 

Abdala, Hendy, et al. 2013).   

2.ii Hormonal factors  
 

Many hormones have vasoactive and neural properties, this means that they can influence BP through 

changes in vascular and autonomic tone. In addition, antidiuretic hormones influence reabsorption of fluid; 

regulating BP through increases in fluid volume. The characteristics of these hormones not only influence 

their significance in BP regulation but also in the pathophysiology of hypertension. The renin-angiotensin-

aldosterone system (RAAS) is the most influential hormone system involved in the long-term regulation of 

BP (Dampney, Coleman, Fontes, et al. 2006); aside from its’ system generated hormone (Ang II) it influences 

the secretion of antidiuretic hormones (aldosterone and vasopressin) in addition to the sympathetic 

neurotransmitter norepinephrine (Klabunde 2012). Natriuretic peptide hormones are counter regulatory to 

the hormones established through the RAAS and are therefore also important long-term regulators of BP 

(Volpe, Rubattu, and Burnett 2014).  
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2.ii.a The role of the renin-angiotensin-aldosterone system in blood pressure regulation 
 

The RAAS is a powerful regulator of blood volume, sodium and potassium balance and systemic arterial BP 

(Pacurari, Kafoury, Tchounwou, et al. 2014). Blood pressure is regulated via three primary effectors of this 

system; renin, angiotensin and aldosterone. Renin is an active proteolytic enzyme that is released from the 

juxtaglomerular apparatus of the kidney. The release of renin initiates a cascade of molecular events that 

work to maintain homeostasis. Renin acts upon and cleaves a component of the protein angiotensinogen 

which alters its molecular status to angiotensin I. Angiotensin I is subsequently converted to Ang II by the 

actions of the angiotensin converting enzyme (ACE) (Klabunde 2012). The many actions of Ang II contribute 

to an elevation of fluid volume and BP (Harrison-bernard 2009). Angiotensin II directly constricts vascular 

smooth muscle cells, facilitates release of norepinephrine from the adrenal medulla and sympathetic nerve 

endings, increases sympathetic nervous activity, stimulates thirst and the release of vasopressin from the 

pituitary gland (Klabunde 2012). Vasopressin is an antidiuretic hormone responsible for increasing fluid 

retention in the kidneys in addition to its direct vasoconstrictor properties (Klabunde 2012). The final effector 

of the RAAS is another antidiuretic hormone; aldosterone. Angiotensin II stimulates the release of this 

hormone from the adrenal medulla which causes salt retention and fluid volume expansion (Stiefel, Vallejo-

Vaz, García Morillo, et al. 2011).   

Due to the wide-ranging actions of both angiotensin and aldosterone, the release of renin has a major 

influence on regulating BP. There are three mechanisms responsible for signalling renin release; 1) a decrease 

in glomerular filtration rate is detected by the juxtaglomerular cells; 2) a reduction in sodium chloride 

concentrations detected within the distal tubule of the macula densa; 3) increased renal sympathetic nerve 

activity which act on β1 adrenergic receptors on the juxtaglomerular apparatus. Renin release can also be 

stimulated indirectly by sympathetic nerve innervation of the α1 adrenoceptors on the renal arterioles (Johns 

2013). This innervation causes vasoconstriction which in turn reduces glomerular filtration stimulating renin 

release. Lastly, independent of renin, sympathetic nerve innervation of the renal tubules contributes to the 

regulation of BP by decreasing urinary water and sodium excretion by stimulating an increase in sodium and 

water reabsorption throughout the nephron (DiBona 2000).  

2.ii.b The role of the RAAS in the pathophysiology of hypertension  
 

The influence of renin on the development of hypertension was originally proposed in 1947 by Harry 

Goldblatt (Goldblatt 1947). Goldblatt found that renal ischemia stimulated renin secretion and led to an 

increase in arterial BP; an effect not observed during ischemia of the femoral or splenic arteries (Goldblatt 

1947). Since this discovery, the RAAS has been the subject of intense research into the development of 

hypertension. In 1972, Guyton and co-workers demonstrated that abnormal kidney function and consequent 
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dysregulation of fluid influences chronic elevations in BP (Guyton, Coleman, Cowley, et al. 1972). It is now 

widely accepted that heightened activation of the RAAS is one of the major pathophysiologic mechanisms of 

hypertension (Esler, Lambert, and Schlaich 2010) with increased levels of Ang II (Higuchi, Ohtsu, Suzuki, et al. 

2007) and aldosterone (Stiefel, Vallejo-Vaz, García Morillo, et al. 2011) being specifically implicated in its 

development.  

One of the key contributors to over-activation of the RAAS is increased renal sympathetic nerve activity (Esler 

2014). Although sympathetic innervation of the kidneys was proposed by Claude Bernard in 1859, the 

existence and contribution of these nerves to BP regulation were not fully understood until the 1960’s (Muller 

and Barajas 1972). It is now understood that the juxtaglomerular apparatus, afferent and efferent arterioles 

and renal tubules are extensively innervated by sympathetic nerves (DiBona and Kopp 1997). This knowledge 

has advanced therapeutic treatment modalities for hypertension including ablation of renal sympathetic 

nerves (Barrett 2015) and pharmacological blockade of this system (Bader 2010).  

In the presence of heightened activity of renal sympathetic nerve activity a persistence of renin excretion 

prevails. This in turn leads to chronic increases in Ang II production (Klabunde 2012). Augmented levels of 

this vasoactive peptide have been implicated in leading to sustained elevations in BP through its continued 

actions of vasoconstriction, aldosterone secretion and increased sympathetic nerve activity (Oparil, Zaman, 

and Calhoun 2003). In addition, increased levels of Ang II can play a crucial role in vascular inflammation, 

remodelling and endothelial dysfunction, thus mediating the development of hypertension (Pacurari, 

Kafoury, Tchounwou, et al. 2014) (see section 2.3).  

Elevated levels of aldosterone are also implicated in the pathophysiology of hypertension. In addition to its 

classic actions of sodium and fluid retention, aldosterone contributes to increased vascular inflammation and 

fibrosis (Martinez 2010). These actions promote vascular remodelling and therefore can contribute to the 

development of atherosclerosis and hypertension (Martinez 2010).  

Some researchers oppose the idea that sympathetic activation is the sole contributory mechanism affecting 

the kidney and therefore elevating BP (Esler, Lambert, and Schlaich 2010). Instead the intrarenal system and 

the interaction between Ang II and AT-1 receptors may be implicated in the development of hypertension 

(Crowley, Gurley, Herrera, et al. 2006). This interaction within the kidney has been shown to be associated 

with renal vasoconstriction and anti natriuresis (Crowley, Gurley, Herrera, et al. 2006) and researchers argue 

that it is this effect that is dominant in the pathophysiology of hypertension. Of course, it is recognised that 

heightened angiotensin II activity is due in part to elevated sympathetic tone, however research has also 

shown the angiotensin-II levels are high despite ACE inhibition (Navar, Kobori, and Prieto-Carrasquero 2003) 

supporting the theory that intrarenal angiotensin II can be formed locally (Navar, Imig, Zou, et al. 1997). Their 

actions may therefore be involved in the pathophysiology of hypertension in the absence of autonomic 

dysfunction.  
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2.ii.c Role of Natriuretic Peptides in regulation of blood pressure   
 

In 1981, Adolfo J De Bold discovered that atrial extracts had both natriuretic and vasodilatory properties. 

Later came the identification of atrial natriuretic peptide (ANP) and B-type/brain natriuretic peptide (BNP), 

both involved in long-term regulation of BP and fluid balance (de Bold 2011). These hormones are stored in 

the atrial myocytes and are secreted in response to both mechanical (atrial distension) and neurohumoral 

(Ang II, endothelin, sympathetic stimulation) factors (de Bold 2011). The actions of natriuretic peptides (NP) 

are in opposition to that of angiotensin II, their functions are therefore counter-regulatory to the RAAS.  

The secretion of NP facilitates natriuresis (excretion of sodium) and diuresis (urine production) via an increase 

in glomerular filtration rate. This process reduces renin release and as a result reduces Ang II formation, 

subsequently reducing aldosterone release from the adrenal cortex. Collectively, these actions reduce blood 

volume, leading to a fall in central venous pressure, cardiac output and arterial BP (Klabunde 2012).  

2.ii.d Role of natriuretic peptides in the pathophysiology of hypertension 
 

The participation of ANP and BNP in the pathophysiology of hypertension is still up for debate. In animal 

models, it has been shown that a deliberate disruption of ANP receptor genes resulted in hypertension (John, 

Krege, Oliver, et al. 1995). In addition, rats with hypertension showed a lower peptide response to atrial 

distension (Onwochei and Rapp 1989). In contrast, levels of ANP in hypertensive rats and humans have been 

shown to be elevated above normal (Schiffrin, St-Louis, and Essiambre 1988; Sagnella, Markandu, Buckley, 

et al. 1991) however, this may indicate reduced binding of ANP onto vascular receptors thus disenabling its 

BP lowering effects.   

The study of gene types associated with NP has gained some momentum. Chandra and colleagues recently 

found that ANP gene expression was down-regulated in patients with essential hypertension (Chandra, 

Saluja, Narang, et al. 2015). In addition, researchers have shown specific gene variations associated with 

increased levels of circulating NP and consequently a lowered risk of developing hypertension (Newton-Cheh, 

Larson, Vasan, et al. 2012).  

Research into the association between NP and hypertension continues. In the meantime, the development 

of NP therapeutic strategies are currently under rigorous development and clinical experiments (Volpe, 

Rubattu, and Burnett 2014). 

2.iii Vascular factors  
 

The endothelium, consisting of endothelial cells is located on the inner lining of all blood vessels. Although 

not generally classified as a short or long-term BP regulating mechanism, the responsiveness and therefore 

healthy functioning of the endothelium is of prime importance when it comes to regulating appropriate 
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vascular tone when under the influence of vasoactive hormones (Ang II, norephinephrine) detailed within 

the earlier parts of this chapter (see section 2.ii).  

Investigations into the role of the endothelium in regulating vascular tone and therefore BP saw a surge in 

the late 1970’s. In 1980, Furchgott and Zawadski were instrumental in discovering the vital role played by the 

endothelium in producing an endothelial-derived relaxing factor (EDRF) resulting in the relaxation of the 

arterial wall (Furchgott and Zawadzki 1980). Following on from this discovery, Furchgott suggested that the 

EDRF was nitric oxide (NO) and later in 1988 Palmer and colleagues confirmed his suggestions and later 

discovered it to be generated from its antecedent L-arginine by endothelial NO synthase (Palmer, Ashton, 

and Moncada 1988). In the late 1980’s research highlighted the ability of the endothelium to induce 

vasodilation in response to increases in blood flow (shear stress), a process now known as endothelium-

dependent flow mediated vasodilation (FMD) (Pohl, Holtz, Busse, et al. 1986). The effects of shear stress 

were recognised to effect the production of vasodilating substances like NO (Tinken, Thijssen, Hopkins, et al. 

2010) and prostacyclin (Eskurza, Seals, DeSouza, et al. 2001). The importance of NO in BP regulation has been 

shown in a number of animal and human studies whereby NO synthase was pharmacologically inhibited. This 

inhibition has been shown to result in vasoconstriction and a rise in systemic BP (Chowdhary and Townend 

2001).       

As a way of maintaining homeostasis, an endothelin-derived constricting factor (EDCF), endothelin-1 (ET-1), 

works to oppose the effects of NO. This powerful vasoconstricting peptide was discovered by researchers in 

Japan in 1988 (Yanagisawa, Kurihara, Kimura, et al. 1988). The synthesis of ET-1 is stimulated by a number of 

factors including Ang II (see section 2.ii) and thrombin; a blood coagulating factor whose activity is heightened 

during periods of inflammation (González, Valls, Brito, et al. 2014). 

2.iii.a Role of vascular factors in the pathophysiology of hypertension  
 

Endothelial dysfunction (ED) is characterised by a disturbance in the pathway that promotes the synthesis of 

the anti-inflammatory and vasoactive dilators like NO and prostacyclin; thus leading to a predominance of 

pro-inflammatory vasoconstrictors like ET-1 and Ang-II. With studies showing reduced vasodilating 

capabilities in hypertensive subjects (Linder, Kiowski, Buhler, et al. 1990; Panza, Casino, Kilcoyne, et al. 1993). 

The association between ED and hypertension has been established, the question remains whether 

hypertensive subjects have an impaired ability to synthesise the predominant vasodilator NO or whether its 

reduced bioavailability is secondary to hypertension that is originating from autonomic dysfunction and/or 

humoral factors.   

Studies in the early 90’s showed an impaired response to the neurotransmitter acetylcholine in hypertensive 

subjects, suggesting an abnormality of vascular NO bioactivity in hypertension (Linder, Kiowski, Buhler, et al. 

1990; Panza, Casino, Kilcoyne, et al. 1993). However, this response is not consistent with other studies and 
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in a larger trial by Cockroft and colleagues results showed no impairment in vasodilator responses to 

muscarinic agonists (Cockroft, Chowienczyk, Benjamin, et al. 1994). This larger investigation alongside similar 

findings by the same research group (Kneale, Chowienczyk, Brett, et al. 1999) has led to the suggestion that 

a reduction in the synthesis of NO is not a cause of hypertension but an effect  (Chowdhary and Townend 

2001). In support of this suggestion, Milgard and Lind showed that endothelium-dependent dilation is 

immediately impaired by acute increases in BP in healthy normotensive participants (Millgard and Lind 1998) 

Because hypertension is widely associated with endothelial dysfunction (e.g. decreased NO bioavailability) in 

addition to increased levels of sympathetic activity, it has been suggested that the autonomic nervous system 

may be an important factor affecting the behaviour of endothelial function (Amiya, Watanabe, and Komuro 

2014). However, the mechanism for this effect has not been widely documented. In 2002, Hijmering and 

colleagues set upon linking sympathetic nerve activity and endothelial dysfunction (Hijmering, Stroes, 

Olijhoek, et al. 2002). They found that increased levels of sympathetic activity blunted flow mediated dilation 

and subsequently NO release. It was suggested that there was indeed a link between the sympathetic system 

and the production of the endothelium derived relaxing factor, NO.  

The decrease in the bioavailability of NO and its negative effects on endothelial function may ultimately lead 

to the development of hypertension via a couple of mechanisms. Firstly, ET-I is no longer exposed to the 

counterproductive effects of NO and therefore its vasoconstricting actions become predominant. Secondly 

without the anti-oxidant and anti-inflammatory actions of NO, the vasculature becomes exposed to the pro-

oxidant and pro-inflammatory actions of Ang-II and ET-1, therefore leading to an increase in reactive oxygen 

species (ROS) and thus oxidative stress and inflammation. Markers of oxidative stress have been shown to 

be elevated in hypertensive individuals indicating that oxidative stress is involved in the pathophysiology of 

hypertension (Rodrigo, Prat, Passalacqua, et al. 2007). 

The production of ROS, namely superoxide anion (González, Valls, Brito, & Rodrigo, 2014), encourages 

structural alterations of vascular smooth muscle cells including cell proliferation, growth and hypertrophy, in 

addition to the promotion of adhesion molecules to endothelial cells (Fortuño, San José, Moreno, et al. 2005). 

These actions contribute to the narrowing and stiffening of the arterial lumen and furthermore to increased 

peripheral resistance and therefore increased BP (Fortuño, San José, Moreno, et al. 2005).  

Whilst the reduction of NO may be a result of increased sympathetic activity (Hijmering, Stroes, Olijhoek, et 

al. 2002), the increased presence of ET-1 and Ang-II seen in hypertensive subjects (Mancia et al., 1999; Saito, 

Nakao, Mukoyama, & Imura, 1990) may also be due to autonomic dysfunction. Heightened sympathetic 

activity, leading to RAAS over-activation (see section 2.ii.b) contributes to the increase in Ang-II and therefore 

in oxidative stress and inflammation (González, Valls, Brito, et al. 2014; Hitomi, Kiyomoto, and Nishiyama 

2007). This not only encourages the production of ROS but it also functions to mobilise ET-1 which in turn 

participates in the production of ROS (González, Valls, Brito, et al. 2014). The actions of ROS and the resulting 
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effects on the stiffening of the arterial lumen (Wu, Xia, Kalionis, et al. 2014; Sun 2014) may also contribute 

to reduced baroreflex sensitivity – thus continually reducing sympathetic withdrawal in response to high 

arterial pressure (see section 2.i.a). 

2.iv Summary  
 

Blood pressure is regulated by neural, hormonal and local vascular factors. The baroreflex and chemoreflex 

are key negative feedback systems that regulate BP through changes in the autonomic nervous system. The 

RAAS is the most influential hormonal system involved in the long-term regulation of BP; the RAAS is active 

in the kidneys and regulates fluid volume. Natriuretic peptide hormones are counter regulatory to the RAAS. 

Endothelial function is a key vascular factor that influences BP regulation. The responsiveness and therefore 

healthy functioning of the endothelium is of prime importance when it comes to regulating appropriate 

vascular tone. Vasodilating and vasoconstricting substances ensure the appropriate regulation of vascular 

tone and therefore BP.   

Whilst these factors are key BP regulators, a dysfunction in one or more of these can predispose an individual 

to sustained rises in BP and therefore hypertension. As described in section 2.i a reduction in the sensitivity 

of the baroreflexes or heightened sensitivity of chemoreflexes can alter the effective responsiveness of the 

autonomic nervous system affecting appropriate autonomic balance. Hormonal factors such as heightened 

activation of the RAAS can also contribute to the development of hypertension (Esler, Lambert, and Schlaich 

2010); with increased levels of Ang II (Higuchi, Ohtsu, Suzuki, et al. 2007) and aldosterone (Stiefel, Vallejo-

Vaz, García Morillo, et al. 2011) specifically implicated in its development. Finally ED can lead to hypertension 

due to the reduction in anti-inflammatory and vasoactive dilators like NO and prostacyclin and a resulting 

predominance of pro-inflammatory vasoconstrictors like ET-1 and Ang-II. 

The autonomic nervous system is effected and/or affected by all three regulatory mechanisms. Therefore a 

derangement in one or more of these mechanisms can cause or be caused by an imbalance in the autonomic 

nervous system (i.e. heightened sympathetic nerve activity and suppression of cardio-vagal nerve activity). 

This places the autonomic nervous system central to the pathophysiology of hypertension (Thayer, 

Yamamoto, and Brosschot 2010). The influence of exercise on this system may therefore provide key 

mechanistic insight into BP management strategies. The effects of exercise, in particular isometric exercise 

on the function of the autonomic nervous system are discussed in section 2.6.   
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2.1 Exercise prescription for blood pressure management 

 

International guidelines recommend that hypertensive adults engage in aerobic exercise at a moderate 

(Ghadieh and Saab 2015; Pescatello, Franklin, Fagard, et al. 2004a; Mancia, Fagard, Narkiewicz, et al. 2013) 

or moderate-vigorous (James, Oparil, Carter, et al. 2014; Brook, Appel, Rubenfire, et al. 2013) intensity for 

30-60 minutes on 5-7 days of the week. In addition to aerobic exercise training, dynamic resistance on 2-3 

days per week is recommended by some organisations (Ghadieh and Saab 2015; James, Oparil, Carter, et al. 

2014; Mancia, Fagard, Narkiewicz, et al. 2013; Pescatello, Franklin, Fagard, et al. 2004a). Isometric exercise 

is currently only recommended as an adjunct therapy by the American Heart Association (James, Oparil, 

Carter, et al. 2014)  and Hypertension Canada (Ghadieh and Saab 2015); however, in light of consistently 

positive findings (Inder, Carlson, Dieberg, et al. 2016) this recommendation is likely to be included in future 

international guidelines. The following sections review each exercise modality and its effect on BP following 

a single exercise session (acute effects) and a period of exercise training (chronic effects). A more detailed 

review on isometric exercise training and BP management is provided.  

2.1.1 Aerobic exercise 
 

Aerobic exercise is the most widely researched and recommended exercise modality for BP management 

(Pescatello, Macdonald, Lamberti, et al. 2015). One of the reasons that aerobic exercise is recommended for 

most days of the week is because BP has been shown to be lower in the hours following an exercise bout 

(Pescatello, Macdonald, Lamberti, et al. 2015). This phenomenon is called post exercise hypotension (PEH)  

(Thompson, Crouse, Goodpaster, et al. 2001; Cardoso, Gomides, Queiroz, et al. 2010; Park, Rink, and Wallace 

2006) and has been shown to occur in both normotensive and hypertensive participants (Pescatello, Franklin, 

Fagard, et al. 2004a; Carpio-Rivera 2016) following a single aerobic exercise session of varying intensities (40-

100% VO2 max) and durations (15-50 minutes) (Pescatello, Macdonald, Lamberti, et al. 2015). For this reason, 

PEH is considered to be an important physiological phenomenon playing a crucial role in BP management 

(Kenney and Seals 1993).  

The magnitude of resting systolic and diastolic BP reductions following aerobic exercise cessation is 

approximately -6/4mmHg (Carpio-Rivera 2016). However the magnitude and duration of the BP response 

varies widely between studies (Cardoso, Gomides, Queiroz, et al. 2010; Carpio-Rivera 2016) suggesting that 

mode of measurement (resting or ambulatory), participant and exercise characteristics are likely to influence 

the findings. Findings have shown that baseline BP influences the magnitude of PEH, with hypertensive 

participants benefiting from larger systolic BP reductions as compared with normotensive and pre-

hypertensive participants (Cardoso, Gomides, Queiroz, et al. 2010). Ambulatory recordings show a wide 

range of responses; findings have revealed that hypertensive participants experience a BP reduction ranging 
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from -2 to -12mmHg over a period of 2-24 hours (Pescatello and Kulikowich 2001; Brandao Rondon, Alves, 

Braga, et al. 2002; Cardoso, Gomides, Queiroz, et al. 2010; Thompson, Crouse, Goodpaster, et al. 2001) whilst 

the majority of studies on normotensive participants do not find an ambulatory effect (Cardoso, Gomides, 

Queiroz, et al. 2010).    

The influence of aerobic exercise intensity on the magnitude of PEH is controversial with a meta-analysis 

reporting reductions following low, moderate and high-intensity exercise (Cardoso, Gomides, Queiroz, et al. 

2010). Recent findings suggest that individuals with resistant hypertension benefit from similar BP reductions 

in the 5 hours following both light and moderate intensity exercise; however, the reduction following light 

intensity exercise was sustained over a longer period of time (10 hours) (Santos, Moraes, Vieira, et al. 2016). 

In contrast, De Morais and colleagues found that a maximal exercise bike ergometer test reduced 24-hour 

average, daytime and night-time ambulatory BP whereas moderate intensity exercise (20minutes @ 90% 

lactate threshold) did not have an effect (De Morais, SALES, De Almeida, et al. 2015) in pre-hypertensive 

participants.   

Aside from PEH being advantageous in contributing to day to day BP management, the merits of PEH are 

further supported by studies showing that the BP response to acute exercise is strongly correlated with 

chronic BP reductions following aerobic training (Kiviniemi, Hautala, Karjalainen, et al. 2015; Liu, Goodman, 

Nolan, et al. 2012). This strong correlation suggests that PEH could be used as a screening tool to identify 

hypertensive individuals who will respond to exercise as antihypertensive treatment.  

Meta-analyses have shown that aerobic training programmes lasting up to 24 weeks have revealed 

reductions in resting systolic and diastolic BP (-3 to -4/-2 to -3mmHg) (Cornelissen and Fagard 2005; 

Cornelissen and Smart 2013). Similar to PEH, a more pronounced reduction in resting BP has been found in 

hypertensive participants (-7 to -11/-5mmHg) (Cornelissen and Fagard 2005; Cornelissen and Smart 2013; 

Börjesson, Onerup, Lundqvist, et al. 2016). Börjesson and colleagues conducted the largest analysis of aerobic 

activity and BP in hypertensives (n=1480). When compared with other reviews their findings revealed a larger 

systolic BP reduction of -10.8mmHg (Börjesson, Onerup, Lundqvist, et al. 2016). The augmented systolic 

effect could be related to the fact that the trials included in this review were of a moderate and high exercise 

intensity only. Low intensity trials were excluded. Evidence suggests that moderate or high intensity exercise 

training elicits similar chronic adaptations (Millar and Goodman 2014) whereas exercise training at low 

intensities reduces its effectiveness (Cornelissen and Smart 2013). The inclusion of low intensity studies in 

previous meta-analyses may have contributed to the reduced effect reported in hypertensive adults 

(Cornelissen and Fagard 2005; Cornelissen and Smart 2013).  

Findings from other studies have also reported chronic reductions in daytime ambulatory BP (-3.3/-

3.5mmHg) (Cornelissen and Fagard 2005, Cardoso et al. 2010, Cornelissen et al. 2013). Unlike observations 

on resting BP data, larger reductions in ambulatory BP have not been observed in hypertensive participants 



34 
 

as compared with normotensives (Cornelissen et al. 2013); however, the smaller number of studies assessing 

ambulatory BP limits the conclusiveness of this finding.  

2.1.2 Dynamic resistance exercise 
 

In comparison to the widely recommended use of aerobic training as a non-pharmacological antihypertensive 

therapy, the use of dynamic resistance exercise training is not normally recommended as a stand-alone 

exercise therapy but only recommended by some organisations as an adjunct therapy in BP management 

(Ghadieh and Saab 2015; James, Oparil, Carter, et al. 2014; Mancia, Fagard, Narkiewicz, et al. 2013; 

Pescatello, Franklin, Fagard, et al. 2004a). 

Research to date supports the existence of PEH in response to an acute bout of dynamic resistance exercise 

in both normotensive (Keese, Farinatti, Pescatello, et al. 2011; Moraes, Bacurau, Ramalho, et al. 2007; 

Moreira, Cucato, Terra, et al. 2016; Queiroz, Sousa, Cavalli, et al. 2015) and hypertensive (Queiroz, Sousa, 

Cavalli, et al. 2015; Mota, Oliveira, Dutra, et al. 2013; De Brito, Rezende, Da Silva, et al. 2015; Hardy and 

Tucker 1998) individuals. A meta-analysis carried out in 2016 indicated that hypertensive participants 

experience a reduction of -9/-5mmHg following an acute bout of resistance exercise, whilst normotensives 

experience a smaller hypotensive response (-3/2.7mmHg) (Casonatto, Goessler, Cornelissen, et al. 2016). 

However, unfortunately these BP reductions have only been observed in the 60-90 minutes after an acute 

bout of dynamic resistance training (Casonatto, Goessler, Cornelissen, et al. 2016) and the lasting effect of 

PEH, as measured by ambulatory BP, is not well supported (Moraes, Bacurau, Ramalho, et al. 2007; Hardy 

and Tucker 1998; Queiroz, Sousa, Cavalli, et al. 2015; Cardoso, Gomides, Queiroz, et al. 2010); further 

investigation, particularly amongst hypertensive participants is required (Casonatto, Goessler, Cornelissen, 

et al. 2016).    

Although the evidence supports a short-term hypotensive response following a bout of dynamic resistance 

training, research supporting dynamic resistance training is weak. Several meta-analyses have been carried 

out with varying conclusions. Four meta-analyses have concluded that dynamic resistance training performed 

over a number of weeks has no beneficial effect on resting or ambulatory BP in hypertensive and 

normotensive participants (Cornelissen and Smart 2013; Börjesson, Onerup, Lundqvist, et al. 2016; Cardoso, 

Gomides, Queiroz, et al. 2010; Cornelissen and Fagard 2005). In contrast to hypertensive and normotensive 

adults, the meta-analysis carried out in 2013 suggests that pre-hypertensive adults experience a reduction in 

resting BP (-4/-3.8mmHg) following training carried out over a number of weeks (Cornelissen and Smart 

2013). These findings on pre-hypertensive adults are in agreement with another meta-analysis carried out by 

MacDonald et al., (2016). However, in addition, findings from this meta-analysis also showed that 

hypertensives reduced their BP by 6/5mmHg; this finding disagrees with those of previous meta-analyses 

(Cornelissen and Smart 2013; Börjesson, Onerup, Lundqvist, et al. 2016; Cardoso, Gomides, Queiroz, et al. 
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2010; Cornelissen and Fagard 2005). This discrepancy is curious but might be explained by the small number 

of trials analysed (lowering the power of the meta-analyses) and the inclusion of well-controlled hypertensive 

participants (Cornelissen and Smart 2013; Börjesson, Onerup, Lundqvist, et al. 2016; Cardoso, Gomides, 

Queiroz, et al. 2010; Cornelissen and Fagard 2005); this would negate the potentially greater impact of 

resistance training on those with a higher baseline BP. In support of this, MacDonald and colleagues (2016) 

studied a larger number of trials (n=71) and although findings showed an overall BP decrease in hypertensives 

a sub-group analysis found no effect on medicated (i.e. well-controlled) hypertensives.  

In addition, findings from individual studies have shown that those with higher baseline BP respond most 

positively to dynamic resistance training (Moraes, Bacurau, Ramalho, et al. 2007; Moreira, Cucato, Terra, et 

al. 2016) and therefore add strength to this theory. However, the evidence support the chronic effects of 

dynamic resistance training still remains relatively weak and further research is warranted on this topic 

(MacDonald, Johnson, Huedo-Medina, et al. 2016).  

2.1.3 Isometric exercise 
 

To date, meta-analyses have revealed consistent reductions in resting BP following isometric training 

programmes (Cornelissen et al. 2013, Carlson et al. 2014, Cornelissen et al. 2011, Inder et al. 2016). However, 

due to the limited research, the American Heart Association (James, Oparil, Carter, et al. 2014) and 

Hypertension Canada (Ghadieh and Saab 2015) are currently the only organisations that recommend 

isometric exercise for antihypertensive benefits.  

As compared with aerobic and dynamic resistance exercise, research on the effects of isometric exercise on 

PEH is limited and findings are varied. Some studies have reported the presence of PEH (Stewart, 

Montgomery, Glover, 2007; Millar et al., 2009; Van Assche et al., 2016) and others have not found an acute 

hypotensive effect (Ash et al. 2016, Goessler et al. 2016, Olher et al. 2013). Overall, exercise protocols are 

varied and have included 4x2minute handgrip contractions at 30% MVC (Millar et al. 2009a, Ash et al. 2016, 

Van Assche et al. 2017, Goessler et al. 2016), a single 2-minute handgrip contraction at 35% MVC (Stewart, 

Montgomery, Glover, et al. 2007)  and 20 x 10 second handgrip contractions at 30 and 50% MVC (Olher, 

Bocalini, Bacurau, et al. 2013). Out of the three studies that reported hypotensive effects of isometric 

exercise, one measured ambulatory BP (Van Assche et al., 2016) whilst two studies only measured 

hypotensive effects at 5 minutes (Millar, Bray, MacDonald, et al. 2009) and 1  minute (Stewart, Montgomery, 

Glover, et al. 2007) post exercise. The reductions seen in the early minutes following exercise can be 

attributed to the sudden perfusion of previously occluded muscle mass (Macdonald 2002). This mechanism 

results in a transient pressure undershoot and has been suggested that the hypotension as a result of this 

should not be defined as PEH (Macdonald 2002). Measuring beyond the very early post exercise stage, 

ambulatory recordings carried out by Van Assche and colleagues observed a SBP hypotensive response (-
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5.4mmHg) recorded for 6 hours post isometric exercise (Van Assche, Buys, De Jaeger, et al. 2017). However, 

despite a similar population group, Ash et al., (2016) did not echo these findings and reported no BP 

reductions over a 19-hour ambulatory recording despite observing hypotensive effects following an aerobic 

exercise bout. In summary, only one study has documented a PEH response beyond the first 5 minutes of 

completing isometric exercise (Van Assche, Buys, De Jaeger, et al. 2017)  and therefore the existence of this 

phenomenon in isometric exercise remains under debate. 

In contrast to the mixed findings on PEH following an acute bout of isometric exercise, meta-analyses provide 

strong evidence in support of chronic BP adaptations following isometric training programmes (Cornelissen 

et al. 2013, Carlson et al. 2014, Cornelissen et al. 2011, Inder et al. 2016). Findings from these meta-analyses 

are varied with isometric exercise training showing reductions of -13.5/-6.1mmHg (Cornelissen et al. 2011), 

-10.9/-6.2mmHg (Cornelissen et al. 2013), -6.7/-3.9mmHg (Carlson et al. 2014) and -5.2/-3.91mmHg (Inder 

et al. 2016) (Table 2.1). Whilst these papers suggest that the magnitude of BP reductions has decreased over 

time, it is important to note that the size of each meta-analysis increased over time and therefore as time 

has progressed each analysis benefited from more data, thus making the process more rigorous and more 

representative of isometric training effects. For example, Cornelissen et al., (2011) included the three 

isometric training randomised control trials (n=81) available at the time of analysis whilst five years later, 

Inder et al., (2016) included the 11 isometric training randomised control trials available (n=302).  

Due to the small number of studies available to analyse, subgroup analysis between population groups 

(normotensive, pre-hypertensive, unmedicated hypertensive, medicated hypertensive) was not attempted 

until 2016 (Inder et al. 2016). Findings from Inder et al. showed that hypertensive individuals experienced a 

larger decrease in mean arterial pressure (-5.91mmHg) as compared to normotensive individuals (-

3.01mmHg). There remains a paucity of data for further subgroup analysis between medicated and non-

medicated hypertensives.   
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Table 2.1: Summary of a meta-analysis carried out on the effects of isometric exercise training on resting blood pressure (Inder et al., 2016).  
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However, it is important to note that, to date, only ten studies have specifically investigated the effects of 

isometric training in pre-hypertensive and hypertensive (medicated and unmedicated) populations (Table 

2.2). Studies carried out on these population groups have found significant resting SBP reductions ranging 

from -5mmHg to -13mmHg and DBP reductions ranging from -5mmHg to -15mmHg. Only one study reported 

no significant changes in SBP (Stiller-Moldovan, Kenno, and McGowan 2012) whilst six studies reported no 

significant changes in DBP (Taylor, McCartney, Kamath, et al. 2003; McGowan, Visocchi, Faulkner, et al. 2007; 

Stiller-Moldovan, Kenno, and McGowan 2012; Baross, Wiles, and Swaine 2012, 2013). Changes in mean 

arterial pressure (MAP) are not commonly reported; however, some studies report reductions between -

11mmHg and -5mmHg (Taylor, McCartney, Kamath, et al. 2003; Baross, Wiles, and Swaine 2012, 2013; 

Badrov, Horton, Millar, et al. 2013; Millar, Levy, Mcgowan, et al. 2013) with others reporting no change 

(McGowan, Levy, Millar, et al. 2006). Mean arterial pressure is an important variable in the measurement of 

BP as it represents the average pressure during each cardiac cycle and alongside SBP and DBP is strongly 

associated with cardiovascular disease risk (Hadaegh, Shafiee, Hatami, et al. 2012; Sesso, Stampfer, Rosner, 

et al. 2000). This thesis will investigate changes in MAP in addition to systolic and diastolic BP.   

Reasons for varied responses between training studies in the pre-hypertensive and hypertensive population 

have yet to be fully defined. However, taking the findings on the medicated hypertensive population (Taylor, 

McCartney, Kamath, et al. 2003; McGowan, Visocchi, Faulkner, et al. 2007; Stiller-Moldovan, Kenno, and 

McGowan 2012; Badrov, Horton, Millar, et al. 2013; Millar, Levy, Mcgowan, et al. 2013) the impact of pre-

training blood pressure values is worthy of mention. These five studies are consistent in terms of intensity 

(30% MVC), duration (2minutes), number of repetitions (4 repetitions) and isometric exercise type (handgrip) 

but differences in pre-training BP levels vary widely. For example, Taylor et al. (2003) recruited participants 

whose baseline BP was 156±9.4/82.3±9.3mmHg and Millar et al. (2013) recruited participants with baseline 

values of 125±3/78 ± 2mmHg (Table 2.2). The reduction in SBP reported in these studies was -19mmHg and 

-5mmHg respectively. In addition, Stiller-Moldovan recruited medicated participants whose mean baseline 

values were within optimal BP ranges (113±12.7/60.7±11.6mmHg). They found no significant effects of 

alternate handgrip isometrics on resting BP. However, this finding is in contrast to studies that recruited 

young healthy participants with baseline values within similar ranges (Wiley, Dunn, Cox, et al. 1992; Ray and 

Carrasco 2000; Howden, Lightfoot, Brown, et al. 2002; Millar, Bray, MacDonald, et al. 2008; Wiles, Coleman, 

and Swaine 2010; Devereux, Wiles, and Swaine 2011; Badrov, Bartol, Dibartolomeo, et al. 2013; Devereux 

and Wiles 2015; Gill, Arthur, Swaine, et al. 2015).  

In the case of the well-controlled hypertensive participant the effects of anti-hypertensive medication may 

involve an overlap between the mechanisms mediating the effects of isometric training (Millar, Bray, 

McGowan, et al. 2007); this could explain the lack of change in the well-controlled hypertensive participant 

as compared with normotensives who are not medicated. However, insufficient information is currently 

available with regards to specific medications and their relationship with an individual’s responsiveness to 
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isometric exercise training. This thesis will not attempt to determine medication effects or delineate BP 

responses in medicated or un-medicated participants but will recruit older individuals (>55years) with a low 

cardiovascular risk who are displaying baseline BP within the pre-hypertension and stage 1 hypertension 

ranges (130-159/85-99). Isometric exercise is recommended as an alternative exercise modality for BP 

management in this specific population group (James, Oparil, Carter, et al. 2014) and they are therefore most 

likely to be prescribed it within the clinic environment (McGowan, Proctor, Swaine, et al. 2017). Considering 

the small number of randomised controlled studies conducted on individuals with baseline BP within this 

range (Wiley, Dunn, Cox, et al. 1992; Taylor, McCartney, Kamath, et al. 2003; Baross, Wiles, and Swaine 2013; 

Millar, Levy, Mcgowan, et al. 2013), continued research on this population group is required. 

Another reason for varied BP responses could be related to differences in the training stimulus which is made 

up of the relative exercise intensity (% MVC), muscle mass recruited (handgrip, bilateral legs) and programme 

length (number of weeks) (Hess, Carlson, Inder, et al. 2016; Lawrence, Cooley, Huet, et al. 2014). The 

independent effect of isometric exercise intensity remains unclear. Handgrip intensity is normally set at 30% 

MVC (Wiley, Dunn, Cox, et al. 1992; Taylor, McCartney, Kamath, et al. 2003; McGowan, Visocchi, Faulkner, 

et al. 2007; Millar, Bray, McGowan, et al. 2007; Badrov, Bartol, Dibartolomeo, et al. 2013); however some 

bilateral leg training protocols have found beneficial effects using intensities as low as ~10%MVC in 

normotensive (Wiles, Coleman, and Swaine 2010) and ~14% in pre-hypertensive and hypertensive 

participants (Baross, Wiles, and Swaine 2012).  

To understand the effects of isometric exercise intensity, some studies that have made side by side 

comparisons of varying exercise intensities have been carried out on bilateral leg isometric protocols (Gill, 

Arthur, Swaine, et al. 2015; Baross, Wiles, and Swaine 2012; Wiles, Coleman, and Swaine 2010; Hess, Carlson, 

Inder, et al. 2016). Findings have shown that isometric exercise performed at both 21% MVC and 10% MVC 

elicits significantly positive BP reductions in normotensive males (Wiles, Coleman, and Swaine 2010). 

However, Gill et al., (2015) found that differing contraction intensities impacted on BP reductions with 

contractions carried out at 34% MVC eliciting positive reductions whilst those at 23% MVC did not improve 

BP. Similarly Baross et al., (2012) found BP improvements following isometric leg contractions at 14% MVC 

but not at 7% MVC. Some of these differences could be explained by total exercise volume (contraction 

duration X number of repetitions X sessions per week X total number of weeks). The training volume 

prescribed by Gill and colleagues (2015), who found that the lower intensity (24% MVC) did not lower resting 

BP, equalled 72minutes, this was compared to 192minutes prescribed by Wiles et al., (2010) who found that 

the lower intensity (10% MVC) still elicited a positive change. This suggests that isometric contraction 

intensity may be compensated for by increased training volume. However, despite a comparable exercise 

volume (192minutes) to that of Wiles et al., (2010) findings from Baross et al., (2012) showed that bilateral 

leg exercise at 8% MVC did not elicit any change thus suggesting that a certain stimulus level is likely to be 

required.  
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To date, the only isometric handgrip intensity prescribed to pre-hypertensive adults and hypertensive adults 

has been 30% MVC  (Wiley, Dunn, Cox, et al. 1992; Taylor, McCartney, Kamath, et al. 2003; McGowan, Levy, 

Millar, et al. 2006; McGowan, Visocchi, Faulkner, et al. 2007; Stiller-Moldovan, Kenno, and McGowan 2012; 

Badrov, Horton, Millar, et al. 2013; Millar, Levy, Mcgowan, et al. 2013; Ash, Taylor, Thompson, et al. 2016) 

and 50% MVC (Peters, Alessio, Hagerman, et al. 2006). Although this method has been successful to date 

(Table 2.2) it presents some limitations, especially within this population group. Firstly, specialised 

programmable handgrip devices or dynamometers, designed to calculate %MVC prior to the beginning of 

each exercise session, are required. These are somewhat expensive and some dynamometers can only be 

used in the laboratory. Secondly, the calculation of %MVC requires 2-3 all-out maximal efforts, which might 

present a limitation in some groups of participants, especially in those with frailty. Some older adults are 

limited in maximal gripping, due to the prevalence of varying degrees of arthritic pain in the hand (Arthritis 

Research UK 2017). In addition, maximal contractions pose a risk of carrying out a Valsalva manoeuvre 

(O’Connor, Sforzo, and Frye 1989) in addition to causing large and abrupt increases in SBP (Pescatello et al., 

2004b). Maximal contractions should therefore be avoided in those at high cardiovascular risk (Pescatello, 

Franklin, Fagard, et al. 2004b). If this type of exercise is to benefit older people with hypertension (or who 

are at risk of hypertension) then it must be simple to use, affordable, home-based and ideally it must avoid 

maximal effort. There has been little exploration of alternative ways to regulate isometric handgrip intensity 

for the management of BP. Considering that the ACSM recommend the use of the rate of perceived exertion 

to regulate aerobic exercise for BP management it would seem pertinent to explore the validity of this 

method of exercise prescription (Chapter 5).  
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Table 2.2: Studies examining the effects of isometric exercise training on resting blood pressure in pre-hypertensive and hypertensive (medicated and 

unmedicated) participants 

Reference  Participants  Age  
Baseline BP 
(SBP/DBP) BP status  

Method of BP 
determination 

Exercise 
mode  

Exercise 
programme Intensity Duration Major findings  

 
Wiley 
(1992) 
 
 
 
 
 
 
 

Ex: 8 
Con:10 

 
 

 
20-
35 
 
 

 
134.1±0.95 
/86.5±2.01 
134±3.3/83.4
±6.7 
 
 
 
 
 
 

 
Pre-hypertensive  
 
 
 

 
Automated 
oscillometric 
device  
 

Unilateral 
IHG 
 
 

4x2min, 3-
min rest, 
3x/week  
 

30% MVC 
 
 
 

8 wks  
 
 
 

 
SBP -13mmHg 
DBP -15mmHg 
 
 

 
 
Baross et 
al., (2012) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Ex: 10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
54.6
±5.5 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
139.1± 2.2 
/78.9 ± 10.3 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Pre-hypertensive 
and unmedicated 
hypertensive  
 
 
 
 
 
 
 
 
 
 

 
 
Continuous 
non-invasive 
recording  
 
 
 
 
 
 
 
 
 

 
 
Bilateral 
leg 
extension 
 
 
 
 
 
 
 
 
 
 
 

 
 
4x2min, 2-
min rest, 
3x/week 
 
 
 
 
 
 
 
 

 
 
85% 
HRpeak 
 
 
 
 
 
 
 
 
 
 
 

 
 
8 wks  
 
 
 
 
 
 
 
 
 
 

 
 
SBP -11mmHg 
No change  
DBP 
MAP-5mmHg 
 
 
 
 
 
 
 
 
 
 

  

Ex:10 
 

Con:10 
 
 

53.6
±5.5 
53.6
±4.5 
 

137.3±5.3 
/78.3± 5.5 
138.7± 
/78.2±5.5 
 

 
 

    

70% 
HRpeak 
 
 
 

 
 
 
 

No change BP 
 
 
 
  

Baross et 
al., (2013) 
 
 
 
 
 

 
Ex: 10 
Con:10 

 
 
 
 
 

 
53±5 
55±6 
 
 
 
 
 

 
139±7 
/85±14 
139±8 
/85±7 
 
 
 

 
Pre-hypertensive 
and unmedicated 
hypertensive 
 
 
  
 

 
Continuous 
non-invasive 
recording  
 
 
 
 

 
Bilateral 
leg 
extension 
 
 
 
 

 
4x2min, 2-
min rest, 
3x/week 
 
 
 
 

 
85% 
HRpeak 
(~14% 
MVC) 
 
 
 

 
8 wks  
 
 
 
 
 
 

 
SBP -11mmHg 
No change 
DBP 
MAP -5mmHg 
 
 
 

Ash et al., 
(2016) 
 
 
 

Ex:5 
 
 
 
 

43±5
.3 
 
 
 

134±2.7/78.4
±2.3 
 
 
 

Pre-hypertensive 
and unmedicated 
Hypertensive 
 
 

Automated 
oscillometric 
device 
 
 

Bilateral 
IHG 
 
 
 

4x2min, 2-
min rest, 
3x/week 
 
 

30% MVC 
 
 
 
 

8wks 
 
 
 
 

No change 
ABP 
Night DBP 
+7.7mmHg 
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Table 2.2 (continued). Studies examining the effects of isometric exercise training on resting blood pressure in pre-hypertensive and hypertensive (medicated and 

unmedicated) participants 

Reference  
 

Participants 
  

Age  
 

Baseline BP 
(SBP/DBP) 

BP status  
 

Method of BP 
determination 

Exercise 
mode  

Exercise 
programme 

Intensity 
 

Duration 
 

Major findings  
 

 
Peters et 
al., (2006) 
 
 
 

 
Ex: 10 

 
 
 
 

 
52±5 
 
 
 
 

 
146± 11  
/90±7 
 
 
 

 
Unmedicated 
Hypertensive  
 
 
 

 
Not reported 
 
 
 
 

 
Alternating 
unilateral 
IHG 
 
 

 
4x45s, 1-min 
rest, 3x/week 
 
 
 

 
50% MVC 
 
 
 
 

 
6 wks 
 
 
 
 

 
SBP -13mmHg 
No change DBP 
 
 
 
 

Taylor et 
al., (2003) 
 
 
 
 
 
 

Ex: 9 
 

Con: 8 
 
 
 

69±6 
 
64.2
±5.5 
 
 

156±9.4 
/82.3±9.3 
152±7.8/87.
1±10.8 
 
 

Medicated 
hypertensive  
 
 
 

Not reported 
 
 
 
  

Alternating 
unilateral 
IHG 
 
 

4x2min, 1-min 
rest, 3x/week 
 
 
 

30% MVC 
 
 
 
 

10 wks 
 
 
 
 

SBP -19mmHg 
MAP -11mmHg 
No change DBP 
 
  

McGowan et 
al., (2006) 
 
 

 
Ex: 17 

 
 

 
67±6 
 
 

 
126.9 ±2.4 
/72.2 ± 2.0 
 

 
Medicated 
hypertensive  
 
 
 
 

 
Not reported 
  
 

 
Unilateral 
IHG 
 

 
4x2min, 4-min 
rest, 3x/week 
 

 
30% MVC 
 
 

 
8 wks  
 
 

 
No change 
MAP 
 
 
 
 
 
 

 
McGowan et 
al., (2007) 
 
 

Ex: 7 
 
 
 

62 
±11 
 
 

133.9 ±5 
/73.2±3.2  
 
 

Medicated 
hypertensive 
  

Automated 
oscillometric 
device  

Alternating 
unilateral 
IHG 

4x2min, 1-min 
rest, 3x/week 
 
 

30% MVC 
 
 
 

8 wks  
 
 
 

SBP -15mmHg 
No change DBP 
 
 

 

Ex: 9 
 
 

 

66±1
9 
 
 

141.6±3.8 
/79.6±3.8 
 
 

Medicated 
hypertensive  
  

Unilateral 
IHG 
 

4x2min, 4-min 
rest, 3x/week  
 

30% MVC 
 
 

8 wks  
 
 

SBP -9mmHg  

No change DBP 

Stiller-
Moldovan et 
al., (2012) 

Ex: 11 
 

 
 

60±9 
 
 
 

113.9±12.7  
/60.7±11.6 
 
 

Medicated 
hypertensive  
 

Automated 
oscillometric 
device  

Alternating 
unilateral 
IHG 

4x2min, 1-min 
rest, 3x/week 
 
 

30%MVC 
 
 
 

8 wks  
 
 
 

No change 
resting BP 
No change ABP 

 

Con: 9 
 
 

62.7
±6.1 

117.8±14.3 
/67.5±4.2        

IHG, isometric handgrip; SBP, systolic blood pressure; DBP, diastolic blood pressure; Ex, exercise; Con, control; MVC, maximal voluntary contraction; ABP, 
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Ambulatory blood pressure.  
NOTE: no study reported changes in maximal contraction strength post intervention.  
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Although a reduction in resting BP is a common outcome of isometric exercise training, its effect on ABPM 

has not been thoroughly investigated. To date, four studies have measured ambulatory BP (Ash, Taylor, 

Thompson, et al. 2016; Goessler, Buys, VanderTrappen, et al. 2018; Stiller-Moldovan, Kenno, and McGowan 

2012; Somani, Baross, Levy, et al. 2017) following isometric handgrip training over 8-10 weeks. All studies 

instructed participants to carry out 4x2minute contractions at 30% MVC, 3 times per week. Consistent with 

their findings in resting BP, Stiller-Moldovan et al., (2012) found no significant 24-hour ambulatory BP change 

in well controlled medicated hypertensive participants. In addition, Ash and colleagues showed no significant 

change in 19-hr ambulatory systolic BP recordings in a small group of unmedicated pre-hypertensive and 

stage 1 hypertensives (Ash et al., 2016). However, night time diastolic BP increased (Ash et al., 2016). In 

contrast to their findings in isometric exercise training, Ash et al., did report significant BP reductions 

following an aerobic training stimulus, however, subject numbers in each exercise type were small (n=5) and 

not supported by a non-exercising control group; this should be considered a limitation and further 

investigation is required (Ash et al., 2016). Although Stiller-Moldovan and colleagues (2012) found no 

significant changes in ambulatory systolic BP, night time and 24 hour average values showed a promising 

decrease of 3mmHg and 4mmHg respectively (Stiller-Moldovan, Kenno and McGowan, 2012). More recently, 

published findings by Somani et al., (2017) reported that 10 weeks of isometric handgrip training significantly 

induced ambulatory BP reductions in healthy, normotensive participants (Somani et al., 2017) whilst Goessler 

and colleagues found no change in ambulatory BP in a similar population group (Goessler, Buys, 

VanderTrappen, et al. 2018). The slightly longer training intervention prescribed by Somani and colleagues 

(10 weeks versus 8 weeks) may have influenced these disparate findings. However, considering resting BP 

reductions have been shown following as little as 4 weeks of isometric training (Devereux, Wiles, and Swaine 

2010) this would require further investigation. As ambulatory monitoring is arguably a more clinically 

relevant measurement (NICE 2011), further evidence on the impact of isometric exercise training on both 

resting and ambulatory BP within a pre-hypertensive and/or mild hypertensive population would be an 

important progression of the literature to date. This thesis will use 24-hr ambulatory BP monitoring as a key 

measurement in the detection of BP changes following isometric training (Chapter 6).  

2.1.4 Summary of acute and chronic effects of exercise on blood pressure 
 

Currently aerobic exercise is the preferred exercise modality for BP management with a number of 

organisations recommending that hypertensive patients should participate in at least 30 minutes of 

moderate intensity (Ghadieh and Saab 2015; Pescatello, Franklin, Fagard, et al. 2004a; Mancia, Fagard, 

Narkiewicz, et al. 2013) or moderate-vigorous (James, Oparil, Carter, et al. 2014; Brook, Appel, Rubenfire, et 

al. 2013) intensity exercise on most days of the week. Although aerobic exercise provides the most evidence 

for an acute hypotensive and chronic hypotensive response to exercise, it is also recommended by some 

organisations that hypertensive individuals carry out dynamic resistance training as an adjunct to aerobic 
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exercise (Ghadieh and Saab 2015; James, Oparil, Carter, et al. 2014; Mancia, Fagard, Narkiewicz, et al. 2013; 

Pescatello, Franklin, Fagard, et al. 2004a). 

For the first time, the American Heart Association  (James, Oparil, Carter, et al. 2014) and Hypertension 

Canada (Ghadieh and Saab 2015) has recommended isometric exercise as an alternative approach to 

hypertension management (Pescatello, Macdonald, Lamberti, et al. 2015). Due to limited data, this 

recommendation is not wholly supported (Mancia, Fagard, Narkiewicz, et al. 2013) and further evidence 

supporting its effect on both resting and ambulatory BP monitoring is required. This thesis will contribute to 

the body of literature examining the effects of isometric exercise on pre-hypertensive and hypertensive 

participants. 

2.2 Adherence to exercise recommended for the management of blood 

pressure 

 

Despite the plethora of research supporting aerobic training as an effective exercise modality for the 

management of BP, research suggests that the majority of hypertensive individuals do not participate in the 

recommended levels of physical activity. For example four studies administered questionnaires to large 

groups of individuals with hypertension with the aim of determining the adherence rates to healthy lifestyle 

interventions (Ohta, Tsuchihashi, and Kiyohara 2011; Al-Kaabi, Al-Maskari, Afandi, et al. 2009; Riegel, 

Moreira, Fuchs, et al. 2012; Baynouna, Neglekerke, Ali, et al. 2014). Findings showed that only 3-33% of 

individuals participated in the recommended aerobic exercise guidelines. Females and those with a higher 

body mass index (Riegel et al., 2012) or waist circumference (Al-Kaabi et al., 2009) were significantly less 

likely to meet the recommended guidelines. Increasing levels of physical activity within the population 

remains a challenge (Heath, Parra, Sarmiento, et al. 2016).  

There are a number of barriers that limit the proportion of adults engaging in aerobic-type exercise. Research 

has consistently shown time commitment to be a primary barrier to engaging in physical exercise (Dishman, 

Sallis, and Orenstein 1984). Considering the proportion of time required to meet the recommended aerobic 

exercise guidelines is it perhaps of no surprise that adherence to this exercise modality is poor. Additional 

barriers to engaging with aerobic exercise include a lack of self-motivation, pain, lack of enjoyment, poor 

neighbourhood conditions, cost and lack of convenience (Bethancourt, Rosenberg, Beatty, et al. 2014; 

Franco, Tong, Howard, et al. 2015; Jefferis, Sartini, Lee, et al. 2014). Physical activity is reported to be 

particularly low in older people where it is reported that only 15% of men and 10% of women aged between 

70-93 years are engaging in >150 minutes of moderate-vigorous physical activity per week (Jefferis, Sartini, 

Lee, et al. 2014). Further barriers prevent older people from engaging in exercise and physical activity. These 

barriers have included, fear of injury, lack of mobility, concern about slowing others down and chronic health 
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conditions (Jefferis, Sartini, Lee, et al. 2014; Franco, Tong, Howard, et al. 2015). Considering the prevalence 

of hypertension amongst older individuals (Knott and Mindell 2011) it is imperative that accessible and 

alternative options are available to them.      

The simplicity of isometric exercise, alongside the small time commitment required, makes it possible that 

adherence to this type of training may be superior to that of aerobic training (Carlson, Dieberg, Hess, et al. 

2014; McGowan, Proctor, Swaine, et al. 2017). In addition, isometric exercise has the potential to be carried 

out in a comfortable seated position, at home; these options remove many of the barriers to physical activity 

that older people face.  

However, given that cost and lack of convenience are commonly cited as exercise barriers these must also 

be considered in the effective prescription of isometric exercise training. The prescription of isometric 

exercise in training studies has not been cost-effective nor convenient; specialised equipment that is 

expensive or lab-based is required to record MVC and to also regulate the exercise intensity at 30% MVC. A 

simpler and more cost-effective method of regulating isometric exercise requires exploration (Chapter 5). 

Together with the additional benefits of isometric exercise training (time effectiveness, ease of exercise) it is 

hoped that long-term adherence to this type of exercise regime would be high. To date, research has not 

addressed long-term adherence levels to isometric exercise training. This thesis will examine adherence to 

unsupervised, home-based, isometric exercise training (Chapter 6). 

2.3 Regulating the intensity of exercise for blood pressure management   

 

Exercise intensity is described as one of the most important exercise prescription variables required to 

improve physical fitness and maintain health benefits. In relation to BP management, studies on aerobic 

exercise generally prescribe exercise intensity based on a percentage of an individual’s maximal oxygen 

uptake (VO2max), heart rate reserve or maximal heart rate (HRmax) (Cornelissen and Smart 2013; 

Cornelissen, Buys, and Smart 2013). Studies investigating the effects of resistance training prescribe a 

percentage of one repetition maximum (dynamic resistance) or maximal voluntary contraction (isometric) 

(Cornelissen and Smart 2013; MacDonald, Johnson, Huedo-Medina, et al. 2016; Millar, Bray, McGowan, et 

al. 2007).  

These exercise prescription methods are useful because they ensure that the prescribed exercise intensity is 

accurate and consistent – this is useful in research settings. However, the need for specialised equipment 

could limit the prescription of this exercise to large population groups. In addition, considering that cost and 

lack of convenience are cited as barriers to adhering to exercise regimes (Bethancourt, Rosenberg, Beatty, et 
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al. 2014; Franco, Tong, Howard, et al. 2015; Jefferis, Sartini, Lee, et al. 2014), these methods of exercise 

prescription might not be long-term solutions for BP management.  

An increasingly popular way of prescribing intensity is the use of the rating of perceived exertion (RPE) scale 

(Parfitt, Evans, and Eston 2012). Accepted for its validity in 1973 Borg’s tool for rating perceived exertion is 

now a widely known psychophysiological tool. The 15-point/6-20 scale and category ratio (CR-10) scale are 

two of the most widely used. 

During aerobic exercise, strong linear relationships between HR (Marriott and Lamb 1996; Borg, Hassmén, 

and Lagerstrӧm 1987; Ueda and Kurokawa 1995; Borg and Kaijser 2006; Scherr, Wolfarth, Christle, et al. 

2013) lactate (Borg, Hassmén, and Lagerstrӧm 1987; Scherr, Wolfarth, Christle, et al. 2013), VO2 (Goslin and 

Rorke 1986; Chen, Fan, and Moe 2002) and ventilation (Chen, Fan, and Moe 2002; Utter, Robertson, Green, 

et al. 2004) have been found. These associations allow an individual’s subjective perception of exertion to be 

used as a secondary measure for determining exercise load/stress (Garber, Blissmer, Deschenes, et al. 

2011).The use of the RPE scale in this way is termed the estimation mode – in this condition, RPE is monitored 

as a dependent response variable during an exercise task (Winter, Jones, Davison, et al. 2007). Research 

investigating the subjective estimation of exercise intensity has provided reference points along the scales 

that correspond to a range of important physiological markers of intensity. For example; an RPE of 12-13 on 

the 6-20 RPE scale corresponds to 64-76% HR max or 46-63% VO2 max (Garber, Blissmer, Deschenes, et al. 

2011). For this reason the American College of Sports Medicine promotes the use of the Borg 6-20 perceived 

exertion scale for self-regulating exercise for the management of hypertension (Pescatello, Franklin, Fagard, 

et al. 2004a). However, despite studies successfully eliciting fitness improvements following training 

programmes using RPE to prescribe intensity, research has not investigated the effectiveness of RPE 

regulated exercise for BP management. 

For this reason researchers must continue to investigate the scales’ usefulness as an independent intensity 

regulator and therefore its potential as an exercise prescription tool. Faulkner and Eston advocate the use of 

an estimation-production protocol for the prescription of RPE regulated exercise (Faulkner and Eston 2008). 

Using this protocol, individuals are requested to actively self-regulate exercise intensity (production mode) 

in order to produce a pre-determined RPE (estimation mode). The ability of an individual to reproduce a pre-

determined marker of intensity using RPE is noted. To date, researchers have successfully shown that 

individuals are able to reproduce markers of cardiorespiratory stress (Marriott and Lamb 1996; Green, 

Michael, and Solomon 1999; Dunbar, Robertson, Baun, et al. 1992; Eston, Davies, and Williams 1987; Paulson, 

Bishop, Leicht, et al. 2013; Goosey-Tolfrey, Lenton, Goddard, et al. 2010) and physical capacity (Goosey-

Tolfrey, Lenton, Goddard, et al. 2010; Paulson, Bishop, Leicht, et al. 2013; Marriott and Lamb 1996) during a 

production task. Whilst higher intensities would seem to be more reproducible (Marriott and Lamb 1996, 
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Goosey-Tolfrey 2010, Green Michael 1999) lower intensities improve with a practice period (Eston and 

Williams, 1988). 

As compared with aerobic exercise, research on RPE and resistance exercise (dynamic and isometric) is 

limited. To date, research in this area has primarily focused on the relationship between resistance load and 

RPE. Evidence is building for the validity of RPE with positive associations existing between intensity of 

isometric contraction and rating on the CR-10 scale (Pincivero, Coelho, and Erikson 2000; Tiggemann, 

Korzenowski, Brentano, et al. 2010) and the 6-20 scale (O’Connor, Poudevigne, and Pasley 2002). With 

regards to investigating the ability of RPE to regulate resistance exercise, Lagally and Amorose carried out an 

estimation-production protocol with dynamic resistance exercises to good effect thus, recommending the 

scale as a useful method of prescribing the intensity of resistance exercise for training purposes (Lagally and 

Amorose 2007). 

It would seem that the use of the RPE scale to regulate intensity of exercise for BP management could be 

feasible. However, studies have not yet used this as a tool in BP management research protocols. This 

thesis will investigate the possibility of utilising RPE as an isometric exercise intensity regulator (Chapter 5).  

2.4 The influence of exercise on the pathophysiological pathways involved in 

the development of hypertension  

 

The effects of exercise on the pathophysiological pathways involved in the development of hypertension 

have been widely studied. As described in sections 2.i, 2.ii, 2.iii, hypertension can result from a derangement 

in one or more of the BP regulating mechanisms (neural, humoral, and vascular) (section 2.0). As a way of 

understanding why exercise leads to reductions in BP, alterations to these mechanisms following exercise 

regimes have been studied widely.  

To date, research has shown that exercise can have positive effects on the vasculature (Pescatello, Franklin, 

Fagard, et al. 2004a; Gkaliagkousi, Gavriilaki, and Douma 2015). Research findings have shown that aerobic 

exercise can increase arterial compliance (Tanaka, Dinenno, Monahan, et al. 2000; Pierce, Harris, Seals, et al. 

2016; Vaitkevicius, Fleg, Engel, et al. 1993; Heffernan, Collier, Kelly, et al. 2007), reduce vascular 

responsiveness to endothelin 1 (a powerful vasoconstrictor) (Pescatello, Franklin, Fagard, et al. 2004a), 

reduce oxidative stress (Krause, Rodrigues-Krause, O’Hagan, et al. 2014; Nojima, Watanabe, Yamane, et al. 

2008) and increase the expression of NO synthase (Niebauer and Cooke 1997; Krause, Rodrigues-Krause, 

O’Hagan, et al. 2014) which in turn enhances endothelium-dependent vasodilation (Niebauer and Cooke 

1997; Green, Maiorana, O’Driscoll, et al. 2004). The effects of dynamic resistance training on the vasculature 

have not been extensively studied. Research has shown improvements in endothelial function (Umpierre and 

Stein 2007) whilst this type of training has also been associated with reduced arterial compliance (Umpierre 
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and Stein 2007; Miyachi 2013). In relation to isometric exercise training, a limited number of findings have 

shown reductions in markers of oxidative stress (Peters, Alessio, Hagerman, et al. 2006) and increased 

endothelial-dependent vasodilation (McGowan, Visocchi, Faulkner, et al. 2007; McGowan, Levy, Millar, et al. 

2006; Badrov, Freeman, Zokvic, et al. 2016). To date, findings do not suggest that isometric training has any 

effect on arterial stiffness (Pagonas, Vlatsas, Bauer, et al. 2017). Although limited, the research discussed 

suggests that some differences might exist between exercise modalities and their influence on the 

vasculature.   

In relation to humoral activity, aerobic exercise has been shown to reduce plasma renin activity – suggesting 

a role for the RAAS in the reduction in BP following an aerobic exercise regime (Goessler, Polito, and 

Cornelissen 2016; Fagard 2006). Considering the effects of renin release on the production of Ang-II (a 

powerful vasoconstrictor) this is a likely contributor to reduced BP following training. However, although 

aerobic exercise has been shown to reduce Ang-II in healthy subjects, these findings have not been consistent 

in hypertensives (Goessler, Polito, and Cornelissen 2016) and therefore the total contribution of the RAAS to 

BP reductions remains to be clarified. The effects of dynamic resistance training on the RAAS has not been 

thoroughly investigated. To date, findings suggest that there are no effects (Goessler, Polito, and Cornelissen 

2016). With regards to isometric training, its effects on the RAAS has not yet come under scrutiny.  

Changes to the autonomic nervous system have been widely investigated during and following exercise 

training. As has been described in sections 2.i, 2.ii, 2.iii, the autonomic nervous system effects and/or is 

affected by neural, hormonal, and vascular processes responsible for regulating BP and therefore stands 

central to the pathophysiology of hypertension (Thayer, Yamamoto, and Brosschot 2010) and a key target 

for BP treatment approaches (Fisher, Young, and Fadel 2009).  

Sympathetic hyperactivity/autonomic dysfunction depends on a variety of internal mechanisms (Grassi and 

Ram 2016); these have been described in detail (2.i.b, 2.ii.b, 2.ii.d, 2.iii.a) and include reduced baroreflex 

sensitivity, heightened chemoreflex sensitivity, over activation of the RAAS and the consequential increase 

in Ang-II and aldosterone, increases in ROS and ET-1, reduced production of NO and finally reduced 

effectiveness of natriuretic peptides (Fisher, Young, and Fadel 2009; Grassi and Ram 2016). The stimulus for 

this dysfunction and therefore hypertension may be linked to a variety of factors including genetics (Grassi 

and Ram 2016), aging  (Hart and Charkoudian 2014), chronic stress (De Vente, Olff, Van Amsterdam, et al. 

2003; Aguilera, Kiss, and Sunar-Akbasak 1995) and poor lifestyle choices such as obesity (Lohmeier and Iliescu 

2013) and physical inactivity (Thayer, Yamamoto, and Brosschot 2010). 

Considering the increased vagal tone observed in athletes, it is understood that repeated metabolic stress 

and stimulation of the sympathetic nervous system induced during a training bout (see section 2.5) results in 

a reflex increase in parasympathetic nerve activity (supercompensation) and a resulting improvement in 

sympathovagal balance (Stanley, Peake, and Buchheit 2013; Plews, Laursen, Stanley, et al. 2013). The 
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stimulation of the autonomic nervous system during exercise (see section 2.5) and changes in autonomic 

function that follow an acute or chronic bout of exercise training (see sections 2.6 & 2.7) may therefore 

provide mechanistic insight into BP reductions.  

The effect of exercise on the ANS can be summarised in three categories; autonomic regulation during a bout 

of exercise (acute stimulation), autonomic regulation directly after a single bout of exercise (acute effects), 

and autonomic regulation after a long-term exercise programme (chronic effects). Understanding the 

stimulation, recovery and adaptation of the ANS is of primary importance when trying to determine whether 

autonomic mechanisms are responsible for BP reductions following exercise training regimes.  

The following sections will detail the specific autonomic adjustments to an exercise stimulus (aerobic, 

dynamic resistance and isometric), acute autonomic responses upon exercise (aerobic, dynamic resistance 

and isometric) cessation and chronic autonomic changes in response to exercise training (aerobic, dynamic 

resistance and isometric).  

2.5 Autonomic regulation during a bout of exercise 

 

During dynamic (aerobic, dynamic resistance) or static (isometric) physical exercise, the autonomic nervous 

system facilitates both ventilatory and cardiovascular adjustments necessary to meet the metabolic needs of 

the working muscles (Fadel and Raven 2012). In general, parasympathetic withdrawal and sympathetic nerve 

activation increases HR, cardiac contractility, BP, and ventilation. While parasympathetic withdrawal is aimed 

at allowing HR to increase, sympathetic activation works to increase HR, myocardial contractility and thus 

stroke volume (Nobrega, Leary, Silva, et al. 2014). In addition, efferent sympathetic signalling induces 

venoconstriction and vasoconstriction (non-exercising muscle tissue, splanchnic, renal, skin) aimed at 

improving venous return and redirecting cardiac output for perfusion of active muscles (Nobrega, Leary, Silva, 

et al. 2014; Fisher, Young, and Fadel 2015). 

The specific responses to isometric exercise are well established and differ substantially to that of dynamic 

exercise (Lind and McNicol 1967a). During dynamic exercise at a constant workload, HR will increase to a 

steady state value. In contrast, HR during isometric exercise at a constant workload will continually rise 

(Fisher, Young, and Fadel 2015) albeit at a more modest magnitude (Lind & McNicol 1967). The BP response 

to the different exercise modalities is perhaps the most notable. The intermittent rhythmical nature of 

dynamic exercise encourages local vasodilation and blood flow (Fisher et al. 2015). Whilst SBP rises, local 

vasodilation results in a fall in TPR which contributes to DBP remaining relatively unchanged or decreasing 

(Lind & McNicol 1967). In contrast, isometric exercise which involves sustained mechanical compression of 

the intramuscular vasculature results in a more substantial increase in SBP (Fisher, Young, and Fadel 2015; 
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Lind and McNicol 1967a; Goodwin, McCloskey, and Mitchell 1972). Unlike dynamic exercise, intermittent 

vasodilation of the active muscles does not occur and therefore TPR increases, eliciting a concomitant 

increase in DBP (Lind & McNicol 1967).  

The primary mechanisms responsible for the autonomic shift towards sympathetic dominance are the 

combined effects of central command, the exercise pressor reflex (mechanoreflex and metaboreflex) and 

their interactions with the arterial baroreflexes (Gallagher 2006). Specifically, during an isometric contraction 

these reflexes elicit significant decreases in levels of parasympathetic nerve activity (Goulart, Cabiddu, De 

Borba Schneiders, et al. 2017; Taylor, Wiles, Coleman, et al. 2017) and increases in sympathetic nerve activity 

(Boulton, Taylor, Macefield, et al. 2016). It is thought that the activation of these reflexes, in particular the 

metaboreflex, are mechanistically linked to the BP lowering effects of isometric exercise (Brook, Appel, 

Rubenfire, et al. 2013). The following sections will discuss the primary reflexes responsible for the stimulation 

of the autonomic nervous system during exercise (central command, exercise pressor reflex, arterial 

baroreceptors). Evidence relating to autonomic changes following exercise (acute and chronic) will also be 

highlighted; a specific focus will be placed on isometric exercise.  

2.5.1 The role of central command 
 

Central command, originally termed cortical irradiation (Krogh and Lindhard 1913) is classically defined as a 

feedforward mechanism, where descending neural signals from higher brain centres stimulate both the 

motor pathways and cardiovascular centres (Goodwin, McCloskey, and Mitchell 1972). Central command has 

been associated with effort-related cognitive processes (Williamson 2010) and therefore influence an 

individual’s cardiovascular response (arterial BP, HR, ventilation etc.) in anticipation of exercise and in 

accordance with the level of perceived effort during exercise  (Williamson 2010).  

At the onset of isometric exercise, central command is responsible for increasing HR, arterial BP and 

ventilation (Williamson, McColl, Mathews, et al. 2002). The increase in HR is mediated by the immediate 

withdrawal of vagal control (Freyschuss 1970). The role of central command on vascular vasoconstriction at 

the onset of exercise is largely unknown, however increases in BP suggest a centrally mediated mechanism 

(Green and Paterson 2008). As isometric contractions are sustained beyond the initial few seconds, central 

command continues to bear influence over these hemodynamic variables (Fisher, Young, and Fadel 2015). 

This has been demonstrated using imagined static exercise (Williamson, McColl, Mathews, et al. 2002) and 

neuromuscular blockade during static contractions (Mitchell, Reeves, Rogers, et al. 1989); each study showed 

increases in both HR and arterial BP throughout the exercise and therefore confirmed the influence of central 

command on these variables. It is generally accepted that central command does not increase sympathetic 

nerve activity to inactive muscles (Mark, Victor, Nerhed, et al. 1985), however, comparing voluntary and 



52 
 

electrically evoked muscle contractions, recent findings suggest that this reflex is responsible for increases in 

muscle sympathetic nerve activity (MSNA) in the active muscle (Boulton, Taylor, Macefield, et al. 2016).  

In addition to its primary feedforward functionality, it has been proposed that somatosensory feedback 

(pressor reflex) arising from the working musculature continually bears influence over an individual’s 

perception of effort and therefore levels of central command (Nobrega, Leary, Silva, et al. 2014). Using 

hypnosis, perception of effort has been increased whilst cycling at a steady workload (Williamson 2010). 

Hypnosis increased cardiovascular adjustments in accordance with the increase in perceived exertion 

clarifying the role of perceived exertion on central command (Williamson 2010). A sustained isometric task 

results in a gradual increase in an individual’s perception of effort (Pincivero and Gear 2000) and muscle 

electromyography (Mitchell, Reeves, Rogers, et al. 1989). These changes indicate a progressive role for 

central command output (Amann, Sidhu, Weavil, et al. 2015; Williamson, McColl, Mathews, et al. 2002; 

Mitchell 2012) which is mediated by feedback arising from the active musculature (pressor reflex). 

2.5.2 The role of the pressor reflex 
 

Alongside central command, peripheral feedback mechanisms work to alter the level of cardiovascular 

response required to meet the metabolic demands of the working tissues. Krogh and Lindhard were amongst 

the first researchers to identify that neural reflexes originating from the contracting musculature could 

induce cardiovascular changes (Krogh and Lindhard 1913). These neural reflexes are elicited due to 

mechanical (mechanoreflex) and metabolic (metaboreflex) changes within the working musculature; their 

combined effects are now widely known as the exercise pressor reflex (Fisher, Young, and Fadel 2015). The 

exercise pressor reflex relays afferent information to the cardiovascular control centre along thinly 

myelinated group III and unmyelinated group IV afferent neurons (McCloskey and Mitchell 1972).  

The mechanoreflex stimulates increases in BP and HR in response to the distortion of mechanoreceptors 

during muscle stretch and muscle contraction (Hayes 2005). Using an electrically evoked muscle stretch, 

these cardiovascular changes were explained by a withdrawal of cardiovagal activity (Gladwell, Fletcher, 

Patel, et al. 2005; Gladwell and Coote 2002). The peripheral effects of the mechanoreflex are not well 

understood – although a voluntary isometric quadriceps contraction has been shown to elicit an immediate 

increase in muscle SNA (Herr, Imadojemu, Kunselman, et al. 1999), the contribution of central command 

and/or the metaboreflex cannot be ruled out. The isolation of the mechanoreflex during an isometric 

contraction is difficult to achieve and therefore its total contribution to alterations in neural control is not 

clear.    

The metaboreflex was first isolated by Alam and Smirk using cuff occlusion (Alam and Smirk 1937). Despite 

the cessation of exercise, these researchers showed that BP remained elevated whilst metabolites were 

trapped within the muscle following isometric handgrip exercise. This procedure eliminated the influence of 
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central command and isolated what is now commonly known as the metaboreflex. In comparison with 

aerobic and dynamic resistance exercise, the metaboreflex is thought to be most active during isometric 

exercise. During isometric exercise the sustained compression of the intramuscular vasculature introduces 

an ischeamic challenge and therefore a continuous accumulation of muscle metabolites (lactate, potassium, 

adenosine, arachidonic acid, deprotonated phosphate, prostaglandins) (Fisher, Young, and Fadel 2015; 

Kaufman and Hayes 2002; Devereux, Coleman, Wiles, et al. 2012). Lactate in particular has been shown to 

play a major role in stimulating skeletal muscle afferents (Kaufman, Hayes, Adreani, et al. 2002). In a 

physiological attempt to restore muscle blood flow the metaboreflex undergoes a potent stimulus 

(McCloskey and Mitchell 1972; Kaufman and Hayes 2002; Mitchell, Reeves, Rogers, et al. 1989; Iellamo, 

Massaro, Raimondi, et al. 1999; Ichinose, Saito, Kondo, et al. 2008) whereby efferent sympathetic nerve 

activity is strongly initiated eliciting large increases in arterial pressure. 

The repeated stimulation of the metaboreflex, is thought to be one of the primary mechanisms for the BP 

lowering effects of isometric exercise (Brook, Appel, Rubenfire, et al. 2013). Given the ischemic nature of 

isometric exercise, exercise cessation introduces an immediate increase in blood flow (McGowan, Levy, 

Millar, et al. 2006), also known as reactive hyperaemia. Reactive hyperaemia causes an increase in shear 

stress on the endothelium which is associated with NO production (Green, Maiorana, O’Driscoll, et al. 2004). 

The level of ischaemia present during isometric exercise has led researchers to believe that repetitive 

episodes of ischaemia and stimulation of the metaboreflex would act to improve endothelial-dependent 

vasodilation; potentially linked to chronic increases in the bioavailability of NO and improved antioxidant 

activity (McGowan, Levy, McCartney, et al. 2007). Findings from McGowan et al., have shown that isometric 

handgrip training improved brachial artery flow mediated dilation but this was present in the trained arm 

only, and it was therefore concluded that systemic BP reductions were unlikely to be related to changes in 

improvements in flow mediated dilation (McGowan, Visocchi, Faulkner, et al. 2007). However, Peters et al., 

showed increases in blood antioxidant activity following 8 weeks of isometric training (bilateral handgrip) 

this finding indicated that endothelial exposure to harmful reactive oxygen species was minimised (Peters, 

Alessio, Hagerman, et al. 2006). Unfortunately a control group was not included within this study and 

therefore care must be taken when interpreting the results.  

In addition to the potential endothelial benefits related to the repeated exposure to the metaboreflex,the 

stimulation of the autonomic nervous system via the metaboreflex (and central command) could elicit 

parasympathetic supercompensation, a well-known phenomenon in aerobic training (Stanley, Peake, and 

Buchheit 2013; Carter, Banister, and Blaber 2003; Hautala, Kiviniemi, and Tulppo 2009). For the purposes of 

hypertension management, this regular autonomic stimulus is therefore regarded as an important aspect of 

exercise training. Current findings related to chronic autonomic changes following isometric training can be 

found in section 2.6. This thesis will aim to further explore the effects of isometric training on autonomic 

function.   
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2.5.3 The role of the arterial baroreflex 
 

At rest, the arterial baroreflex (as discussed in section 2.i.a) is an important reflex mechanism that maintains 

BP at its original set point value. In response to increases or decreases in pressure, baroreceptors alter 

afferent neuronal firing which mediates changes in parasympathetic and sympathetic nerve activity (Fadel 

and Raven 2012) and therefore arterial BP. 

Before the 1990’s it was generally accepted that the baroreflex was switched off or inhibited during exercise; 

this was to allow the concomitant increases in HR and BP required to meet the metabolic demands of the 

exercising muscle (Raven, Fadel, and Ogoh 2006). However, in a landmark study in 1990, Sheriff and 

colleagues showed that increases in BP became unrestrained during metaboreflex stimulation following sino-

aortic baroreceptor denervation (Sheriff, O’Leary, Scher, et al. 1990). Convincing evidence is now available 

for the resetting of the baroreflex operating point during exercise; this enables the reflex mechanism to 

continue modulating exercise induced increases in BP and sympathetic nerve activity (Potts, Shi, and Raven 

1993; Ogoh, Fisher, Dawson, et al. 2005). The contributing neural mechanisms responsible for the resetting 

include both central command and the exercise pressor reflex (Gallagher, Fadel, Smith, et al. 2006); afferent 

signals from the baroreflex, central command and the exercise pressor reflex converge centrally within the 

medulla oblongata. The processing of this information acts to alter parasympathetic and sympathetic 

efferent signalling (Figure 2.1), appropriate to the exercise demands.  

Specifically, during isometric exercise the sensitivity of the baroreflex control of muscle sympathetic nerve 

activity increases in an intensity dependent manner (Ichinose, Saito, Kondo, et al. 2008). This demonstrates 

an important neural interaction between central command, the metaboreflex and the baroreflex in the 

control of excessive increases in sympathetic nerve activity and arterial BP. The influence of the baroreflex 

on the pathophysiology of hypertension (see section 2.i.b) has led researchers to investigate changes in 

baroreflex sensitivity following the immediate cessation of different exercise modalities and following longer 

term exercise programmes (see sections 2.6.1 & 2.6.2). 
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2.5.4 Summary 
 

During exercise, central command, the exercise pressor reflex and the arterial baroreflex all work together 

to regulate the autonomic nervous system and therefore facilitate the ventilatroy and cardiovascular 

adjustments necessary to meet the metabolic needs of the working muscles. Due to the ischemic nature of 

isometric exercise it is thought that the metaboreflex (part of the exercise pressor reflex) is strongly 

stimuluated in an attempt to restore muscle blood flow. The repeated stimulation of this reflex is thought to 

be mechanistically linked to the BP lowering effects of isometric exercise (Brook, Appel, Rubenfire, et al. 

2013).  

Regardless of exercise type, it is suggested that the repeated stimulation of the autonomic nervous system 

during exercise could lead to favourable changes in autonomic balance over the long-term. The following 

Figure 2.1. A schematic representation of the neural mechanisms mediating the neural 

cardiovascular adjustments to exercise.  

During exercise, neural signals originating from the brain (central command), the baroreflexes 

and skeletal muscle (exercise pressor reflex) contribute to the intensity dependent modulation 

of sympathetic and parasympathetic nerve activity during exercise. These signals converge 

centrally within the cardiovascular control centres of the medulla oblongata. The modulation of 

neural activity mediates changes in heart rate and the diameter of resistance and capacitance 

vessels – these changes are required to meet the metabolic demands of the exercise. (Figure 

from Fadel & Raven 2012). 
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sections will highlight the evidence relating to autonomic changes following exercise (acute and chronic); a 

specific focus will be placed on isometric exercise.  

2.6 The acute and chronic effects of exercise on autonomic function 

 

As previously discussed (see section 2.5), an exercise (aerobic, isometric, dynamic resistance) stimulus 

induces marked changes in autonomic regulation of both HR and BP. These changes have led researchers to 

investigate the role of the autonomic nervous system in chronic BP reductions. Studies have investigated 

both the acute autonomic changes upon exercise cessation and longer term autonomic changes that may 

occur as a result of different exercise modalities.  

2.6.1 The acute effects of exercise on autonomic function   
 

The autonomic imbalance (heightened sympathetic activity and depressed parasympathetic activity) present 

during an exercise stimulus has been shown to persist following a single bout of aerobic (Terziotti, Schena, 

Gulli, et al. 2001; Cote, Bredin, Phillips, et al. 2015; Legramante, Galante, Massaro, et al. 2002; Anaruma, 

Ferreira, Sponton, et al. 2016) and dynamic resistance exercise (Kliszczewicz, Esco, Quindry, et al. 2016; 

Heffernan, Collier, Kelly, et al. 2007; Rezk, Marrache, Tinucci, et al. 2006; Teixeira, Ritti-Dias, Tinucci, et al. 

2011; Niemela, Kiviniemi, Hautala, et al. 2008). In contrast, improvements in autonomic balance have been 

found following isometric exercise cessation (Taylor, Wiles, Coleman, et al. 2017; Millar, MacDonald, Bray, et 

al. 2009). In relation to aerobic and dynamic resistance exercise, it is thought that sympathetic modulation 

remains high to override the vasodilator and hypotensive effects of the previous exercise (Stanley, Peake, 

and Buchheit 2013; Teixeira, Ritti-Dias, Tinucci, et al. 2011). It has also been suggested that sympathetic 

modulation may remain high due to the metabolites accumulated during the exercise stimulus (Stanley, 

Peake and Buchheit, 2013) and cardiovagal nerve activity remains supressed due to a reduced venous 

return/blood volume and a consequential unloading of baroreceptors (Stanley, Peake and Buchheit, 2013).  

In relation to aerobic exercise, Terziotti and colleagues showed that 20 minutes of light (50% of anaerobic 

threshold) and moderate (80% of anaerobic threshold) intensity aerobic exercise induced a PEH response 

that was associated with an increase in the low frequency component of systolic BP variability (BPV) 

(sympathetic vasomotor tone; see Chapter 3, section 3.5.2 for definition) and decrease in the high frequency 

component of heart rate variability (HRV) (cardiovagal tone; see Chapter 3, section 3.5.1 for definition) 15 

minutes post exercise (Terziotti, Schena, Gulli, et al. 2001). The increase in sympathetic vasomotor tone, as 

detected by an increase in LF BPV is consistent with other studies carried out on healthy males (Cote, Bredin, 

Phillips, et al. 2015) and mild essential hypertensives (Legramante, Galante, Massaro, et al. 2002). Terziotti 

showed that these markers of vasomotor sympathetic nerve activity had returned to pre exercise levels 
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within 60 minutes, however, other findings in mild essential hypertensives showed that the LF component of 

BPV remained elevated at 60 minutes (Legramante, Galante, Massaro, et al. 2002). Although the prescription 

of a higher exercise intensity by Legramante and colleagues may explain this discrepancy, a slower return to 

pre exercise levels in individuals whose autonomic function may be compromised is consistent with research 

in diabetics where a reduction in cardiovagal tone was found (Anaruma, Ferreira, Sponton, et al. 2016).  

Alongside vagal suppression and an increase in sympathetic tone, the sensitivity of cardiovagal baroreflexes 

has been shown to decrease following aerobic exercise (Terziotti, Schena, Gulli, et al. 2001; Heffernan, Collier, 

Kelly, et al. 2007; Studinger, Lénárd, Kováts, et al. 2003). This is perhaps due to unloading or the maintenance 

of a higher operating point induced by the exercise stimulus (see section 2.5.3). Similar to other autonomic 

markers, studies have shown that BRS returned to baseline values within 60-minutes (Terziotti, Schena, Gulli, 

et al. 2001; Studinger, Lénárd, Kováts, et al. 2003; Legramante, Galante, Massaro, et al. 2002). 

Despite the evidence showing transient autonomic imbalance following exercise cessation, MSNA has shown 

positive reductions following aerobic exercise in healthy participants (Aprile, Oneda, Gusmao, et al. 2016; 

Halliwill, Taylor, and Eckberg 1996) and those with chronic kidney disease (Aprile, Oneda, Gusmao, et al. 

2016). However, these acute reductions were not replicated in chronic heart failure participants following 

moderate continuous exercise and high intensity interval exercise (Nobre, Groehs, Azevedo, et al. 2016). 

Further research on clinical populations with exaggerated MSNA is required.    

Similar to aerobic exercise, recordings of HRV suggest that an episode of dynamic resistance exercise causes 

a reduction in cardiovagal activity and increased dominance of sympathetic activity (Kliszczewicz, Esco, 

Quindry, et al. 2016; Heffernan, Collier, Kelly, et al. 2007; Rezk, Marrache, Tinucci, et al. 2006; Teixeira, Ritti-

Dias, Tinucci, et al. 2011; Niemela, Kiviniemi, Hautala, et al. 2008). The acute effects of resistance training 

have been primarily tested in young healthy men and women and measurements most commonly take place 

between 15-90 minutes post exercise. Findings from Rezk et al., (2006) and Teixeira et al., (2011) showed 

that 6 resistance exercises at 40% (Rezk, Marrache, Tinucci, et al. 2006) , 80% (Rezk, Marrache, Tinucci, et al. 

2006) and 50% (Teixeira, Ritti-Dias, Tinucci, et al. 2011) 1RM reduced the HF spectral component of HRV in 

healthy normotensive individuals. The reduction in cardiovagal tone persisted for 20-75 minutes following 

exercise cessation (Rezk, Marrache, Tinucci, et al. 2006; Teixeira, Ritti-Dias, Tinucci, et al. 2011).  

Studies have also found a reduction in BRS following resistance training (Niemela, Kiviniemi, Hautala, et al. 

2008; Heffernan, Collier, Kelly, et al. 2007), increases in the LF component of BPV and plasma catecholmines 

(epinephrine and norepinephrine; Kliszczewicz et al., 2016). As is consistent with aerobic training, these 

findings support the autonomic imbalance induced by acute resistance exercise. 

In contrast to aerobic and dynamic resistance exercise, the acute effects of a single isometric exercise training 

session on autonomic function remains largely unexplored. However, findings to date are in contrast with 
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that of aerobic and resistance exercise training. In 2009, Millar et al., was the first to investigate acute 

changes in HRV following 4x2 minute isometric handgrip contractions performed at 30% MVC. Using a non-

linear HRV analysis method findings showed that there was a shift in neurocardiac autonomic balance 

towards an increase in vagal tone 10 minutes after exercise cessation (Millar, MacDonald, Bray, et al. 2009). 

These cardiac autonomic changes were accompanied by significant decreases in BP observed 5 minutes post 

exercise cessation (Millar et al., 2009).  

Recently, Taylor and colleagues (2017) investigated the effects of a single isometric exercise wall squat 

training session on HRV and BRS in pre-hypertensive males. During a 5-minute recovery period, the 

researchers found that vagal tone increased alongside a decrease in the LF:HF ratio and BRS increased (Taylor, 

Wiles, Coleman, et al. 2017). Together with the findings from Millar et al., (2009) it would seem that an acute 

bout of isometric exercise initiates an immediate parasympathetic super-compensation. However, further 

research is needed to clarify the lasting effects of this autonomic change following an acute bout of isometric 

exercise.   

Researchers suggest that these acute changes may be mechanistically linked to chronic BP reductions 

following isometric exercise training (Millar, MacDonald, Bray, et al. 2009). However this link has not yet been 

clarified (see section 2.7.2). Curiously, the acute effects of isometric exercise are in contrast with aerobic and 

dynamic resistance exercise where parasympathetic modulation and BRS has remained suppressed following 

an acute bout of exercise. These discrepancies could be related to the differences in mechanical and neural 

responses to varying exercise modalities. For example research has shown that isometric exercise preserves 

carotid artery diameter (Black, Stohr, Stone, et al. 2016) whereas aerobic exercise decreases it (Willie, Ainslie, 

Taylor, et al. 2011). In addition, research findings have shown that isolating the metaboreflex (using post 

exercise ischemia) after an isometric contraction results in a quick return of HR back to baseline levels – this 

shows that the primary stimulus involved in isometric exercise (metaboreflex) does not have a large effect 

on cardiac vagal withdrawal (Fisher, Seifert, Hartwich, et al. 2010) and therefore the loss of central command 

and/or mechanoreflex immediately following isometric exercise has been suggested to have an 

overwhelming effect on cardiac parasympathetic reactivation (Fisher, Seifert, Hartwich, et al. 2010).  

2.6.2 The chronic effects of exercise on autonomic function  
 

Research has shown that a bout of aerobic training (16 weeks) reduces MSNA in never treated hypertensive 

(Laterza, De Matos, Trombetta, et al. 2007) and heart failure patients (Roveda, Middlekauff, Rondon, et al. 

2003; de Mello Franco, Santos, Rondon, et al. 2006). Remarkably the magnitude of reduction is such that 

baseline levels following an exercise regime have been matched to age-matched healthy control subjects 

(Laterza, De Matos, Trombetta, et al. 2007). Although BP is not always a measured outcome of these studies, 

Laterza showed that an attenuated MSNA was accompanied with reductions in both systolic and diastolic BP 
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(Laterza, De Matos, Trombetta, et al. 2007); providing support for the benefit of improving autonomic 

balance in human hypertension.  

In support of reductions in peripheral sympathetic nerve traffic in hypertensives, researchers have also found 

a reduced LF component of BPV following aerobic exercise regimes lasting between 4 weeks and 4 months 

in mild hypertensives (Collier, Kanaley, Carhart, et al. 2009) and never treated hypertensives (Laterza, De 

Matos, Trombetta, et al. 2007; Izdebska, Cybulska, Izdebski, et al. 2004); each study found associated 

reductions in BP. Similar to findings in MSNA following aerobic exercise training (Carter 2003), reductions in 

this marker of efferent sympathetic nerve activity is not reported in normotensive participants (Izdebska, 

Cybulska, Izdebski, et al. 2004; Alex, Lindgren, Shapiro, et al. 2013b).  

Whilst the reduction in sympathetic nerve activity (as measured by MSNA and the LF component of systolic 

BPV) is evident in hypertensive adults as compared with normotensive adults, the effects of aerobic training 

on increased vagal tone in both healthy and hypertensive participants is well supported. The chronic 

improvements of vagal activity following exercise training is associated with an induced resting bradycardia  

(Sandercock, Bromley and Brodie, 2005). Cardiovagal tone and sympathovagal balance, characterised by 

baroreflex sensitivity HF, rMSSD, pNN50% and the LF:HF ratio, have been shown to improve following aerobic 

training in healthy individuals (Tulppo, Hautala, Mäkikallio, et al. 2003; Pigozzi, Alabiso, Parisi, et al. 2001; 

Hallman, Holtermann, Søgaard, et al. 2017; Melanson and Freedson 2001; Ueno and Moritani 2003; 

Monahan, Dinenno, Tanaka, et al. 2000) and hypertensive individuals (Collier, Kanaley, Carhart, et al. 2009; 

Laterza, De Matos, Trombetta, et al. 2007). However, other aerobic training studies have not found 

improvements in resting HRV in mild hypertensives (Davy, Willis, and Seals 1997) and type II diabetics (Kang, 

Ko, and Baek 2016) despite BP reductions (Davy, Willis, and Seals 1997; Kang, Ko, and Baek 2016). Studies 

reporting changes are strengthened by larger participant pools and in some cases 24-hour monitoring 

(Pigozzi, Alabiso, Parisi, et al. 2001; Hallman, Holtermann, Søgaard, et al. 2017; Tulppo, Hautala, Mäkikallio, 

et al. 2003). This measurement is more specific to the day-to-day stresses of real life and has been shown to 

be more reproducible than 5-10 minute resting measurements (Pitzalis, Mastropasqua, Massari, et al. 1996). 

This measurement could therefore provide greater sensitivity to changes following aerobic exercise training. 

The reproducibility of resting and 24-hour measurements of HRV are explored in Chapter 4.  

In contrast to aerobic training, dynamic resistance training performed over a period of 8 weeks to 6 months 

does not appear to improve cardiovagal activity in healthy adults (Heffernan, Collier, Kelly, et al. 2007; 

Karavirta, Costa, Goldberger, et al. 2013; Cooke and Carter 2005; Madden, Levy, and Stratton 2006) and 

mildly hypertensive adults (Collier, Kanaley, Carhart, et al. 2009). These findings are despite some studies 

showing significant changes in BP following resistance training interventions (Collier, Kanaley, Carhart, et al. 

2009; Cooke and Carter 2005). Although the effects of resistance training on BP remain inconclusive, these 

findings may indicate an alternative mechanism in the event of BP reductions following dynamic resistance 
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training. However, there is a limited amount of research investigating HRV post resistance training (Kingsley 

and Figueroa 2016). In addition, the use of resting measurement techniques (Heffernan, Collier, Kelly, et al. 

2007; Karavirta, Costa, Goldberger, et al. 2013; Cooke and Carter 2005) as opposed to 24-hour measurements 

may cause small training effects to go undetected (Pitzalis, Mastropasqua, Massari, et al. 1996).  

Although changes in HRV have not been found following dynamic resistance training, research has found 

reductions in LF systolic BPV following resistance training in mild hypertensives; this reduction was associated 

with BP reductions suggesting a training-induced reduction in vasomotor sympathetic nerve activity in 

hypertensive patients (Collier, Kanaley, Carhart, et al. 2009). In contrast, other studies have found no change 

in LF systolic BPV following 8 (Cooke and Carter 2005) and 12 weeks (Alex, Lindgren, Shapiro, et al. 2013b) of 

resistance training. However, participants were normotensive and it could be suggested that peripheral 

sympathetic nerve activity may not undergo changes in healthy vessels. Similarly research findings have 

shown that MSNA did not decrease in young healthy adults following resistance training – this was despite a 

reduction in BP (Carter, Ray, Downs, et al. 2003) . The precise autonomic changes responsible for BP changes 

following resistance training therefore remains inconclusive. There remains a need for further research to 

determine the autonomic effects of dynamic resistance training in hypertensive populations whilst 

measuring both BP and autonomic changes synchronously. 

The effects of isometric exercise training on autonomic function has been investigated via MSNA (Ray and 

Carrasco 2000), systolic BPV (Taylor, McCartney, Kamath, et al. 2003), baroreflex sensitivity (Devereux and 

Wiles 2015) and HRV (Stiller-Moldovan, Kenno, and McGowan 2012; Wiles, Coleman, and Swaine 2010; 

Badrov, Bartol, Dibartolomeo, et al. 2013). Ray and Carrasco (2000) measured the effects of handgrip 

isometric training on BP and MSNA and found no changes in MSNA in normotensive participants following 5 

weeks of training. The lack of effect of exercise on MSNA in normotensives is consistent with findings in 

aerobic exercise (Carter, Ray, Downs, et al. 2003). However, it is important to note that no changes in SBP 

were found (Ray and Carrasco 2000) and therefore reductions in this autonomic variable would not have 

been expected. It would be important to note that the training intervention was only 5 weeks in duration. 

Although short isometric training programmes (4-5 weeks) have previously shown positive reductions in SBP 

these studies used bilateral leg exercises (Howden, Lightfoot, Brown, et al. 2002; Devereux, Wiles, and 

Swaine 2010). This type of exercise employs a much greater muscle mass and may therefore stimulate the 

exercise pressor reflex to a greater extent allowing positive effects to be gained following short exercise 

programmes (Lawrence, Cooley, Huet, et al. 2014).  

Research investigating the effects of isometric exercise on autonomic function is currently limited and 

inconclusive. To date only one study has measured the effects of isometric training on systolic BPV (Taylor, 

McCartney, Kamath, et al. 2003).  The researchers found a significant decrease in the LF:HF ratio of BPV which 



61 
 

was reported to indicate a reduction in vasomotor sympathetic tone (Taylor, McCartney, Kamath, et al. 

2003). 

In relation to HRV, Taylor et al., (2003) reported a non-significant decrease in the LF:HF ratio and a significant 

increase in the HF parameter; these results indicate a positive change in vagal modulation (Taylor, 

McCartney, Kamath, et al. 2003). In contrast, Wiles et al., (2010), Badrov et al., (2013) and Stillar-Maldovan 

et al., (2014) reported no changes in the spectral analysis of HRV despite some studies reporting significant 

decreases in BP (Wiles, Coleman, and Swaine 2010; Badrov, Bartol, Dibartolomeo, et al. 2013). The 

differences in baseline BP values could have influenced the discrepant findings. Taylor et al., (2003) recruited 

individuals with baseline SBP of 156.0 ± 9.4 mmHg and DBP of 82.3 ± 9.3 mmHg. This value is higher than the 

baseline values in the other studies where individuals were within normal BP range (≤120/≤80mmHg) (Wiles, 

Coleman, and Swaine 2010; Badrov, Bartol, Dibartolomeo, et al. 2013; Stiller-Moldovan, Kenno, and 

McGowan 2012). Considering that changes in autonomic function accompany hypertension (Mancia and 

Grassi 2014) it seems logical to suggest that positive changes might only be observed in a population whose 

BP is out of normal range. However, aerobic training has had positive effects on autonomic function in both 

healthy (Tulppo, Hautala, Mäkikallio, et al. 2003; Pigozzi, Alabiso, Parisi, et al. 2001; Hallman, Holtermann, 

Søgaard, et al. 2017; Melanson and Freedson 2001; Ueno and Moritani 2003; Monahan, Dinenno, Tanaka, et 

al. 2000) and hypertensive populations (Laterza, De Matos, Trombetta, et al. 2007; Collier, Kanaley, Carhart, 

et al. 2009).  

Findings related to changes in autonomic function following isometric exercise are very limited and for now 

an autonomic mechanism for BP reductions remains speculative. To date, studies have only carried out short-

term measurements (5-minute HRV recordings). As discussed earlier, these measurements are associated 

with a lot of day-to-day variability (Ginsburg, Bartur, Peleg, et al. 2011; Hojgaard, Holstein-Rathlou, Agner, et 

al. 2005; Maestri, Raczak, Danilowicz- Szymanowicz, et al. 2010; Pinna, Maestri, Torunski, et al. 2007; 

Ponikowski, Piepoli, Amadi, et al. 1996) and therefore may not provide a measurement sensitive enough to 

detect long-term changes; this thesis will explore whether 24-hour recordings of autonomic function provide 

greater reproducibility and therefore provide a more sensitive measurement of autonomic function (Chapter 

4).  

 In an attempt to add further knowledge on this topic, this thesis will explore autonomic nervous system 

changes following an isometric training programme.   

2.6.3 Summary of acute and chronic autonomic effects of exercise  
 

The acute and chronic effects of exercise on autonomic function have been viewed as a mechanistic link to 

BP reductions following exercise training regimes. Whilst acute bouts of aerobic and dynamic resistance 

training have been shown to increase sympathetic activity, aerobic (Terziotti, Schena, Gulli, et al. 2001; Cote, 
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Bredin, Phillips, et al. 2015; Legramante, Galante, Massaro, et al. 2002; Anaruma, Ferreira, Sponton, et al. 

2016; Kliszczewicz, Esco, Quindry, et al. 2016; Heffernan, Collier, Kelly, et al. 2007; Rezk, Marrache, Tinucci, 

et al. 2006; Teixeira, Ritti-Dias, Tinucci, et al. 2011; Niemela, Kiviniemi, Hautala, et al. 2008) training regimes 

lasting a number of weeks have been shown to elicit increases in vagal tone and/or reductions in sympathetic 

activity; indicative of improved autonomic balance. In contrast to these training modalities, the effects of 

isometric exercise training on autonomic function is largely under-researched. Findings suggest that an acute 

bout of training improves vagal modulation (Taylor, Wiles, Coleman, et al. 2017; Millar, MacDonald, Bray, et 

al. 2009) whereas only one study supports the chronic effects of isometric training on autonomic function 

(Taylor, McCartney, Kamath, et al. 2003). It is possible that more sensitive measures of autonomic function 

are required for the detection of training adaptations. Chapter 4 explores this aspect in more detail.  

2.7 Thesis aims  

 

The study of isometric exercise training and its effects on the regulation of BP is still young. This thesis will 

focus on three important and novel elements that will progress and develop this area of research. The aims 

of this thesis are to i) develop an appropriate, cost-effective and accessible isometric hand-grip exercise ii) 

measure the effectiveness of isometric hand-grip exercise on BP and autonomic function iii) assess adherence 

levels to an isometric training programme. The aim of investigating these individual elements is to improve 

accessibility to isometric exercise by developing a cost-effective method of regulating exercise intensity, 

determine the potential for participant adherence to isometric exercise, provide further evidence for the 

effectiveness of isometric exercise training on BP and finally provide mechanistic insight into BP reductions 

following isometric exercise training.   

The principle purpose of isometric exercise training is to reduce BP. Although isometric exercise training is 

considered a simple, time-effective approach to a non-pharmacological method of anti-hypertensive 

therapy, exercise prescription guidelines state that isometric training should be carried out at a specific 

percentage of an individuals’ MVC. This method requires individuals to execute regular maximal contractions 

whilst also having access to specialised equipment (often lab-based dynamometers) that displays force 

recordings – the cost implication of this equipment would be considered a barrier to exercise participation. 

This thesis will develop a simple and cost-effective method of regulating isometric exercise intensity (Chapter 

5); this method will lend itself to unsupervised, home-based exercise that can be carried out in a familiar and 

comfortable environment. The measurement of participant compliance to this simple method of isometric 

exercise will provide insight into the long-term viability of isometric exercise training for people with 

hypertension (Chapter 6).   
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The BP and autonomic effects of isometric hand-grip training will be investigated. The majority of studies 

have only explored the effects of isometric exercise training on resting BP and its effects on 24-ambulatory 

BP remains largely unexplored. Considering that 24-hour recordings are the gold standard for BP 

measurement (NICE 2011) it is important that this measure is taken in addition to the more common resting 

measurements (Chapter 6). In an attempt to understand the mechanistic pathways behind BP reductions 

studies have measured autonomic function, however, only short-term measurements (mainly 5-minute HRV 

recordings) have been taken. These measurements are associated with a lot of day-to-day variability and 

therefore may not provide a measurement sensitive enough to detect long-term changes; this thesis will 

explore whether 24-hour recordings of autonomic function provide greater reproducibility and therefore 

provide a more sensitive measurement of autonomic function (Chapter 4).  

In summary, the overall aim of this thesis was to develop a simple method of self-regulating isometric 

exercise intensity and determine its effectiveness in relation to participant compliance, BP and autonomic 

function. The hypotheses of this thesis are that the CR-10 scale will provide an effective method for isometric 

hand-grip intensity regulation, self-regulated isometric handgrip exercise will reduce resting and ambulatory 

BP and improve autonomic function and finally participant compliance to self-regulated isometric exercise 

will be high.  

The primary objectives of this thesis were to: 

1) Determine the viability of utilising the rate of perceived exertion chart to regulate isometric handgrip 

intensity.  

2) Assess the chronic adaptations in BP (resting and 24-hour ambulatory) to 10 weeks of isometric 

exercise. 

3) Measure levels of participant adherence during short and long term training programmes. 

 

The secondary objective of this thesis was to: 

1) Assess the chronic adaptions in autonomic function to 10 weeks of isometric exercise  
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3 Chapter 3: General Methods 
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3.1 Introduction 

 

This chapter will detail the general methods that were used within the current thesis. Specifics relating to 

their application within each investigation will be detailed in Chapters 4 (section 4.2.5), 5 (section 5.2.2) 

and 6 (section 6.2.2). The general methods include: 

- Participants 

- Resting blood pressure measurement  

- 24-hour ambulatory blood pressure measurement 

- Measurements of autonomic function (resting and ambulatory) 

o Resting and ambulatory heart rate variability  

o Resting systolic blood pressure variability  

- Operation of the PowerLab handgrip dynamometer  

- Use of the Category-Ratio 10 scale  

- A comparative analysis between the lab-based PowerLab handgrip dynamometer (Powerlab 26T, 

AD instruments LTD, Sydney, Australia) (Figure 3.9) and the ergonomic hand exerciser (Rolyan, 

Patterson Medical, Nottinghamshire, UK) (Figure 3.10) using electromyography.  

3.2 Research outline 

 

Study 1 (Chapter 4) assessed the reproducibility, and therefore, normal day-to-day variability, of resting and 

24-hour recordings of autonomic function and 24-hour ambulatory blood pressure (BP). The assessment of 

reproducibility determines the retest reliability and therefore typical measurement error and day-to-day 

variability when a measurement is repeated (Hopkins, 2000). In addition, the measurement of reproducibility 

determines the need for participant familiarisation sessions. The reproducibility procedures are described in 

Section 4.2. The measurement of reproducibility allowed for the determination of measurement precision 

and the need for familiarisation trials. Interpretation of the data provided typical day-to-day variation and 

also suggested that there is a benefit to carrying out familiarisation sessions when measuring these specific 

physiological variables. Study 2 (Chapter 5) determined the validity of self-regulating isometric handgrip 

exercise using the Category-Ratio 10 (CR-10) scale. The measurement of validity ensured that the CR-10 scale 

was an appropriate method of regulating isometric exercise intensity as compared with the more common 

method of %MVC. The validity procedures are described in Chapter 5, Section 5.2.2.  The ability of 

participants to reproduce a %MVC and/or systolic BP (SBP) response whilst self-regulating isometric exercise 

was of particular interest. Study 3 (Chapter 6) implemented an isometric training plan using a 2-phase design 

(Chapter 6). During phase I, experimental participants engaged in a 10-week self-regulated isometric 
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handgrip (IHG) training programme – changes to BP (resting and 24-hour ambulatory) and autonomic 

function were assessed on completion of the exercise programme. During phase II experimental participants 

continued to exercise (longer-term exercise group) and the control participants embarked on the isometric 

hand-grip training programme (shorter-term exercise group) for the duration of 16 weeks. Adherence to 

unsupervised, self-regulated IHG training was analysed and compared in both groups whilst the maintenance 

of physiological adaptations was assessed in the longer-term exercise group.  

The quantitative research approach was chosen based on its ability to measure cause and effect. Chapter 6 

used a randomised controlled trial design as it is considered to provide the most reliable evidence on the 

effectiveness of interventions (Field 2009). 

 

Figure 3.1: Schematic of the research design 

 

3.3 Participants and recruitment 

 

Ethical approval for each individual study (study 1, UEP2015May01; study 2, UEP2015Nov02; study 3, 

UEP2016Apr02) was granted from the local research ethics committee (Appendix 3). Thirty-one (17 females, 

14 males) pre-hypertensive and hypertensive adults with a mean age of 64.6±5.8yrs, body mass of 

78.3±17.6kg and height 169.3±12.1cm participated. As defined by the European Society of Hypertension 

(Table 3.1, Mancia et al., 2013) participants were either pre-hypertensive or hypertensive (stage 1) (SBP; 

138.7±7.0mmHg, DBP; 83±8.7mmHg). Aside from mild hypertension, participants were otherwise “healthy”. 

Participants were apparently low cardiovascular risk and were therefore considered for isometric exercise 

prescription (Brook, Jackson, Giorgini, et al. 2015). Cardiovascular risk was assessed via questionnaire. 

Smokers and diabetics, individuals with a history of cardiovascular (CV) events (angina, myocardial infarction, 

and atrial fibrillation) or with a knowledge of hypertensive sleep apnoea, chronic heart failure or coronary 

artery disease were excluded from participation. Further laboratory tests such as blood sampling, diagnostic 

echocardiogram or an echo scan were not carried out to confirm the cardiovascular status of participants. In 

STUDY 1  (Chapter 4)

Reproducibility of 24-hour 
ambulatory blood 

pressure and meausres of 
autonomic function

STUDY 2  (Chapter 5)

The use of the CR-10 scale 
to allow self-regulation of 
isometric execise intensity 

in pre-hypertensive and 
hypertensive participants

STUDY 3  (Chapter 6)

Effects of self-regulated 
isometric exercise: blood 
pressure (resting and 24-

hour ambulatory), 
autonomic function and 

adherence
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addition to the above criteria, participants were required to be free from any musculoskeletal injury that 

might affect exercise participation. Physical activity levels were not part of the inclusion criteria and therefore 

it is assumed that participants ranged in fitness status prior to participation.  
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Table 3.1: Resting blood pressure of suitable participants (Mancia, Fagard, Narkiewicz, et al. 2013) 

  Systolic (mmHg)   Diastolic (mmHg) 

Resting blood pressure     

Pre-hypertensive/high normal 130-139 and/or 85-89 

Hypertensive (stage 1)  140-159 and/or 90-99 
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Participants were recruited in a number of ways:  

1) Recruitment posters were displayed in local pharmacies and within Buckinghamshire New University  

2) Recruitment email sent bi-monthly via the Buckinghamshire New University digest emails (delivered 

to all campus staff) 

3) Leaflets were delivered to local houses  

4) Recruitment information was printed in the local newsletters of Bucks 50 plus forum and University 

of the 3rd age 

5) Recruitment leaflets were handed out at local bowling and Movers and Shakers groups  

6) Recruitment talk delivered to the V valley plus group (Marlow, Buckinghamshire)  

To ensure all participants met the criteria, prospective participants were screened before data collection. 

Pre-participation screening included three resting BP measurements (to determine pre-hypertension/stage 

1 hypertension status), in accordance with the protocols described in section 3.4, together with an exclusion 

criteria checklist and a physical activity readiness questionnaire (PAR-Q plus; Appendix 1) (Jamnik, 

Warburton, Makarski, et al. 2011). The study procedures were explained in detail and information sheets for 

each specific study was provided. An example of an information sheet can be found in Appendix 2. If any 

exclusion criteria were highlighted during pre-participation screening the participant was not invited to 

participate in the study.  

3.4 Resting and 24-hour blood pressure recording 

 

3.4.1 Equipment  

 

Cardiotens and Card(X) plore 24-hour holter devices were used to take both resting and 24-hour BP 

measurements (Meditech, Hungary) (Figures 3.2 & 3.3). These devices are fully automatic, oscillometric BP 

monitors and have been clinically validated (against the gold standard mercury sphygmomanometer) by the 

British Hypertension Society (BHS) and the US Association for the Advancement of Medical Instrumentation 

(AAMI) validation protocols (Barna, Keszei, and Dunai 1998). Annual servicing was carried out on the 

automatic devices to ensure they continued to meet the validation criteria. The reproducibility of 24-hour 

ambulatory BP across four separate time points are presented in Chapter 4 (Table 4.5).  

Oscillometric devices are non-invasive and measure BP by occluding an artery by the automatic inflation of a 

pneumatic cuff. When no pulsatile blood flow is detected, the cuff pressure begins to decrease – as pressure 

decreases, blood begins to pass back through the artery, thus creating pulsatile blood flow (Babbs 2012). The 

cuff is able to monitor the change in pulsatile blood flow via the detection of oscillations. These oscillations 

increase in amplitude until the mean arterial pressure (MAP) is reached, they then start to decrease until 
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blood flow becomes normal (Babbs 2012).  The systolic and diastolic values are then calculated with the help 

of an algorithm.  

3.4.2 Fitting procedures 

 

To fit the BP cuff, participants were seated with their non-dominant arm supported at the elbow and forearm 

positioned at mid sternum level (O’Brien, Asmar, Beilin, et al. 2003). Their back was supported and legs were 

uncrossed. The mid portion of the bicep was measured with a flexible measurement tape and the appropriate 

sized cuff was chosen (Table 3.2). The brachial artery was palpated and the midline of the bladder was placed 

at this point. The cuff was then wrapped and secured around the arm by means of Velcro which was attached 

to its adjoining surfaces. 

 

Table 3.2: Blood pressure cuff fitting guide adapted from Meditech Cardiotens, 1998. Ambulatory blood 

pressure and ECG monitoring system: Users Guide. 

Name Arm Circumference Range 

Normal adult 24-32cm 

Small adult (child) Under 24cm 

Large adult 32-42cm 
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3.4.3 Measurement 

 

Resting BP measurements were consistently taken with the fully automatic, oscillometric BP monitors 

(section 3.4.1) following 10 minutes of seated rest (Pickering, Hall, Appel, et al. 2005). During the 

measurement the arm was supported at the elbow and forearm positioned at mid sternum level 

(O’Brien, Asmar, Beilin, et al. 2003), the participant was seated comfortably with the back supported 

and legs uncrossed with feet flat on the floor (Pickering, Hall, Appel, et al. 2005). Measurements were 

taken three times on the non-dominant arm; each measurement was separated by 1 minute (O’Brien, 

Asmar, Beilin, et al. 2003). An average of the two lowest measurements was recorded as the resting 

BP (NICE 2011). Due to the effects of external variables on BP, participants were requested to avoid 

food (4 hours), caffeine (12 hours) and alcohol (24 hours) prior to a laboratory visit (Badrov, Bartol, 

Dibartolomeo, et al. 2013). Because of the known effects of bladder distension on resting BP, 

participants were also asked to void their bladder in advance of the testing session (Fagius and 

Karhuvaara 1989). 

Ambulatory BP measurements were also taken with the fully automated BP monitors (section 3.4.1). 

The monitor was fitted to the non-dominant arm (section 3.4.2). This ensured consistency with resting 

measurements and also assisted with the continuation of normal day-to-day activities. The 24-hour 

device was programmed with the CardioVisions software programme (Version 1.20.0, Meditech, 

Hungary) to record BP at 30-minute intervals throughout the day and every 60 minutes at night 

(O’Brien et al., 2003). To ensure accurate recordings participants were advised to stop what they were 

doing, free their hand of any items and relax it by their side during each measurement. Caffeine and 

alcohol were avoided during 24-hour monitoring periods. Participants were also asked to complete a 

physical activity diary (Bouchard et al., 1983) (Appendix 3) for the 24-hour period. This tool determined 

the time the participants went to bed and got up. Participants were requested not to engage in 

organised sport activity and vigorous exercise. 

3.5 Measurement of autonomic activity  

 

The variability in cardiovascular parameters such as heart rate (HR) and SBP were used to provide 

indirect measurement of autonomic nervous system activity. Indirect measurements of autonomic 

function are popular due to their ease of measurement and limited invasiveness. Heart rate variability 

(HRV) and systolic blood pressure variability (BPV) provide information on autonomic activity via the 

examination of oscillations and rhythms that occur as a result of autonomic control of cardiac tissue 

(HRV) and vasomotor tone (systolic BPV). The following sections describe the physiological 
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interpretations of HRV and systolic BPV (section 3.5.1, section 3.5.2) and measurement techniques 

(section 3.6, section 3.7). 

3.5.1 Heart rate variability  

 

Heart rate variability is the beat-beat time variation recorded between consecutive heartbeats 

recorded on an electrocardiogram (ECG) in normal sinus rhythm (Routledge, Campbell, McFetridge-

Durdle, et al. 2010). The time between successive beats, and therefore HRV, is influenced by a complex, 

dynamic interaction between neural and hormonal control systems, in addition to the mechanical 

effects of breathing (e.g. stretching of the atria, changing thoracic pressure) (Shaffer, Mccraty, Zerr, et 

al. 2014; Billman 2011). Heart rate variability reflects the responsiveness of the autonomic nervous 

system when faced with internal and external environmental demands (McMillan 2002). The more 

responsive a heart is (i.e. greater beat-beat variation) the more reflective it is of a healthy heart 

(Shaffer, Mccraty, Zerr, et al. 2014; Routledge, Campbell, McFetridge-Durdle, et al. 2010). Reduced 

HRV typically represents an attenuated regulatory capacity and therefore a decline in the ability of the 

autonomic nervous system to respond to change (Shaffer, Mccraty, Zerr, et al. 2014). 

The clinical significance of these subtle variations in cardiac activity was described in 1965 when an 

association between reduced HRV of the fetal heart and fetal stress was discovered by Hon and Lee 

(Hon & Lee 1963). Heart rate variability was detected before an appreciable change in HR and could 

therefore identify abnormalities in autonomic function. Reduced HRV is associated with hypertension 

(Singh, Larson, Tsuji, et al. 1998; Kaftan and Kaftan 2000; Mussalo, Vanninen, Ikäheimo, et al. 2001) 

amongst other clinical conditions such as chronic heart failure, diabetes, obesity and myocardial 

infarction (Routledge, Campbell, McFetridge-Durdle, et al. 2010; Billman 2011; Thayer, Yamamoto, and 

Brosschot 2010). Low HRV correlates with all-cause mortality and is a predictor of future coronary 

health risk (Thayer, Yamamoto, and Brosschot 2010; Tsuji, Venditti, Manders, et al. 1994; Janszky, 

Ericson, Mittleman, et al. 2004; Vinik, Maser, and Ziegler 2011). The beneficial effects of isometric 

exercise on HRV in a hypertensive population is therefore of particular interest.  

Heart rate variability recordings are most commonly taken over a period of 5-minutes to 24-hrs (Task 

Force of The European Society of Cardiology and The North American Society of Pacing and 

Electrophysiology 1996). The two major procedures for analysing HRV are frequency domain analysis 

and time domain analysis. Frequency domain analysis illustrates HRV as a function of frequency. The 

analysis reveals the cyclical nature behind the time lag between each QRS waveform (beat-beat 

interval/N-N interval) and plots the frequencies with which the length of the N-N interval changes 

(Routledge, Campbell, McFetridge-Durdle, et al. 2010) this provides an index of total power, and the 
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distribution of and ratio between low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) power 

activity. 

The physiological interpretation of these frequencies remains a subject of debate and investigation 

(Heathers 2014; Billman 2013, 2011). Studies have shown that HF power is a useful marker of 

parasympathetic influences on the heart (Pagani, Lombardi, Guzzetti, et al. 1984; Malliani, Pagani, 

Lombardi, et al. 1991; Saul, Berger, Albrecht, et al. 1991; Akselrod, Gordon, Ubel, et al. 1981; Pagani, 

Lombardi, Guzzetti, et al. 1986). However, it has also been shown that sympathetic neural activity can 

modulate the HF component and therefore may not be categorically representative of 

parasympathetic activity (Taylor, Myers, Halliwill, et al. 2001). The interpretation of LF power has been 

controversial and although it has been previously labelled as a marker of sympathetic nerve activity, 

this is no longer accepted (Heathers 2012; Billman 2011, 2013; Heathers 2014). It is mostly concluded 

that the LF power represents a complex mix of sympathetic and parasympathetic activity (Saul, Berger, 

Albrecht, et al. 1991; Billman 2013); other likely contributors to this frequency band include 

baroreceptor (Laborde, Mosley, and Thayer 2017) and renin angiotensin aldosterone system activity 

(RAAS) (Akselrod, Gordon, Ubel, et al. 1981).  

Considering the long held beliefs that the LF and HF frequencies were exclusively representative of 

specific autonomic branches, the ratio between these frequencies (LF/HF) has been assumed to 

represent sympathovagal balance (Malliani, Pagani, Lombardi, et al. 1991; Pagani, Lombardi, Guzzetti, 

et al. 1986). However, this representation is based on the assumption that the LF component reflects 

sympathetic activity, the HF component reflects parasympathetic activity and these autonomic 

branches work together in a linear and reciprocal way (Billman 2013). Although the reciprocal 

relationship between the autonomic branches is true during specific orthostatic challenges (Shaffer, 

Mccraty, Zerr, et al. 2014) recent reviews illustrate the need to apply caution when interpreting this 

variable unless it is representative of a relative relationship between sympathetic and parasympathetic 

activity during specific autonomic regulatory tasks (Shaffer, Mccraty, Zerr, et al. 2014; Heathers 2014).  

Time domain analysis detects changes in the N-N intervals over time (Task Force of The European 

Society of Cardiology and The North American Society of Pacing and Electrophysiology 1996). Common 

time domain indices include SDNN (standard deviation of all normal N-N intervals), rMSSD (square root 

of the mean of the sum of squares of successive N-N interval differences) and pNN50% (number of 

successive N-N intervals differing by >50 ms divided by the total number of successive N-N intervals). 

The SDNN is a marker of overall variability, whilst rMSSD and pnn50% have been found to correlate 

strongly with HF (Kleiger, Stein, and Bigger 2005; Shaffer, Mccraty, Zerr, et al. 2014; Massin, Derkenne, 

and von Bernuth 1999) and are therefore interpreted as markers of vagal tone (Laborde, Mosley, and 

Thayer 2017). 
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3.5.2 Systolic blood pressure variability  

 

Blood pressure is not a constant variable; rather, it shows spontaneous fluctuations beat-beat, minute-

minute, hour-hour, day-to-day (Höcht 2013). Blood pressure variability (BPV) is a representation of a 

complex interplay amongst different neurohumoral systems. In normal physiological conditions BP 

fluctuations indicate an adaptive response to environmental, behavioural and emotional stimuli 

occurring in daily life. As discussed in Chapter 2, (section 2.0) the physiological mechanisms responsible 

for these adaptive responses are changes in central sympathetic drive, afferent transmission from 

arterial and cardio-pulmonary reflexes and circulating hormones (angiotensin II, bradykinin, 

endothelin-1, insulin and nitric oxide). However, excessive fluctuations have been shown as 

independent contributors to cardiovascular events and mortality (Eguchi 2016; Hansen, Thijs, Li, et al. 

2010). In 2010, Rothwell showed that hypertensive patients with higher BPV were at increased risk of 

cardiovascular events (Rothwell, Howard, Dolan, et al. 2010) whilst other studies have highlighted the 

elevated risk of target organ damage (Parati, Pomidossi, Albini, et al. 1987; Palatini, Penzo, Racioppa, 

et al. 1992; Frattola, Parati, Cuspidi, et al. 1993; Mancia, Parati, Hennig, et al. 2001).  

Systolic blood pressure variability is frequently assessed in the very short term (beat-beat) following 

exercise interventions (Kingsley and Figueroa 2016). The mechanisms behind large fluctuations in 

these measurements are suggested to indicate increases in central sympathetic drive and decreased 

arterial/cardiopulmonary reflexes (Parati, Ochoa, Lombardi, et al. 2013). Beat-beat variation can be 

analysed using a time domain measure (coefficient of variation or standard deviation) and via spectral 

analysis. Spectral analysis of BPV has become a popular tool for the estimation of neural influences on 

vasomotor tone and therefore BP regulation. It has been shown that LF power (0.077– 0.15Hz) of 

systolic BPV reflects vascular sympathetic tone (Cevese, Grasso, Poltronieri, et al. 1995; Montano, 

Lombardi, Gnecchi Ruscone, et al. 1992; Stafford, Harris, and Weissler 1970) and closely correlates 

with muscle sympathetic nerve activity during sympathetic activation (Pagani, Montano, Porta, et al. 

1997). It has also been shown that LF systolic BPV is raised in hypertensive patients (Lucini, Mela, 

Malliani, et al. 2002).  

It has been suggested that autonomic modulation of HR is not an important determinant of BP powers 

in the LF regions (Parati, Saul, Di Rienzo, et al. 1995). This was highlighted by Saul et al., (1991) who 

found that cardiac autonomic blockade eliminated only a fraction of BPV at frequencies lower than 

0.15Hz (Saul, Berger, Albrecht, et al. 1991). Whilst hypertensive patients often display autonomic 

dysfunction that manifests as reduced HRV and increased BPV, the neural mechanisms responsible for 

the BP lowering effects of exercise therapy are still widely debated (Kingsley and Figueroa 2016). 

Considering that the autonomic regulation of HRV and BPV are independent of each other it would be 
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considered important to measure both variables to help determine the autonomic effects of IHG 

exercise (Chapter 6).   

 

3.6 Measurement of heart rate variability  

 

Throughout the current thesis, HRV was assessed at rest (Chapter 4) and during 24-hour ambulatory 

recordings (Chapter 4, Chapter 6). Heart rate variability was recorded and analysed using 

electrocardiography (ECG) taken from a 2-lead (Cardiotens, Meditech, Hungary) (Figure 3.2) or 3 lead 

(Card(X)plore, Meditech, Hungary) (Figure 3.3) configuration recommended by the Holter device 

manufacturer (Figure 3.4). To ensure within-subject consistency, participants were fitted with the 

same model unit throughout data collection.   

Using time and frequency domain analysis, HRV was calculated using the CardioVisions software 

(Version 1.20.0, Meditech, Hungary). The analysis is based on the Task Force document created by the 

European Society of Cardiology and The North American Society of Pacing and Electrophysiology (Task 

Force of The European Society of Cardiology and The North American Society of Pacing and 

Electrophysiology 1996). This will be further described in sections 3.6.3 and 3.6.4. 

 

Figure 3.2: Cardiotens ambulatory blood pressure and ECG recorder (Cardiotens, Meditech, Hungary) 
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Figure 3.3: Card (X) plore ambulatory blood pressure and ECG monitor (Card(X)plore, Meditech, 

Hungary) 

3.6.2 Electrode fitting 

 

Due to the possibility of interference from static electricity, participants were asked to avoid wearing 

synthetic clothes (viscose, acrylic, nylon and polyester) during monitoring. Whilst participants were 

lying supine their skin was prepared with sterile wipes and the shaving of chest hair (if necessary). 

Depending on the device, a two (Figure 3.4A, Box 3.1) or three lead (Figure 3.4B, Box 3.1) ECG electrode 

configuration was chosen based on the manufacturer’s recommendations. To ensure correct 

placement, an online observation of the ECG signal was carried out using the CardioVisions software 

(Version 1.20.0, Meditech, Hungary). With the participant remaining supine, resting measurements 

were taken upon completion of participant set-up. The monitor was set to record for ten minutes in 

which the last 5 minute segment was used within the analysis. Participants were requested to rest 

quietly during this period.  
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Figure 3.4: (A) 2 lead ECG electrode configuration for Cardiotens (Meditech) set-up. (B) 3 lead ECG 

electrode configuration for Card(X)plore (Meditech) set-up. 

                                           

Box 3.1 ECG electrode placement 

 

Ambulatory ECG recordings were taken continuously throughout a 24-hour period. As described in 

section 3.4.3, caffeine and alcohol were avoided during 24-hour monitoring periods and participants 

were also asked to complete a physical activity diary (Bouchard, Tremblay, Leblanc, et al. 1983) 

(Appendix 3) for the 24-hour period.  

There is continuing debate with regards to the benefits of controlling breathing frequency during 

resting autonomic function measurements (Thayer, Loerbroks, and Sternberg 2011). Researchers 

2-lead placement (Cardiotens, Meditech, Hungary) 

o Yellow: left anterior axillary line, intercostal space 5 
o Red: left anterior axillary line, intercostal space 5 
o Black: sternum 
o White: manubrium sterni 
o Green: Right anterior axillary line, intercostal space 5 

3-lead placement (Card(X)plore, Meditech, Hungary) 

o Orange: left posterior axillary line, intercostal space 5 
o Brown: left anterior axillary line, intercostal space 5 
o Red: left anterior axillary line, intercostal space 5 
o Green: sternum 
o White: manubrium sterni 
o Black: right anterior axillary line, intercostal space 5 
o Blue: right sternal border, 2nd rib  

A B 
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believe that a low breathing frequency (≤ 8.5 breaths per minute/0.1 Hz) disturbs the LF component 

of spectral analysis (Aubert, Seps, and Beckers 2003) and may cause both the LF and HF to overlap – 

thus making interpretation of LF difficult. Regardless of paced breathing, the interpretation of the LF 

spectral component is difficult because it represents both branches of the autonomic system – its use 

in determining autonomic function is therefore not particularly useful. On the other hand, the HF band, 

strongly representative of the vagal branch of the autonomic system, would not seem to be affected 

by breathing frequency (Bloomfield, Magnano, Bigger, et al. 2001; Pinna, Maestri, La Rovere, et al. 

2006; Sinnreich, Kark, Friedlander, et al. 1998). However, others suggest that the use of a metronome 

to control breathing frequency may unintentionally change the acute functioning of the autonomic 

nervous system (Bloomfield, Magnano, Bigger, et al. 2001). Paced breathing is thought to stimulate 

parasympathetic activity (Laborde, Mosley, and Thayer 2017). Altering the autonomic system in this 

way may elicit invalid results and any beneficial changes to the vagal branch of the autonomic system 

following a therapeutic intervention may therefore not be revealed. Tracking changes in vagal-related 

indices (i.e. HF frequency) is of great interest from a clinical and health perspective (Task Force of The 

European Society of Cardiology and The North American Society of Pacing and Electrophysiology 1996) 

and it is this frequency band that is of particular interest to the current research. For these reasons 

controlled breathing was not implemented into the resting HRV procedures.  

3.6.3 Time-Domain analysis 

 

Time domain statistical analysis detects and interprets the time differences between normal heart 

beats. All normal heart beats consist of a QRS waveform, representing ventricular depolarisation. The 

time between each QRS waveform is termed the R-R interval. Because the R wave is the most 

prominent part of the QRS complex, its peak is used to detect the inter-beat interval (milliseconds) 

between successive beats. Peak detection is realised by a pre-programmed algorithm (Cardiovisions, 

Version 1.20.0, Meditech, Hungary). Beat-beat intervals were considered valid for analysis if they were 

different from the previous interval by less than 20%. The ECG processing algorithms are successfully 

tested on the MIT-BIH arrhythmia database and provide 99.8 % beat detection accuracy. Despite pre-

programmed algorithms, data was screened for unusual ECG rhythms; frequent missed beats (e.g. 2nd 

and 3rd degree heart block) were not always disregarded by the programme and therefore needed to 

be visually detected.  

Once the distance between all peaks was calculated, a time event series or tachogram is generated 

(Figure 3.5); a time event series enables SDNN, rMSSD, pNN50% to be calculated based on the time 

(millisecond) differences between the inter-beat intervals (Figure 3.6) 
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Figure 3.5: A tachogram representing the change in R-R intervals throughout an entire 24-hr period 

 

Figure 3.6: R-R intervals are represented by two black bi-directional arrows, indicating the time 

distance between each peak within the QRS complex. The time in milliseconds is outlined along the x 

axis 
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3.6.4 Frequency domain analysis 

 

Frequency domain analysis, by definition, decomposes any steady, stationary, fluctuating time-

dependent signal into its sinusoidal components (Aubert, Seps, and Beckers 2003). The tachogram 

plotting the length of each R-R interval against the duration of the recording is based on individual 

beats and is therefore erratic and not steady. A software algorithm provided equidistant sampling and 

power spectral analysis (fast fourier transform) then computed the signal over time into a frequency 

spectrum (Cardiovisions, version 1.20.0, Meditech, Hungary). The frequency regions applied for the LF 

component of HRV was 0.04 – 0.15 Hz and 0.15 – 0.4 Hz for the HF component (Task Force of The 

European Society of Cardiology and The North American Society of Pacing and Electrophysiology 1996). 

Figure 3.7 provides an illustrative representation of these frequency components.  

 

Figure 3.7: An example of heart rate variability spectra taken from a 24-hr ambulatory 

electrocardiogram reading. The power spectral density graph highlights the low frequency and high 

frequency bands. Each frequency component is calculated as the area under the curve 

3.7 Systolic blood pressure variability 

 

Beat to beat measurements of BP were taken with the Finometer MIDI device (Finapres, TNO 

Instruments, Amsterdam, Netherlands). This device carries out its measurements using the volume 

clamp method. This method was developed by Penaz in 1973 and has since been used in many 

commercially available, non-invasive continuous BP systems (Bogert and van Lieshout 2005). Blood 

flow creates dynamic pulsatile loading and unloading, thus constantly varying the arterial diameter. 

The volume clamp method ensures that the diameter of the measured artery is kept constant.  

The Finometer (Finometer MIDI, Finapres, TNO Instruments, Amsterdam, Netherlands) utilises a finger 

cuff comprised of a 50µm plastic bladder – this bladder inflates and deflates via a short air hose that is 

Low frequency – 
0.04 – 0.15 Hz 

High frequency – 0.15 – 0.4 Hz 
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connected to a microprocessor block attached (via Velcro straps) to the participants wrist (Wesseling, 

de Wit, van der Hoeven, et al. 1995). Any change in the diameter of the artery created by changes in 

blood flow is detected by infrared photo-plethysmograph, this is housed within the finger cuff (Bogert 

and van Lieshout 2005). Photo-plethysmography detects changes in blood flow and therefore arterial 

diameter. For example, during systole there is an increase in blood within the artery, this change in 

blood volume (and therefore vessel diameter) activates a fast servo-controller system which regulates 

finger cuff pressure and thus prevents any change in vessel diameter. 

This fast servo-controller system ensures that the transmural pressure (difference between intra-

arterial and cuff pressure) is kept at zero. It is proposed therefore that when the transmural pressure 

equals zero the intra-arterial pressure equals the cuff pressure (Bogert and van Lieshout 2005). To 

ensure the values provided represent brachial artery BP levels a height sensor is used to calibrate for 

the height discrepancy between the digital artery and the brachial artery.  

3.7.1 Set-up and calibration  

 

Lying supine, the microprocessor block was attached to the participant’s wrist on their dominant side. 

The dominant side was selected due to the attachment of the 24-hour ambulatory blood pressure 

monitor on the non-dominant side (Section 3.4.3). Based on Figure 3.8 an appropriate cuff size was 

selected. The finger cuff was then precisely fitted to the intermediate phalange of the middle finger. 

Care was taken to ensure that the infrared sensors were placed at either side of the finger; this was to 

ensure they were placed alongside the location of the digital arteries. Once the cuff was attached a 

firm pull was applied to ensure a secure fitting. 
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Figure 3.8: Fitting guide for finger cuff. Illustration taken from the Finometer user guide (Finapres 

Medical Systems BV 2002)  
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Height sensor nulling is an important feature of the Finometer MIDI calibration. As BP is most 

accurately measured at the level of the heart (O’Brien, Asmar, Beilin, et al. 2003) a height correction 

system is used to sense the position of the finger with respect to the heart. Whilst holding the 

transducers together, a height nulling procedure is carried out. The two transducers were then 

positioned at the finger cuff and onto a Velcro strap attached to the arm at heart level. The height of 

the liquid column running between the sensors is measured by a pressure transducer – this height is 

automatically subtracted from the finger pressure. Due to the supine orientation of the participants 

the height difference was consistently small and maintained (between -1mmHg and +1mmHg). The 

monitor was set to record for ten minutes in which the last five minute segment was used within the 

analysis. Participants were requested to rest quietly during this period 

Cold hands can cause problems for the accurate functioning of the Finometer MIDI device. If fingers 

are cold, the arteries are contracted and circulation in the hand becomes prohibited (Wesseling, de 

Wit, van der Hoeven, et al. 1995). To prevent problematic recordings caused by cold hands, a rubber 

water bottle was filled with warm water, the participants’ hand rested on this for the duration of each 

measurement.  

When compared to intra-arterial pressure recordings, diastolic and mean pressure measurements 

taken with the Finometer MIDI have met the validity criteria for the American Association for the 

Advancement of Medical Instrumentation criteria (AAMI) (Guelen, Westerhof, Van der Sar, et al. 2003). 

To meet this criteria measurements as compared with intra-arterial recordings need to be within 

5mmHg with a standard deviation of 8mmHg  (Schutte, Huisman, van Rooyen, et al. 2004). However, 

as compared with the Finometer Midi, superior validity has been found in the Finometer PRO device 

(Guelen, Westerhof, Van der Sar, et al. 2003; Schutte, Huisman, van Rooyen, et al. 2004), this is owing 

to the return to flow calibration procedure (Schutte, Huisman, van Rooyen, et al. 2004). Despite this 

finding, the Finometer MIDI is regarded as a particularly useful device to detect the dynamics of the 

cardiovascular system and thus relative changes in BP and therefore BPV (Imholz, Imholz, Wieling, et 

al. 1998; Bos, Imholz, van Goudoever, et al. 1992; Omboni, Parati, Frattola, et al. 1993). As compared 

with intra-arterial recordings the validity of spectral measures within the LF and HF domain have been 

tested on the Finapres device (a predecessor of the more advanced Finometer). Validity was 

established for diastolic and mean BP variability but not systolic variability within the LF domain 

(Omboni, Parati, Frattola, et al. 1993). Despite low validity, systolic BPV is most commonly associated 

with long-term health conditions (Höcht 2013); determining the reproducibility of this would therefore 

be important prior to its use in assessing post intervention changes in this variable (Chapter 4). 
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3.7.2 Analysis  

 

Spectral analysis of beat to beat BP data was analysed using an online software programme 

(Cardioseries v2.4, Brazil). All tachograms were visually inspected for abnormally shaped and ectopic 

beats which were subsequently replaced by a linear interpolation algorithm. Systolic BP data was 

resampled at 2Hz and Fast Fourier transform was applied to 128-point sections of the 5-minute resting 

recording. Power densities in the low frequency ranged between 0.07-0.15 Hz (Höcht 2013). 

3.8 Isometric handgrip  

 

Lab based isometric handgrip tests (Chapter 5, section 5.2, Chapter 6, section 6.2) were carried out 

using a grip force transducer (Powerlab, AD instruments, Sydney Australia). The force (measured in 

Newtons) output was detected by linear load cells located within the transducer and recorded by a 

data acquisition system (Powerlab, AD instruments, Sydney Australia) which was interfaced with a data 

analysis software programme (LabChart Pro 7, AD instruments, Sydney, Australia).  

The interfacing of the acquisition system with the data analysis programme allowed for the 

measurement of maximal voluntary contractions (MVC). In addition, the force displacement, displayed 

on a computer screen enabled participants to monitor force when a specific force output was required 

(for example 30% MVC).  

Isometric handgrip exercise was always carried out on the non-dominant side using a standardised 

position (Roberts, Denison, Martin, et al. 2011). Participants were seated with their back supported 

and non-dominant arm adducted with 90 degrees of flexion at the elbow joint (Alkurdi and Dweiri 

2010). The transducer was held in the hand which was kept in a neutral position. During isometric 

contractions participants were instructed to maintain the position of the body and to breathe evenly 

throughout the exercise in order to avoid the Valsalva manoeuvre. 

The non-dominant hand was kept consistent throughout this thesis due to the concurrent 

measurement of BPV (see section 3.7) on the dominant hand during lab-based tasks (Chapter 5 & 6). 

Both alternating isometric handgrip training (Badrov, Bartol, Dibartolomeo, et al. 2013; McGowan, 

Visocchi, Faulkner, et al. 2007; Peters, Alessio, Hagerman, et al. 2006; Taylor, McCartney, Kamath, et 

al. 2003) and unilateral isometric handgrip training (Wiley, Dunn, Cox, et al. 1992; McGowan, Levy, 

Millar, et al. 2006; McGowan, Visocchi, Faulkner, et al. 2007; Millar, Levy, Mcgowan, et al. 2013) has 

been prescribed in earlier studies. Both training methods have resulted in significant improvements in 

resting SBP and only one study has directly compared these training methods (McGowan, Visocchi, 

Faulkner, et al. 2007). In this study findings showed that unilateral training reduced SBP by -8mmHg 
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and alternating unilateral handgrip training showed a superior reduction of -15mmHg. However, other 

studies using unilateral handgrip training have found similarly large reductions in resting SBP (Table 

4.4) and therefore the superiority of bilateral handgrip training remains unconfirmed.  

3.8.1 A comparative analysis between the PowerLab handgrip dynamometer and the 

ergonomic hand exerciser using electromyography.  

 

Chapter 5 describes the validation of the use of the CR-10 perceived exertion scale (Figure 3.9) to self-

regulate isometric handgrip exercise. The validation was carried out on a lab-based handgrip 

dynamometer (Figure 3.8) (Powerlab 26T, AD instruments LTD, Sydney, Australia). Following 

validation, exercises were prescribed to participants using a portable, ergonomic hand exerciser 

(Figure 3.10) (Rolyan, Patterson Medical, Nottinghamshire, UK) and the CR-10 scale (Borg, 1982) 

(Chapter 5).  

The ergonomic hand exerciser (Figure 3.10) was chosen based on its design which replicated the shape 

of the lab-based handgrip dynamometer (Figure 3.9) (Powerlab 26T, AD instruments LTD, Sydney, 

Australia). To ensure that the biomechanical advantage provided by the ergonomic hand exerciser was 

similar to that of the lab-based handgrip dynamometer electromyography (EMG) was recorded from 

the flexor carpi ulnaris during a 2-minute self-regulated (CR-10, “Level-6”) isometric handgrip exercise. 

Following the completion of the validation procedures outlined in Chapter 5, six participants returned 

to the laboratory (within 7 days) on one occasion. Participants were seated comfortably whilst 

prepared for EMG recordings. Electrical activity of the flexor carpi ulnaris was recorded using a surface 

EMG system (Powerlab, AD instruments, Sydney Australia). Firstly the skin was prepared; ethanol was 

used to clean the skin and excess hair was removed if necessary. Positive and negative electrodes were 

placed 10mm apart on the muscle belly (on the line between the medial epicondyle of the elbow and 

styloid process of the ulna) of the non-dominant arm, in the direction of the muscle fibres. The 

reference electrode was placed over the styloid process of the ulna.  

 

Whilst retaining their comfortable seated position (back supported, legs uncrossed, feet flat on the 

floor) participants held the handgrip dynamometer in their non-dominant hand whilst holding their 

arm adducted with 90 degrees of flexion at the elbow joint (Alkurdi and Dweiri 2010). A brief isometric 

handgrip warm-up was then completed using three, 15 second contractions at approximately 50%, 

75% and 90% of maximal effort. On completion of the warm-up, the CR-10 scale (Figure 3.9) was 

introduced. The following explanation was given to participants to read; 
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“During the exercise bout, I want you to pay close attention to how hard you feel the exercise is. The 

feeling should reflect your total amount of fatigue, combining all sensations and feelings of physical 

stress, effort and fatigue. Do not concern yourself with any one factor such as arm pain, shortness of 

breath or exercise intensity but try to concentrate on your total, over all feeling of exertion. Try not to 

underestimate or overestimate your feelings of exertion; be as accurate as you can” (Modified from 

Faulkner and Eston, 2007). 

Rating  Descriptor 

0 Nothing at all 

1 Very light 

2 Light 

3 Moderate  

4 Somewhat hard 

5 Hard 

6   

7 Very hard  

8   

9   

10 Maximal 

Figure 3.9: Category Ratio Scale (CR-10 Scale) 

An anchoring procedure was then used to assist the participant in putting into context the sensations 

of exercise intensity (Nobel and Robertson, 1996). Resuming their arm (90 degrees of flexion at the 

elbow joint) and comfortable seating position (back supported, legs uncrossed, feet flat on the floor), 

participants held the dynamometer loosely and were asked to “think about your feelings of exertion 

and assign a rating of 0 to those feelings”. Following this, participants were instructed to maximally 

grip the handgrip device for 3-5 seconds (breathing evenly throughout). Prior to the contraction, 

participants were asked to “think about the feelings of exertion at the end of the contraction and to 

assign a rating of 10 to those feelings”. The maximal exertion task was repeated 2 more times with a 

1-minute rest in between. The participants’ MVC and EMGpeak were recorded. EMGpeak was determined 

by establishing the highest torque value and calculating the average EMG activity recorded 0.25 

seconds prior to maximum torque (Wiles, Allum, Coleman, et al. 2008). 

Finally, participants were asked to carry out 2 x 2 minute contractions, self-regulated at an intensity 

level of CR-10 “Level-6” (Chapter 5). A 10-minute rest was provided between contractions. One 

contraction was carried out on a portable, ergonomic hand exerciser (Figure 3.10) (Rolyan, Patterson 

Medical, Nottinghamshire, UK) and the other contraction was carried out on a handgrip dynamometer 

(Figure 3.9) (Powerlab 26T, AD instruments LTD, Sydney, Australia). These were carried out in a 

randomised order. 
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Figure 3.9: Handgrip dynamometer (Powerlab 26T, AD instruments LTD, Sydney, Australia) 

 

Figure 3.10: Ergonomic hand exercise (Rolyan, Patterson Medical, Nottinghamshire, UK) 

     

The raw EMG signal was recorded by a data acquisition system (Powerlab, AD instruments, Sydney 

Australia) which was interfaced with a data analysis software programme (LabChart Pro 7, AD 

instruments, Sydney, Australia). The signal was recorded at a sample rate of 1000Hz and filtered using 

band-pass filters with cut off frequencies set at 10Hz and 500Hz which were then full wave rectified 

(Remaley, Fincham, McCullough, et al. 2015). Average EMG was determined for each 2-minute 
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contraction and its percentage of EMGpeak was calculated. The agreement between %EMG for each 

handgrip tool was assessed using Bland–Altman plots with 95% limits of agreement (LOA).  

Figure 3.11 illustrates the individual (black circles) and average differences (dotted line) in %EMG 

achieved whilst carrying out 1 x 2 minute isometric contraction on each dynamometer. The dotted line 

shows that %EMG during a 2-minute isometric contraction on the ergonomic hand exerciser (Rolyan, 

Patterson Medical, Nottinghamshire, UK) may differ from the handgrip dynamometer (Powerlab 26T, 

AD instruments LTD, Sydney, Australia) by an average of -1.2% (range -4.6 – 0.5). These differences are 

small and the range of values fall well within the LOA (Figure 3.11). It can be concluded that the 

ergonomic hand exerciser (Rolyan, Patterson Medical, Nottinghamshire, UK) provides similar 

biomechanical advantage over the handgrip dynamometer (Powerlab 26T, AD instruments LTD, 

Sydney, Australia) when performing a 2-minute self-regulated isometric hand grip contraction. This 

agreement showed that participants regulated the isometric exercise intensity with similar levels of 

muscle recruitment. Considering the relationship between EMG and MVC (Wiles, Coleman, and Swaine 

2010) it can therefore be assumed that self-regulated force will remain relatively consistent when 

performing the isometric contraction on the ergonomic hand exerciser (Rolyan, Patterson Medical, 

Nottinghamshire, UK). 

Figure 3.11: Bland Altman plot displaying differences in %EMG during an isometric handgrip 

contraction performed on the Powerlab dynamometer and ergonomic hand exerciser. Difference: 

difference between %EMG measurements (ergonomic hand exerciser – powerlab dynamometer). The 

dashed line displays the mean difference score. The solid black lines display the mean difference ± 

1.96*SD (Limits of agreement, LOA)  
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4 Chapter 4: Reproducibility of 24-hour 

ambulatory blood pressure and measures 

of autonomic function 
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4.1 Introduction 

 

As discussed in Chapter 2, (section 2.0) hypertensive adults display a persistent elevation of systolic 

and/or diastolic BP, alongside a deterioration of optimal autonomic functioning characterised by a 

reduction in parasympathetic activity and an increase in sympathetic tone (Carthy 2014; Mussalo, 

Vanninen, Ikäheimo, et al. 2001, 2003). Chapter 3, (section 3.5) detailed two indirect methods of 

assessing an individuals’ autonomic function; HRV and systolic BPV. The detection of meaningful 

changes to both blood pressure (BP) and markers of autonomic function is a pre-requisite for the 

proper interpretation of post treatment or intervention findings (Dietrich, Rosmalen, Althaus, et al. 

2010). The study of these variables has obvious disadvantages with mood, alertness, time of day and 

nutritional intake all having a significant impact on the result (Verdecchia 2000). Isolating true 

biological variation from these confounding factors has proven difficult, with research to date showing 

limited consistency in the reliability of these variables (Sandercock, Bromley, and Brodie 2005; Reino-

González, Pita-Fernández, Cibiriain-Sola, et al. 2015). 

Although BP is traditionally measured at rest within a clinic environment, this method is commonly 

associated with the phenomena of white coat and masked hypertension whereby BP presents itself as 

artificially high or low (Keren, Leibowitz, Grossman, et al. 2015). Additionally, the placebo effect, 

observer bias and poor reproducibility limit the application of clinic measurements in the assessment 

of a therapeutic intervention (Pickering, Hall, Appel, et al. 2005; Mancia, Omboni, Parati, et al. 1995). 

Ambulatory BP monitoring (ABPM) takes BP measurements at pre-set (e.g. 15 minutes or 30 minutes) 

intervals during a patients usual daily activities (O’Brien, Asmar, Beilin, et al. 2003). This type of 

measurement is popular because it removes observer bias and has been shown to minimise the 

influence of white coat hypertension (De La Sierra, Segura, Banegas, et al. 2011) and the placebo effect 

(Felício, Pacheco, Ferreira, et al. 2007; Mancia, Omboni, Parati, et al. 1995). Ambulatory BP monitoring 

could be more representative of true BP because it provides measurements during daily life activities, 

stresses and sleep all within the participant’s familiar home environment. Recent findings provide 

clinical support for ambulatory monitoring which has been found to be better at predicting 

cardiovascular mortality (Dolan, Stanton, Thijs, et al. 2005). The National institute for Clinical 

Excellence now recommends ABPM as a gold standard measure for diagnosing hypertension and 

assessing treatment effects (NICE 2011). Despite this, relatively few studies use ABPM to evaluate the 

effects of exercise interventions, in particular isometric exercise interventions (Chapter 2; section 

2.2.3).  

Ambulatory BP monitoring has also been repeatedly shown to be more reproducible than resting 

measurements (Campbell, Ghuman, Wakefield, et al. 2010; Fotherby and Potter 1993; Mansoor, 
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McCabe, and White 1994; Stergiou, Baibas, Gantzarou, et al. 2002; Wendelin-Saarenhovi, Isoaho, 

Hartiala, et al. 2001; van der Steen, Lenders, Graafsma, et al. 1999) the typical error (TE; an estimate 

of the degree of uncertainty surrounding consecutive measurements) within resting measurements 

has been found to range from 12.5-7mmHg for systolic and 7-4.6mmHg for diastolic. This compares to 

ABPM where a TE of 8.2-2.3mmHg has been found for systolic readings and 4.6-1.5mmHg for diastolic 

(Campbell, Ghuman, Wakefield, et al. 2010; Fotherby and Potter 1993; Mansoor, McCabe, and White 

1994; Stergiou, Baibas, Gantzarou, et al. 2002; Wendelin-Saarenhovi, Isoaho, Hartiala, et al. 2001; van 

der Steen, Lenders, Graafsma, et al. 1999). 

Despite superior reproducibility in ABPM, differences in study design lead to large variances between 

studies. For example, those with poorer reproducibility typically recruited untreated stage 2 

hypertensives (Stergiou, Baibas, Gantzarou, et al. 2002; van der Steen, Lenders, Graafsma, et al. 1999). 

It would seem that better reproducibility is found within normotensives (Ash, Walker, Olson, et al. 

2013; Stergiou, Alamara, Salgami, et al. 2005) and treated hypertensives (Wendelin-Saarenhovi, 

Isoaho, Hartiala, et al. 2001). 

Although participant status likely influences reproducibility, the effect of familiarisation has not yet 

been evaluated. The novelty of wearing an ambulatory device for the first time might initiate a pressor 

effect (Calvo, Hermida, Ayala, et al. 2003; Hermida, Calvo, Ayala, et al. 2002). The superior 

reproducibility detected by Wendelin-Saarenhovi and colleagues could be attributed to a 

familiarisation trial included within the research design (2001). However, the data from the 

familiarisation trial was not included in the analysis and therefore its impact on subsequent 

measurements remains unknown (Wendelin-Saarenhovi, Isoaho, Hartiala, et al. 2001). A study carried 

out by Musso and colleagues (1997) would suggest that familiarisation periods are required. They 

found that the average BP decreased over four successive monitoring periods (Musso, Vergassola, 

Barone, et al. 1997). However, TE was not reported, this measure of absolute reliability is fundamental 

for calculating appropriate sample size and for interpreting post intervention findings. Further 

investigation is required to determine consistency of ABPM across several successive trials.  

As compared with BP, the reproducibility of indirect measures of autonomic function, in particular over 

the course of 24-hours, has received less attention. Resting HRV measurements have been frequently 

investigated with little consistency in the findings. Reliability based on intraclass correlation 

coefficients (ICCs) is often reported as good-excellent (ICC, 0.7-0.9) (Bertsch, Hagemann, Naumann, et 

al. 2012; Ginsburg, Bartur, Peleg, et al. 2011; Maestri, Raczak, Danilowicz- Szymanowicz, et al. 2010; 

Pinna, Maestri, Torunski, et al. 2007; Sacre, Jellis, Marwick, et al. 2012). Whilst a high ICC between 

repeated measures is typically accepted to indicate a high level of reliability, it could also be an artefact 

of high between-subject variability (Pinna, Maestri, Torunski, et al. 2007; Hallman, Srinivasan, and 
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Mathiassen 2015). It is not uncommon for the same study to report a high ICC alongside large 

coefficients of variation (TE expressed as a percentage) (Ginsburg, Bartur, Peleg, et al. 2011; Hojgaard, 

Holstein-Rathlou, Agner, et al. 2005; Maestri, Raczak, Danilowicz- Szymanowicz, et al. 2010; Pinna, 

Maestri, Torunski, et al. 2007; Ponikowski, Piepoli, Amadi, et al. 1996) suggesting high levels of 

biological variation and instances of random error (Hallman, Srinivasan, and Mathiassen 2015) In 

contrast, low coefficients of variation (CV) for both time (6-8%) and frequency domain (6-12%) have 

been reported in a large group of healthy individuals (n=70) (Sinnreich, Kark, Friedlander, et al. 1998) 

and a small sample of stage 1 hypertensives (n=8) (Parati, Omboni, Villani, et al. 2001). It has been 

suggested (Sandercock, Bromley, and Brodie 2005) that clinical populations (chronic heart failure, type 

2 diabetics) display poorer levels of reliability (Lord, Senior, Das, et al. 2001; Ponikowski, Piepoli, Amadi, 

et al. 1996; Sacre, Jellis, Marwick, et al. 2012), however, given the small CV reported in stage 1 

hypertensives (Parati, Omboni, Villani, et al. 2001) further analysis on this population is required. 

Whilst a much smaller volume of research exists, resting measures of beat-beat systolic BPV has shown 

similar inconsistencies with poor (Zöllei, Csillik, Rabi, et al. 2007; Hojgaard, Holstein-Rathlou, Agner, et 

al. 2005), good (Parati, Omboni, Villani, et al. 2001; Bartels, Jelic, Gonzalez, et al. 2004) and excellent 

(Ditor, Kamath, Macdonald, et al. 2005) reliability being reported for the LF component of systolic BPV. 

The limited findings in addition to variations within the chosen statistical calculations pose problems 

for comparison across studies. 

 

Unlike resting HRV measurements, a smaller amount of research exists on ambulatory recordings of 

autonomic function. Direct comparisons between resting and ambulatory recordings have shown that 

longer ambulatory recordings display lower variability (Pitzalis, Mastropasqua, Massari, et al. 1996; 

Tarkiainen, Timonen, Tiittanen, et al. 2005). To the researcher’s knowledge, only 3 studies have 

measured the reproducibility of HRV recorded over 24-hours. These specific studies found CV for time 

domain components ranging from 10-53% (Kleiger, Bigger, Bosner, et al. 1991; Pitzalis, Mastropasqua, 

Massari, et al. 1996) and 16-40% (Bigger, Fleiss, Rolnitzky, et al. 1992; Kleiger, Bigger, Bosner, et al. 

1991) for frequency domain components. Although these results reflect superior reliability to those 

generally found during resting measurements (Ginsburg, Bartur, Peleg, et al. 2011; Hojgaard, Holstein-

Rathlou, Agner, et al. 2005; Maestri, Raczak, Danilowicz- Szymanowicz, et al. 2010; Pinna, Maestri, 

Torunski, et al. 2007; Ponikowski, Piepoli, Amadi, et al. 1996) these studies are limited by the 

recruitment of healthy individuals only. In addition, studies recording 24-hour autonomic function or 

indeed resting measurements are limited by a lack of familiarisation trials and an exploration of the 

effect of habituation.  
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In light of the limited and confounding reliability data on non-invasive cardiovascular function 

measurements, this study will aim to assess the reproducibility of resting measurements of autonomic 

function (systolic BPV and HRV) and 24-hour ABPM and HRV in pre-hypertensive and hypertensive 

adults. The effects of familiarisation across four trials will be determined. Results will be used to 

determine small and moderate detectable changes and to calculate appropriate sample size estimates 

for randomised controlled trials.  
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4.2 Methodology 

 

4.2.3 Participants  

 

Eleven pre-hypertensive and hypertensive adults (≥ 55years) participated in the study. A detailed 

description of the recruitment process can be found in Figure 4.1. Ethical approval was obtained by 

the local research ethics committee and written informed consent was obtained from all participants 

prior to the beginning of the study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Recruitment process 

 

 

 

37 Participants volunteered to participate in pre-

participation screening 

15 participants were identified as 

pre-hypertensive or hypertensive  
23 participants were 

normotensive and ineligible to 

participate  

1 declined the 

invitation to 

participate  

14 entered into the 

research process 

11 completed  3 discontinued 
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Table 4.1: Participant baseline characteristics. Values are mean±SD 

Characteristic                 Participants (n = 11) 

 

Gender  

 

Male 2 

 

Female 9 

 

Age (years) 67.2±4.7 

 

Body mass (kg) 67.5±12 

 

Height (cm) 162.4±8.3 

  

Body mass index (BMI) 27.1±4.5 

 

RSBP(mmHg) 141.7±8.9 

 

RDBP (mmHg) 83.0±10.9 

 

Medication classification 

  

ACE inhibitor 2 

Diuretic 1 

Alpha blocker 1 

RSBP, resting systolic blood pressure; RDBP, resting diastolic blood pressure.  

Note: Six participants were classed as having isolated systolic pre-hypertension/hypertension and 

was therefore the most common phenotype within this population group.  

4.2.4 Research design 

 

Participants attended the laboratory on 4 separate occasions for repeat measurements of resting HRV, 

systolic BPV and 24-hour ambulatory BP and HRV. Pre-visit conditions were standardised with each 

participant avoiding food (4 hours), caffeine (12 hours) and alcohol (24 hours) prior to each laboratory 
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visit (Badrov, Bartol, Dibartolomeo, et al. 2013). Because of the known effects of bladder distension on 

resting BP, participants were also asked to void their bladder in advance of the testing session (Fagius 

and Karhuvaara 1989). All measurements for each participant took place on their designated weekday 

and the timing of each visit was standardised to within 2 hours of the first visit. Each session was 

separated by a minimum of 7 days and maximum of 14.  

4.2.5 Procedures 

 

Stature and mass were measured on arrival at the laboratory (Seca, Bonn, Germany). Participants were 

then instructed to lay supine in a temperature controlled room (21 degrees) whilst they were prepared 

for resting measurements. For HRV, electrode placement followed a 2-lead (Cardiotens, Meditech, 

Hungary) or 3 lead (Card(X)plore, Meditech, Hungary) configuration recommended by the Holter 

device manufacturer. To ensure within subject consistency each participant was fitted with the same 

device model. Systolic BPV was measured beat-beat using a non-invasive Finometer device (Finometer 

MIDI, Finapres, TNO Instruments, Amsterdam, The Netherlands). All systolic BPV recordings were 

measured from the middle finger on the dominant hand. For a detailed explanation of participant 

preparation for HRV and systolic BPV please see Chapter 3, sections 3.5 and 3.6.  Upon completion of 

participant set-up both monitors were set to record for ten minutes in which the last five minute 

segment was used within the analysis. Participants were requested to rest quietly during this period.  

 

Following resting measures the participants were prepared for ambulatory measurements. 

Ambulatory BP and HRV was measured using the Cardiotens and Card(X)plore devices (Meditech, 

Hungary). A pneumatic cuff was attached to the upper portion of the participant’s non-dominant arm 

(Chapter 3, section 3.4), and the participants retained chest electrode placement from the earlier 

resting measurements. The ambulatory units were then attached to participants using a holter case 

clipped around the waist. The holter device was set to record BP every 30 minutes between 06.00 and 

22.00 and every hour between 22.00 and 06.00. Participants were instructed to stop what they were 

doing, free their hand of any items and relax their arm down by their side during each BP recording. 

Caffeine and alcohol were avoided during the 24-hour monitoring period. Participants were also asked 

to complete a physical activity diary (Bouchard, Tremblay, Leblanc, et al. 1983) (Appendix 3) for the 

24-hour period. This tool determined the time the participants went to bed and got up. Participants 

were urged to try and maintain a similar daily routine (i.e. meal times, bed time) and requested not to 

engage in organised sport activity and vigorous exercise. 
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4.2.6 Data processing 

 

Heart rate variability: The ECG signals collected from the Cardiotens and Card(X)plore were analysed 

(Cardiovisions, version 1.2, Meditech, Hungary) using time domain and frequency domain analysis. 

Detailed ECG data processing methods are described elsewhere (Chapter 3, sections 3.6.3 & 3.6.4). 

The following time frames were used for complete analysis; 5-minute resting measurement, 24 hour 

average, daytime average and night-time average. Daytime and night-time segments were interpreted 

using the Bouchard Physical Activity diary (Appendix 3).  

 

Systolic blood pressure variability: Spectral analysis of beat to beat systolic blood pressure data was 

analysed using an online software programme (Cardioseries v2.4, Brazil). Detailed data processing 

methods are described elsewhere (Chapter 3, section 3.7.2). 

 

24-hour ambulatory blood pressure monitoring: Blood pressure readings were divided into a series of 

specific time points for analysis; 24-hr average, daytime average and night-time average. The night-

time period included measurements taken between the hours that the participant went to bed and 

got up (as determined by the Bouchard Physical Activity Diary). A measurement was deemed successful 

if there were 7 successful night time recordings and 14 successful daytime recordings (O’Brien 2003). 

 

4.2.7 Statistical analysis 

 

Typical error of measurement/coefficient of variation 

All variables were assessed for normality using the Shapiro Wilk test. A specifically designed 

spreadsheet was then used to assess the reproducibility of each physiological measurement (Hopkins 

2000). Consecutive pairs of measurements (1-2, 2-3, 3-4) were analysed and TE and CV was calculated. 

If the measurement did not meet the criteria for normality (p ≤ 0.05) the CV was calculated on 100*log 

transformed data (100*ln) – this substantially reduces non-uniform errors (Al Haddad, Laursen, 

Chollet, et al. 2011). Uncertainty in the difference between successive measurements was reported 

using 90% confidence limits.  

 

Prior to these calculations, all data was assessed for outliers using the statistics package for social 

sciences (IBM, version 23, Armonk, NY). Outliers were removed and not included in the analysis.      
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Detectable changes and sample size estimates  

The between subject standard deviation (average across all 4 trials) was used to calculate both small 

and moderate detectable changes (Hopkins 2000). 

 

Small detectable change = 0.2*between subject standard deviation 

Moderate detectable change = 0.5*between subject standard deviation  

 

The typical error and detectable changes (small and moderate) were then used to calculate sample 

size estimates for a randomised controlled trial with a power of 0.8 (80%) at a 0.05 significance (5%) 

level.  
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4.3 Results 

 

Descriptive statistics for all variables (mean ±SD) are presented in Tables 4.1-4.4. The TE for each 

variable across consecutive pairs of measurements is shown in Table 4.5. For ease of comparison across 

the literature the TE within systolic BPV and HRV is reported as a CV. All HRV and systolic BPV variables 

displayed non-normality and heteroscedasticity and therefore CV is reported after log transformation.  

 

Table 4.2: Descriptive statistics (mean±SD) of average, daytime and night time blood pressure 

(mmHg) during 24-hour monitoring. 

 Trial 1 Trial 2  Trial 3  Trial 4  

 

24- hour SBP 136.4 ± 8.9 138.3 ± 12.9 136 ± 10.7 136.4 ± 9.6 

24-hour DBP 78.2 ± 7.3 77.5 ± 8.9 76.7 ± 8.1 76.6 ± 7.6 

24-hour MAP 97.8 ± 6.8 97.7 ± 8.7 96.5 ± 7.3 96.5 ± 7 

 

Daytime SBP 141 ± 11.1 142.6 ± 13.5 141.4 ± 11.6 141.9 ± 10 

Daytime DBP 81.2 ± 7.6 80.4 ± 8.4 80 ± 8.7 80.6 ± 8.3 

Daytime MAP 101.2 ± 7.6 101.2 ± 9  100.5 ± 8.1 100.9 ± 7.7 

 

Night-time SBP 125.6 ± 9.1 125.3 ± 12.8 120.4 ± 11.1 121.9 ± 11.9 

Night-time DBP 69.4 ± 6.6  68.9 ± 9.8 67.1 ± 7.7 67.6 ± 7.2 

Night-time MAP 88.1 ± 5.7 87.7 ± 9.6 84.9 ± 7.7 85.7 ± 7.7 

SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure  
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Table 4.3: Descriptive statistics (mean±SD) of average 24-hour time and frequency domain heart rate 

variability 

 Trial 1 Trial 2  Trial 3  Trial 4  

rMSSD (ms) 24.4±12.3 28.9±17.5 26.2±14.1 27.3±14.4 

SDNN (ms) 71.3±17.1 74.1±21.4 73.7±23.7 70.0±17.8 

pNN50 (%) 5.0±7.4 5.0±6.8 5.7±8 6.2±8 

HF (ms2) 226.5±224.9 346.8±417.9 260.0±227.9 267.7±236.6 

HF nu  22.5±9.3 29.4±10.2 26.8±9.0 28.0±9.9 

LF (ms2) 509.0±314.3 603.5±479.8 585.6±433.1 534.2±319.4 

LF nu 69.8±10.4 66.4±10.6 70.1±8.0 67.2±11.3 

LF/HF 2.7±2.7 2.7±1.4 3.1±1.3 2.8±1.5 

rMSSD, root mean square of successive differences; SDNN, standard deviation of all NN intervals; 

SDANN, average standard deviation across each 5-minute segment of NN intervals; pNN50%, the 

percentage of adjacent NN intervals  differing by more than 50ms; LF, low frequency; HF, high 

frequency; nu, normalised units. 
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Table 4.4: Descriptive statistics (mean±SD) of average resting time and frequency domain heart rate 

and systolic blood pressure variability 

 Trial 1 Trial 2  Trial 3  Trial 4  

rMSSD (ms) 21.7±12.6 22.5±16.9 21.5±15.7 23.2±18.6 

SDNN (ms) 31.8±15.3 35.4±19.2 33.9±18 35.6±17.3 

pNN50% 3.1±4.6 3.1±5.1 3.4±4.8 3.7±7.9 

HF (ms2) 172.4±139.2 199.7±208.6 133.6±139.9 85.2±55.6 

HF nu 43.1±13.8 41.8±14.5 33.7±12.8 36.6±15.5 

LF (ms2) 221.7±224.7 287.3±279.5 186.3±171.0 228.6±201.9 

Lf nu 52.6±14.4 54.6±15.1 59.9±17.3 59.4±17.1 

LF/HF   1.5±1.2 1.5±1.1 2.2±1.4 2.1±1.4 

LF (mmHg2) 13.2±9.8 14.9±7.9 12.7±7.5 21.3±12.2 

LF (%) 46.8±13.2 45±10.3 41.7±10.7 50.3±7.1 

rMSSD, root mean square of successive differences; SDNN, standard deviation of all NN intervals; 

pNN50%, the percentage of adjacent NN intervals  differing by more than 50ms; LF, low frequency; 

HF, high frequency; nu, normalised units; SD, standard deviation.  

 

The variability within 24-hour average SBP showed a small but progressive decline across 

measurements (Table 4.5). The TE between measures 1-2 was 3.8mmHg (90% CI 2.6-6.1), between 

measures 2-3 was 3.1mmHg (90% CI 2.3-4.9), and between measures 3-4 was 2.8mmHg (90% CI 2.05-

4.42) (Table 4.5). The TE for daytime and night-time SBP showed a similar pattern, with the magnitude 

of TE reducing across pairs of measurements (Table 4.5). In general the TE for DBP and MAP was 

smaller than that found in SBP. Night time measures of DBP displayed progressive reductions in TE 

across measurements (Table 4.5) – however, this was not consistent with average and daytime 

measurements. Night-time BP measurements exhibited the largest TE; for SBP, TE between trials 1-2 

was 5.4mmHg (90% CI 3.9-8.5), for DBP it was 3.6mmHg (90% CI 2.7-5.8) and for MAP it was 4.2mmHg 

(90% CI 3.1-6.7).  
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As compared with 24-hour measurements, resting HRV displayed larger magnitudes of error (Table 

4.5) and sample size estimates (Table 4.6). Aside from 24-hour average recordings of rMSSD, the TE 

across pairs of autonomic measurements did not show a pattern of decline across measurements.  
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Table 4.5: Reproducibility of 24-hour ambulatory blood pressure, 24-hour heart rate variability and short term blood pressure variability and heart rate 

variability. 

 
Trial 2-1 (TE±90% CI) Trial 3-2 (TE±90% CI) Trial 4-3 (TE±90% CI) 

 

24 hour SBP 

   

Average 3.8 (2.8-6.1) 3.1 (2.3-4.9) 2.8 (2.1-4.4) 

Daytime  4.9 (3.7-7.9) 3.9 (2.8-6.2) 2.8 (2.1-4.5) 

Night-time 5.4 (3.9-8.5) 4.4 (3.2-7.0) 3.6 (2.7-5.8) 

24 hour DBP    

Average  1.7 (1.3-2.7) 1.9 (1.4-3.0) 1.5 (1.0-2.3) 

Daytime 1.4 (1.0-2.2) 2.1 (1.6-3.4) 2.0 (1.5-3.2) 

Night-time 3.8 (2.8-6.0) 2.7 (2.0-4.3) 1.7 (1.3-2.8) 

24 hour MAP     

Average  2.2 (1.6-3.5) 2.2 (1.6-3.5) 1.6 (1.2-2.6) 

Daytime 2.2 (1.7-3.6) 2.6 (1.9-4.1) 1.9 (1.4-3) 

Night  4.2 (3.1-6.7) 3.1 (2.3-4.9) 1.8 (1.3-2.8) 

 Trial 2-1 (CV±90% CI) Trial 3-2 (CV±90% CI) Trial 4-3(CV±90% CI) 

 

24 hour average HRV 

rMSSD (ms) ln 

 

 

14.1 (10-23) 

 

 

11.8(9-20) 

 

 

10.9(8-18) 

SDNN(ms) ln 7.7 (6-13) 6.8 (5-11) 9.9 (7-16) 

pNN50% ln 47.1 (33-89) 49.5 (34-44) 41.3 (29-74) 
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HF (ms2)ln 16.9 (12-29)) 19.6 (14-34.3) 17.3 (12.5-28.9) 

HF nu ln 12.8 (9-21) 16.3 (12-27) 6.6 (5-11) 

LF (ms2) ln 24.6 (18-42) 26.1 (19-45) 22.8 (16-39) 

LF nu ln 4.2 (3-7) 8.5 (6-14) 7.9 (6-13) 

Lf/HF ln 12.6 (9-22) 27.7 (20-48) 20.7 (14-35) 

Daytime HRV    

rMSSD (ms) ln 12.1 (9-20) 10.4 (8-17) 14.6(11-24) 

SDNN (ms) ln 9.5 (7-16) 9.0 (7-15) 12.8 (9-21) 

pNN50% (ln) 28.4 (20-49) 53.4 (37-98) 56.4 (39-104) 

HF (ms2) ln 31.9 (23-56) 31.6 (23-55) 25.3 (18-43) 

HF nu ln 12.7 (9-21) 11.9 (9-20) 15.2 (11-25) 

LF (ms2) ln 40.5 (29-72) 41.2 (29-73) 24.5 (18-42) 

LF nu ln 7.3 (5-12) 8.1 (6-13) 7.2 (5-12) 

LF/HF ln 18.7 (14-31) 21.3 (15-36) 23.6 (17-40) 

Night-time HRV    

rMSSD (ms) ln 12.6 (9-21) 8.3 (6-14) 9.7 (7-16) 

SDNN (ms) 18.7 (14-31) 21.3 (15-36) 24 (17-40) 

pNN50% 81.1 (54-166) 56.1 (38-108) 37 (26-67) 

HF (ms2) ln 13.9 (10-24) 21.1 (15-37) 14.6 (11-24) 

HF nu ln 18.4 (13-31) 22.7 (16-39) 9.3 (7-16) 

LF (ms2) ln 28.8 (21-49) 37.0 (26-65) 21.0 (5-36) 

LF nu ln 9.6 (7-16) 11.5 (8-19) 7.2 (5-12) 

LF/HF 29.3 (21-51) 34.8 (25-61) 15 (11-25) 
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Short-term HRV     

rMSSD (ms) ln 19.7 (14-33) 19.7 (14-33) 24.3 (17-41) 

SDNN (ms) ln 28.0 (20-48) 29.7 (21-51) 32.8 (23-57) 

pNN50% ln  51.0 (35-97) 41.9 (29-78) 117.3 (74-277) 

HF (ms2) ln 35.5 (25-65) 115.4 (75-254) 88.4 (58-196) 

HF nu ln 36.1 (26-63) 39.6 (28-70) 20.7 (15-36) 

LF (ms2) ln 50.9 (36-93) 91 (61-181) 65.4 (44-129) 

LF nu ln 28.9 (21-50) 28.1 (20-48) 22.7 (16-40) 

LF/HF ln 76.3 (52-147) 98.6 (67-198) 39.0 (28-69) 

Short-term systolic BPV    

LF (%) ln 

LF (mmHg2) ln 

30.1 (21-52) 

66.8 (46-126) 

24.1 (17-41) 

55.4 (39-102) 

26.8 (19-46) 

59.1 (41-110) 

SBP, systolic blood pressure; DBP, diastolic blood pressure; rMSSD, root mean square of successive differences; SDNN, standard deviation of all NN intervals; 

pNN50%, the percentage of adjacent NN intervals  differing by more than 50ms; LF, low frequency; HF, high frequency; nu, normalised units; ln, log 

transformed; SD, standard deviation. 
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Table 4.6: Detectable change and sample size estimates 

24-hour average BP 

  SBP DBP  MAP           

Smallest detectable change * 2.1 1.6 1.5      

Moderate detectable change ** 5.2 3.9 3.7      

Sample size *** 24 17 22           

Resting HRV 

  rMSSD (ms) SDNN (ms) pNN50% HF (ms2) Hf nu Lf (ms2) LF nu LF/HF 

Smallest detectable change * 3.2 3.5 1.1 29.2 2.8 44.6 3.2 0.26 

Moderate detectable change ** 8 8.75 2.9 73 7.1 111.7 8 0.65 

Sample size *** 25 81 23 107 152 65 147 125 

24-hour average HRV  

  rMSSD (ms) SDNN pNN50% HF (ms2) HF nu LF (ms2) LF nu LF/HF 

Smallest detectable change * 2.9 4 1.5 58 1.9 78.6 2 0.26 

Moderate detectable change ** 7.2 10 3.8 145 4.8 196.7 5 0.65 

Sample size *** 25 31 26 84 32 78 44 112 

Resting systolic BPV 

  LF %  LF (mmHg2)             

Smallest detectable change * 2.2 1.84  
     

Moderate detectable change ** 5.4 4.6  
     

Sample size *** 187 138             

SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure, rMSSD, root mean square of successive differences; SDNN, standard 
deviation of all NN intervals; pNN50%, the percentage of adjacent NN intervals  differing by more than 50ms; LF, low frequency; HF, high frequency; nu, 
normalised units; SD, standard deviation. 

*=0.2*between subject standard deviation; **=0.5*between subject standard deviation; ***=sample size based on moderate detectable change 
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4.4 Discussion 

 

The primary aim of this study was to conduct a pairwise analysis across four consecutive 24-hour 

ambulatory BP and HRV measurements. The first novel finding of this study was that the TE during 24-

hour ambulatory BP measurements was smaller than that previously reported in resting 

measurements (Campbell, Ghuman, Wakefield, et al. 2010; Fotherby and Potter 1993; Mansoor, 

McCabe, and White 1994; Stergiou, Baibas, Gantzarou, et al. 2002; Wendelin-Saarenhovi, Isoaho, 

Hartiala, et al. 2001; van der Steen, Lenders, Graafsma, et al. 1999) and smaller than a moderate 

detectable change; thus making this measurement sensitive enough to detect changes to 24-hr BP 

following a therapeutic exercise intervention. 

The TE for SBP reduced slightly across consecutive pairs of measurements, thus indicating that the 

procedure displays increased sensitivity following one habituation period and furthermore with two. 

The increased sensitivity was more evident during the night-time measurements compared with 

daytime only or 24-hour average. As is consistent with this study, night-time measurements commonly 

show poorer reproducibility as compared with 24-hour average and daytime recordings (Ash, Walker, 

Olson, et al. 2013; Campbell, Ghuman, Wakefield, et al. 2010; Fotherby and Potter 1993; Stergiou, 

Alamara, Salgami, et al. 2005; Wendelin-Saarenhovi, Isoaho, Hartiala, et al. 2001). The TE during night-

time measurements in hypertensive adults has been reported to range from 6.5-11.3mmHg for SBP 

(Stergiou, Baibas, Gantzarou, et al. 2002; Eguchi, Hoshide, Hoshide, et al. 2010; van der Steen, Lenders, 

Graafsma, et al. 1999). A limitation of these studies is the assessment of ambulatory BP on only two 

occasions. Following two habituation trials the current study showed a TE of 3.6mmHg which is the 

lowest reported in hypertensive adults. This finding shows a particular benefit of personal adaptation 

to wearing the device at night.  

Diastolic BP showed similar improvements in reliability across consecutive night-time measurements 

with little change during 24-hour or daytime measurements. However, as compared with SBP, a 

smaller magnitude of error during diastolic measurement was found. This finding is consistent with 

previous 24-hour ABPM studies and resting BP studies (Campbell, Ghuman, Wakefield, et al. 2010; 

Stergiou, Baibas, Gantzarou, et al. 2002; Wendelin-Saarenhovi, Isoaho, Hartiala, et al. 2001). There has 

been limited discussion in the literature with regards to the specific reasons for this. However, SBP 

has been shown to be influenced to a greater degree during tasks such as silent reading, reading aloud, 

and mental stress (Bernardi, Wdowczyk-szulc, Valenti, et al. 2000) and exercise (Mitchell 2012). 

Therefore different circumstances during each recording will influence SBP to a greater degree. It has 

been suggested that the lower variability in DBP may simply be related to the fact that DBP is 
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measured with a reduced arm cuff pressure and with a short time delay following the systolic 

measurement (Musini and Wright 2009). Patients may become more relaxed during each diastolic 

measurement.  

Interestingly, regardless of trial number, the TE for 24-ABPM was lower in this present study compared 

with those reported previously (Eguchi, Hoshide, Hoshide, et al. 2010; Fotherby and Potter 1993; 

Stergiou, Alamara, Salgami, et al. 2005; van der Steen, Lenders, Graafsma, et al. 1999). This likely 

reflects the fact that participants in the present study had a lower baseline BP. Mean baseline SBP 

within the current study was 142mmHg, this compares with other research recruiting individuals with 

average SBP values of 155mmHg (Mansoor, McCabe, and White 1994), 165mmHg (van der Steen, 

Lenders, Graafsma, et al. 1999) and 178mmHg (Fotherby and Potter 1993), with another study limiting 

their recruitment to individuals with SBP over 180mmHg (Stergiou, Baibas, Gantzarou, et al. 2002). 

Variability in BP is generally proportional to BP values (Parati, Ochoa, Lombardi, et al. 2013) and 

therefore the day to day variability and thus TE may increase as the severity of hypertension increases. 

In addition, evidence for the standardisation of activities in previous research is limited with the 

exclusion of caffeine and advice regarding levels of physical activity lacking. The findings of the current 

study align more closely with results from studies in normotensive individuals (Ash, Walker, Olson, et 

al. 2013). 

In relation to HRV, the second novel finding of this study showed that the CV for both time and 

frequency domain parameters was lower during 24-hour ambulatory recordings in comparison to 5-

minute resting recordings. In addition, the TE for all 24-hour HRV parameters was consistently lower 

than a moderate detectable change suggesting that the measurement has sufficient sensitivity for 

detecting statistical significance if post intervention changes are of a moderate magnitude. In contrast, 

owing to the large day-day variation observed during resting recordings, a moderate detectable 

change was not consistently smaller than the TE and therefore resting measurements provide 

substantially less sensitivity. Large day-to-day variations in resting HRV recordings, is consistent with 

previous research (Hojgaard, Holstein-Rathlou, Agner, et al. 2005; Pinna, Maestri, Torunski, et al. 

2007; Maestri, Raczak, Danilowicz- Szymanowicz, et al. 2010; Ponikowski, Piepoli, Amadi, et al. 1996; 

Tarkiainen, Timonen, Tiittanen, et al. 2005). Despite large variations (CV; 19-117.3%), the 

reproducibility of time domain parameters was similar to that of post MI and stroke patients 

(Ginsburg, Bartur, Peleg, et al. 2011; Maestri, Raczak, Danilowicz- Szymanowicz, et al. 2010). 

Whilst previous research has reported the reproducibility of 24-hour HRV recordings (Bigger, Fleiss, 

Rolnitzky, et al. 1992; Hohnloser, Klingenheben, Zabel, et al. 1992; Kleiger, Stein, and Bigger 2005; 

Pitzalis, Mastropasqua, Massari, et al. 1996); this is the first study to investigate changes following 
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habituation, and report absolute reliability (CV) during both day and night periods. Although 24-hour 

measures of rMSSD showed a consistent decline in CV across measurements, this finding was not 

consistently evident in the other HRV parameters and therefore the need for habituation remains 

questionable.  

However, when compared with the current study, 24-hour measurements on healthy volunteers 

found similar levels of reproducibility for the time domain vagal component, rMSSD (Kleiger, Stein, 

and Bigger 2005; Pitzalis, Mastropasqua, Massari, et al. 1996). In contrast, CV for SDNN (6.8-9.9%) was 

much smaller to that reported by Pitzalis and colleagues (1996) where the CV for SDNN was reported 

as 20%. The recruitment of young healthy individuals who have large variances in their heart rates and 

therefore larger overall variability (SDNN) may have contributed to poorer reproducibility. It is well 

known that HRV is reduced in clinical and older populations (Carthy 2014; Umetani, Singer, McCraty, 

et al. 1998) and may therefore display less variation within this particular variable. Further 

comparisons between young healthy adults and clinical populations is required. 

Finally, the current findings show large day-day variation in BPV parameters with no obvious benefit 

of habituation. The CV reported in the current study is much larger to that previously reported by 

Parati et al., (2001). This difference in findings could be related to the longer recordings (15 minutes) 

employed (Parati, Omboni, Villani, et al. 2001). Alternatively the younger pool of participants (29-54 

years) recruited by Parati et al., (2001) could have contributed to the superior reproducibility. Older 

hypertensives have been shown to have greater levels of muscle sympathetic nerve activity when 

compared to younger hypertensives (Yamada, Miyajima, Tochikubo, et al. 1989). It is therefore 

possible that the participants in the current study had a greater level of sympathetic nerve activity 

which may have contributed to the large day-day variations. The current findings suggest that 

detecting changes in the LF component of systolic BPV following a therapeutic intervention may prove 

problematic.  

4.5 Conclusion 

 

When compared with other research, ambulatory BP monitoring provides greater measurement 

sensitivity as compared with resting measurements. The current study shows that wearing an 

ambulatory device for the first time may induce error into BP recordings. It is recommended that at 

least one habituation period is provided; especially if night-time recordings are of interest. For HRV, 

24-hour measurements as compared with resting measurements offer better reproducibility with the 

benefit of habituation remaining questionable. Resting measures of systolic BPV showed poor 

reproducibility.  
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Although resting BP measurements and short term HRV recordings have specific advantages, namely 

quick measurement and controlled conditions; 24 hour measurements offer superior reproducibility 

and where possible should be utilised in the design of intervention studies.  
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5 Chapter 5: The use of the CR-10 scale to 

allow self-regulation of isometric exercise 

intensity in pre-hypertensive and 

hypertensive participants. 
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5.1 Introduction 

 

As reviewed in Chapter 2, section 2.2.3 isometric exercise has been shown to lower blood pressure 

(BP) in healthy adults (Ray and Carrasco 2000; Howden, Lightfoot, Brown, et al. 2002; Wiley, Dunn, 

Cox, et al. 1992; Millar, Bray, MacDonald, et al. 2008; Wiles, Coleman, and Swaine 2010; Devereux, 

Wiles, and Swaine 2011; Badrov, Bartol, Dibartolomeo, et al. 2013; Devereux and Wiles 2015; Gill, 

Arthur, Swaine, et al. 2015), hypertensive (non-medicated and medicated) and pre-hypertensive 

adults (Wiley, Dunn, Cox, et al. 1992; Taylor, McCartney, Kamath, et al. 2003; McGowan, Levy, Millar, 

et al. 2006; Peters, Alessio, Hagerman, et al. 2006; McGowan, Visocchi, Faulkner, et al. 2007; Baross, 

Wiles, and Swaine 2012, 2013; Millar, Levy, Mcgowan, et al. 2013; Badrov, Horton, Millar, et al. 2013). 

Studies that have been carried out in pre-hypertensive and hypertensive participants have mostly 

used isometric handgrip exercises. Training programmes typically prescribe 4 x 2 minute contractions 

(performed unilaterally or by alternating hands), repeated 3 times per week for 8-10 weeks (Millar, 

McGowan, Cornelissen, et al. 2014). To date, the majority of isometric training programmes have 

prescribed a percentage of maximal voluntary contraction (%MVC) to regulate the exercise intensity 

(Taylor, McCartney, Kamath, et al. 2003; McGowan, Visocchi, Faulkner, et al. 2007; Stiller-Moldovan, 

Kenno, and McGowan 2012; Millar, Levy, Mcgowan, et al. 2013; Ash, Taylor, Thompson, et al. 2016; 

Badrov, Horton, Millar, et al. 2013). This method requires a device (e.g. handgrip, hand dynamometer) 

that displays the magnitude of force exerted which then allows the exercise participant to visualise 

force output (on a computer screen or the device itself) and maintain it at a pre-set target. Calculating 

%MVC also requires the performance of 2-3 short maximal efforts to firstly establish MVC. The most 

common target handgrip exercise intensity is 30% MVC. Specifically, this training intensity has been 

effective at lowering resting systolic SBP by 6-19mmHg and resting DBP by 3-15mmHg in pre-

hypertensives and hypertensive adults (Taylor, McCartney, Kamath, et al. 2003; McGowan, Levy, 

McCartney, et al. 2007; Wiley, Dunn, Cox, et al. 1992; Badrov, Horton, Millar, et al. 2013; Millar, Bray, 

McGowan, et al. 2007).  

Although regulating isometric exercise using %MVC has proven effective, regulating isometric exercise 

in this way presents a number of limitations. Firstly, specialised programmable handgrip devices or 

dynamometers, designed to calculate %MVC prior to the beginning of each exercise session, are 

required. These are somewhat expensive and some dynamometers can only be used in the laboratory 

which limits accessibility. Secondly, the calculation of %MVC requires 2-3 all-out maximal efforts, 

which might present a limitation in some groups of participants, especially in those with frailty. Some 

older adults are limited in maximal gripping, due to the prevalence of varying degrees of arthritic pain 
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in the hand (Arthritis Research UK 2017). If this type of exercise is to benefit older people with 

hypertension (or who are at risk of hypertension) then it must be simple to use, affordable, home-

based and ideally it must avoid maximal effort. There has been little exploration of alternative ways 

to regulate isometric exercise intensity.   

As reviewed in Chapter 2, section 2.4, studies provide support for the use of the rate of perceived 

exertion (RPE) scale as an effective exercise prescription tool. During cardiorespiratory exercise (e.g. 

cycling, running, rowing), perceived exertion charts (Borg 1973) have been shown to correlate strongly 

with physiological markers of intensity such as heart rate (HR) and oxygen consumption (VO2) (Scherr, 

Wolfarth, Christle, et al. 2013; Ueda and Kurokawa 1995; Borg and Kaijser 2006). Using an estimation-

production model researchers have also shown that participants can replicate specific markers of 

intensity (HR, VO2, power output) by producing a given level of perceived exertion (Soriano-

Maldonado, Romero, Femia, et al. 2013; Marriott and Lamb 1996; Green, Crews, Bosak, et al. 2002; 

Goosey-Tolfrey, Lenton, Goddard, et al. 2010; Eston, Davies, and Williams 1987; Paulson, Bishop, 

Leicht, et al. 2013).  

The CR-10 scale (Figure 3.9) is a perceived exertion chart and was developed by Gunnar Borg with the 

intention of using verbal expressions that are easy to understand (Borg 1982). With regard to isometric 

exercise, a strong linear relationship has been previously determined between the Borg CR-10 scale 

and %MVC during 5-second contractions (Pincivero, Coelho, and Erikson 2000). However, its 

relationship with %MVC during longer isometric contractions is unknown. In addition, the use of 

perceived exertion and its relationship with cardiovascular responses during isometric exercise 

remains unexplored. Recent findings show that an individual’s SBP reactivity (ΔSBP) in response to a 

single 2-minute isometric handgrip task at 30% MVC is related to the magnitude of training-induced 

BP reductions in hypertensive individuals (Badrov, Horton, Millar, et al. 2013). Within this sample 

(n=12) findings showed that those with a small ΔSBP (~10mmHg) responded less positively to 

isometric training whilst individuals with a larger ΔSBP (up to 50mmHg) responded most positively 

(Badrov, Horton, Millar, et al. 2013). Considering the wide range of SBP changes observed during 

isometric exercise and its potential impact on training adaptations, further examination of the ΔSBP 

and its relationship to the CR-10 scale and %MVC is required.   

The purpose of this research was to primarily determine the validity of regulating isometric exercise 

intensity using perceived exertion. Specifically, an estimation task examined the relationship between 

the Borg CR-10 scale and both %MVC and ΔSBP. Based on the initial findings, the research determined 

whether individuals could reproduce (production task) %MVC and its corresponding ΔSBP using an 

imposed numerical value from the CR-10 scale. Three production trials were carried out to assess 
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whether practice trials are necessary to improve an individual’s accuracy at producing a specific 

exercise intensity.  
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5.2 Methodology 

 

5.2.1 Participants  

 

Fourteen (9 females, 5 males) pre-hypertensive and stage 1 hypertensive adults (SBP; 141±6.6mmHg, 

DBP; 84±6.4mmHg) with a mean age of 64.4±5.7 years, body mass of 73.3±16kg, stature of 

166±12.4cm and body mass index of 28.6±4.3 participated in the study. Five participants were taking 

anti-hypertensive medication which included diuretics (n=1), ACE inhibitors (n=2), calcium channel 

blockers (n=1) and alpha blockers (n=1). All participants conformed to the selection criteria detailed 

in Chapter 3, section 3.3. Ethical approval was granted by the local research ethics committee and 

written informed consent was obtained from all individual participants included in the study.  

5.2.2 Research design  

 

Participants attended the laboratory on five occasions. Each visit was separated by a minimum of 48 

hours and maximum of 7 days. Pre-visit conditions were standardised with each participant avoiding 

food (2 hours), caffeine (12 hours) and alcohol (24 hours) prior to each laboratory visit.  

Familiarisation session 

Stature and mass were measured on arrival at the laboratory (Seca, Bonn, Germany). This was 

followed by completion of a Physical Activity Readiness Questionnaire; PAR-Q+ (Jamnik, Warburton, 

Makarski, et al. 2011) (Appendix 1). Participants were then instructed to sit comfortably in a chair 

(back supported, legs uncrossed, feet flat on the floor) whilst BP was measured during 10 minutes of 

quiet rest. Blood pressure was measured using a non-invasive Finometer device (Finometer MIDI, 

Finapres Medical Systems, Amsterdam, Netherlands) which was attached to the middle phalanx of the 

third digit on the dominant hand. Detailed information on the Finometer is provided in Chapter 3, 

section 3.7. An average of the final two minutes of recording was used for the baseline BP (day-of BP). 

Throughout all testing procedures, the acute ∆SBP was calculated based on day-of BP.  

Following the resting period, participants were instructed on how to use an isometric handgrip 

dynamometer (AD instruments LTD, Sydney, Australia). Whilst retaining their comfortable seated 

position, participants held the handgrip device in their non-dominant hand whilst holding their arm 

adducted with 90 degrees of flexion at the elbow joint. A brief isometric hand-grip warm-up was then 

completed using three, 15 second contractions at approximately 50%, 75% and 90% of maximal effort. 
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The handgrip dynamometer was connected to an 8-channel chart recorder (Powerlab 26T, AD 

instruments LTD, Sydney, Australia) and interfaced with a computer analysis system (LabChart Pro 7 

software, AD instruments LTD, Sydney, Australia).   

On completion of the warm-up, the CR-10 was introduced. The following explanation was given to 

participants to read; 

“During the exercise bout, I want you to pay close attention to how hard you feel the exercise is. The 

feeling should reflect your total amount of fatigue, combining all sensations and feelings of physical 

stress, effort and fatigue. Do not concern yourself with any one factor such as arm pain, shortness of 

breath or exercise intensity but try to concentrate on your total, over all feeling of exertion. Try not to 

underestimate or overestimate your feelings of exertion; be as accurate as you can” (Modified from 

Faulkner and Eston, 2007). 

An anchoring procedure was then used to assist the participant in putting into context the sensations 

of exercise intensity (Nobel and Robertson, 1996). Resuming their comfortable seating position and 

holding the dynamometer loosely, participants were asked to “think about your feelings of exertion 

and assign a rating of 0 to those feelings”. Following this, participants were asked to maximally grip 

the handgrip device for 3-5 seconds (breathing evenly throughout). Prior to the contraction, 

participants were asked to “think about the feelings of exertion at the end of the contraction and to 

assign a rating of 10 to those feelings”. The maximal exertion task was repeated 2 more times with a 

1-minute rest in between. The maximal value attained was recorded as the participant’s MVC. 

To complete familiarisation, three handgrip intensities ranging from 15% to 35% were calculated and 

randomly assigned. With the assistance of a force output visual display participants carried out 2- 

minute contractions at the assigned intensity with 4-minute rests in between each contraction. During 

each 2-minute repetition participants were requested to provide a rating from the CR-10 scale every 

30 seconds. 

Estimation task  

The baseline BP measurement, warm-up and anchoring procedures all followed the same protocol as 

the familiarisation session. Following three MVCs (1-minute rest between each effort) participants 

undertook eight, 2-minute contractions at randomised intensities ranging from 10% to 40% MVC (5% 

increments). A force-output visual display screen was used to assist participants in maintaining the 

correct intensity. Each contraction was separated by a 4-minute rest period. Participants were 

requested to provide a rating from the CR-10 scale every 30 seconds. Blood pressure was measured 

throughout using the Finometer device (Finometer MIDI, Finapres Medical Systems, Amsterdam, 
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Netherlands) and ∆SBP was calculated by subtracting day-of SBP from the average SBP during each 2-

minute contraction. 

Production task  

All eight contraction intensities provided 32 ratings from the CR-10 scale (every 30 seconds during 

each 2-minute contraction). A linear regression was carried out on the CR-10 ratings and the calculated 

average of the corresponding %MVC and ΔSBP. The linear regression revealed that CR-10 “Level-6” 

aligned with an average relative force value of 33% MVC (95% CI; 36.2%, 30%) and an average ΔSBP 

of 38mmHg (95% CI; 44mmHg, 32mmHg). Level-6 was subsequently used in the production tasks 

(trials 1-3), each separated by 7 days.    

Day-of BP, warm-up and anchoring procedures were all repeated before each production task. 

Participants were then asked to carry out four, 2-minute isometric handgrip contractions whilst 

maintaining the CR-10 rating at “Level-6”. A 4-minute rest was provided between each contraction. 

The participant was blinded to the force output display. Apart from the time elapsed, no feedback was 

provided to the participant. 

5.2.3 Statistical analysis  

 

Data were analysed using the statistics package for social sciences (IBM, version 23, Armonk, NY). 

Analyses were carried out specifically for the estimation task, estimation task v’s production task (trials 

1-3), and production task (trials 1-3).   

Estimation task 

The relationships between CR-10 and %MVC and CR-10 and ΔSBP were subjected to linear regression. 

Estimation task v’s production task (trials 1-3)  

Average values for ΔSBP and %MVC were calculated across each 2-minute contraction (repetitions 1-

4) carried out during the production trials. For each production trial, a 1-way analysis of variance 

(ANOVA) was used to detect differences between CR-10 “Level-6” estimation and CR-10 “Level-6” 

production; post hoc analysis was performed using a Bonferroni test for pairwise comparisons. The 

alpha level was set at 0.05. Effect size (ES) was also calculated (Cohen’s d) for significant findings. 

Values of 0.1, 0.3 and 0.5 were considered small, moderate, and large effects, respectively (Field 

2009). 

Production task (trials 1-3) 
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For each production trial, average force was calculated for four separate time segments of the 2-

minute isometric contraction (0-30s, 30-60s, 60-90s, and 90-120s); each time segment was averaged 

across all four contractions. Pearson correlations assessed the relationship between segments of time 

and force. A repeated measures ANOVA with Bonferroni adjustments was used to detect between-

trial differences at each time segment. The alpha level was set at 0.05.  

5.3 Results  

 

Estimation task 

Significant linear relationships (Figure 5.1) were observed between the CR-10 scale and the calculated 

average of the corresponding %MVC (r=0.845) and ΔSBP (r=0.784). Level-6 on the CR-10 scale aligned 

with an average ΔSBP of 38mmHg (95% CI; 44mmHg, 32mmHg) and an average relative force value of 

33% MVC (95% CI; 36.2%, 30%). Therefore, the common prescription of 30% MVC was deemed to be 

closest to “Level 6” and was adopted for use in the isometric production trials.  

Estimation task vs production task (trials 1-3) 

One-way ANOVA with Bonferroni adjustment showed that there was no significant differences 

(p>0.05) in relative force between the estimation task and all repetitions in all three trials of the 

production task (Figure 5.2).  

In production trial 1, the ΔSBP was significantly lower than the estimation task during repetition 1 

(p=0.000, ES=2.00), 2 (p=0.000, ES=1.82) and 3 (p=0.000, ES=1.35). In production trial 2, the change in 

SBP was significantly lower than the estimation task during repetition 1 (p=0.000, ES=2.13), 2 (p=0.000, 

ES=1.64) and 3 (p=0.003, ES=1.31). In production trial 3, the ∆SBP was significantly lower than the 

estimation task during repetition 1 (p=0.000, ES=1.65) and repetition 2 (p=0.025, ES=1.05) (Figure 5.2).  

Production task (trials 1-3) 

Figure 5.4 shows that %MVC decreased in a moderately linear fashion (relative to segments of time) 

in trial 1 (r=0.583), trial 2 (r=0.594) and trial 3 (r=0.645). Between-trial differences were detected with 

a significant interaction for time*day. Percent MVC during the first time segment (0-30s) was 

significantly greater in trial 3 as compared with trial 1 (p=0.021, ES=0.354).
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B 

r = 0.845** 

P<0.01, 1 tailed  

r = 0.784** 

P<0.01, 1 tailed  

Figure 5.1: Regression analysis between A) CR-10 scale and % MVC B) CR-10 scale and ΔSBP during the 
estimation trial (** = p>0.01) 
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Figure 5.2: One-way ANOVA between ΔSBP (mean±SD) and %MVC (mean±SD) during the 
estimation task and production trials 1-3. Panel A)* = significant differences between 
production trials 1-3 and estimation task (p<0.05). ¦= significant differences between 
estimation task and production trials 1-2 (p<0.05). Panel B) No significant differences between 
%MVC estimation task and %MVC production trials 1-3, reps 1-4  
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Figure 5.3: Typical %MVC and SBPmmHg response in one participant undertaking a repeated 2-minute 
contraction at CR-10 Level 6. Typically each 2-minute isometric contraction showed a decrease in %MVC 
and increase in SBPmmHg. 

 

 

Figure 5.4: Relationships between %MVC and isometric contraction duration. Between trial differences 
showed significant differences between segment 1, trial 1 and segment 1 trial 3 (* = p<0.05). Values are 
means for 14 subjects calculated for each time segment and averaged across the four repetitions carried out 
during each trial. 
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5.4 Discussion 
 

The aims of this study were two-fold. Firstly, the study aimed to establish whether a relationship exists 

between the CR-10 scale and either %MVC or ΔSBP (estimation task). Secondly, the study aimed to assess 

whether, when using a specific number on the CR-10 scale, participants were able to produce an exercise 

intensity that equated to a specific %MVC and which elicited a sizeable ΔSBP. Results from the estimation 

task indicated that a strong linear relationship exists between the CR-10 scale and both %MVC and ΔSBP 

(Figure 5.1). Specifically, the estimation task revealed that “Level- 6” on the CR-10 scale aligned with an 

average %MVC of 33% (95% CI; 36.2%, 30%) and an average ΔSBP of 38mmHg (95% CI; 44mmHg, 32mmHg). 

The most common isometric exercise prescription, aimed at lowering BP in previous studies, has been set at 

30% MVC (Millar, Bray, McGowan, et al. 2007; Taylor, McCartney, Kamath, et al. 2003; Wiley, Dunn, Cox, et 

al. 1992; Badrov, Horton, Millar, et al. 2013). Based on the positive reductions in BP observed after these 

training interventions prescribed at 30% MVC, the findings from the estimation task indicated that the CR-10 

“Level-6” would most closely approximate the exercise intensity that has been used previously. Therefore, it 

was concluded that this CR-10 level would be the most appropriate level for isometric exercise prescription 

within the production task (trials 1-3).   

The production task trials revealed that it was possible for participants to adequately self-regulate their 

exercise intensity (%MVC) using “Level-6” on the CR-10 scale (Figure 5.2). Further, familiarisation trials are 

not necessary to improve the accuracy of participants’ ability to produce the intensity that was observed 

during the estimation task (average 33% MVC) at CR-10 “Level 6”. This is the first study to demonstrate the 

ability of individuals to self-regulate isometric exercise effort (force) by using a rating of perceived exertion 

scale. The ability to self-regulate isometric exercise intensity, without the need to establish maximal 

voluntary contraction (MVC), would potentially offer greater access to this type of exercise for some groups 

(especially those with frailty or arthritic pain of the hand). Indeed, using this self-regulation method would 

allow participants to perform isometric exercise in a self-regulated (controlled) way, whilst using a variety of 

different types of resistance (other than squeezing with the hand). Any ‘immovable object’ around the home 

or workplace could be utilised. Of course, further validation studies would be required before this is possible.  

In contrast to the current study, inaccuracies in reproducing a given exercise intensity in an exercise-related 

production task have been reported (Marriott and Lamb 1996). As compared with an estimation task, cyclists 

overproduced their power at an RPE level of 11 (“light”), 13 (“somewhat hard”) and 15 (“hard”). However, 

power output at an RPE of 17 (“very hard”) was produced successfully (Marriott and Lamb, 1996) . Within 

the current study, CR-10 “Level 6” indicated an effort level somewhere between “hard” and “very hard”. 

Although it is difficult to compare aerobic and isometric exercise, it could be suggested that it is easier to 
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self-regulate exercise intensity when it is above what is described on the rating of perceived exertion scale 

as “hard”.  

Despite the reproducibility of %MVC using an imposed CR-10 “Level 6”, its corresponding physiological 

parameter (∆SBP) determined during the estimation task was under-produced across each production task; 

this was particularly evident in the first 2 repetitions of all production trials (Figure 5.2). These findings 

suggest that although ΔSBP is significantly related to increasing CR-10 levels during an estimation task, this 

physiological response is not readily produced during a 2-minute isometric handgrip task despite the accuracy 

of %MVC reproduction. There are two potential explanations for this difficulty in achieving this physiological 

change during the production protocol.  

Firstly, the calculation of the ΔSBP during estimation and production tasks were inherently different. Whilst 

the ΔSBP during the production task was calculated for each 2-minute period of exercise, the estimation task 

value represents the ΔSBP averaged across a number of periods of exercise. The latter is therefore 

representative of a cumulative hemodynamic effect. The cumulative effect of previous periods of isometric 

exercise is evident in repetition number 4 in all production trials, where ΔSBP was not different to the 

estimation task value (Figure 5.2). Although previous research has shown that SBP increases over the course 

of single periods of isometric exercise lasting varying lengths of time (Smolander, Aminoff, Korhonen, et al. 

1998; Lind and McNicol 1967b; Greaney, Wenner, and Farquhar 2015), the current research is the first to 

show that despite a 4-minute rest between repetitions, the hemodynamic response accumulates and is still 

evident during consecutive periods of isometric exercise. This response may be related to progressive muscle 

fatigue and accumulation of metabolic by-products. In contrast to repetition number 4, the ∆SBP during 

repetition number 1 was not influenced by an accumulation of prior exercise and revealed a wide range of 

individual SBP responses (6-35mmHg). This wide range is in agreement with findings from Badrov, Horton et 

al., (2013). To reiterate their findings; lower responses (~10mmHg) to a single isometric handgrip task 

predicted smaller BP benefits following 8 weeks of isometric handgrip training. The findings of the current 

study are important because it clarifies the existence of inter-individual differences in response to a single 

isometric exercise contraction (repetition 1, production trials 1, 2 and 3). This finding supports the notion 

that there is potential for isometric exercise to benefit some individuals more than others (Badrov, et al. 

2013b), however, more research is warranted. The interplay of a number of factors may be responsible for 

the individual variations. Differences in central command output, sensitivity of mechano- and metabo-

reflexes or baroreflex function, are likely candidates for varied responses amongst different individuals 

(Smith 2010). In addition, hypertension status (pre-hypertension and stage 1) and anti-hypertensive 

medications (which have been shown to dampen levels of reactivity) (Benschop, Nieuwenhuis, Tromp, et al. 

1994) may have contributed to this inter-individual variation.  

Secondly, the estimation task was regulated by a consistent force output (%MVC) whilst the production task 

was entirely self-regulated (CR-10 “Level-6”). In contrast to a consistent force output, this study showed that 
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self-regulation of intensity using the CR-10 scale resulted in a time-dependent decrease in force (Figure 5.4). 

This may have acted to minimise increases in central command, thereby, reducing cardiovascular drift (i.e. 

ΔSBP) during the 2-minute period of isometric exercise (Williamson 2010). Isometric exercise regulated by 

%MVC is thought to gradually increase levels of central command in response to fatigue, resulting in a 

continual upward drift in cardiovascular parameters (Wiles, Allum, Coleman, et al. 2008). This drift was likely 

to be more evident in the estimation task as opposed to the production task. However, considering the high 

pressor response experienced by some hypertensive individuals in response to isometric exercise (Badrov, 

Horton, Millar, et al. 2013; Delaney, Greaney, Edwards, et al. 2010) the use of the CR-10 scale should be 

effective in minimising this upward drift in cardiovascular parameters.  

5.5 Conclusion  

 

In conclusion, the current research shows that the use of CR-10 “Level-6” is a novel and cost-effective way of 

self-regulating consistent and appropriate hand-grip isometric exercise intensity (%MVC) in pre-hypertensive 

and hypertensive participants. Findings showed that following familiarisation, individuals can reproduce 

appropriate percentages of their maximal voluntary contraction without the need for practice trials.  
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6 Chapter 6: Effects of self-regulated isometric 

exercise: blood pressure (resting and 24-hour 

ambulatory), autonomic function and 

adherence. 
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6.1 Introduction  

 

As reviewed in Chapter 2, section 2.2.3 isometric exercise training has been shown to reduce resting blood 

pressure (BP) (Cornelissen, Smart, and Survey 2013; Carlson, Dieberg, Hess, et al. 2014; Börjesson, Onerup, 

Lundqvist, et al. 2016; Inder, Carlson, Dieberg, et al. 2016) following 4-10 weeks of training in normotensive, 

pre-hypertensive and hypertensive individuals. The largest and most recent meta-analysis of randomised 

control trials (n=302) revealed post-training reductions in resting systolic (-5.2mmHg) and diastolic 

(3.91mmHg) BP with hypertensive participants showing a significantly larger decrease in MAP (-5.91mmHg) 

as compared with healthy participants (Inder, Carlson, Dieberg, et al. 2016). Although resting measures are 

classically used to assess the impact of an intervention on an individual’s BP status, ambulatory BP is arguably 

a more clinically relevant and reproducible measurement (Fotherby and Potter 1993; Mansoor, McCabe, and 

White 1994; Wendelin-Saarenhovi, Isoaho, Hartiala, et al. 2001; Stergiou, Baibas, Gantzarou, et al. 2002; 

Campbell, Ghuman, Wakefield, et al. 2010). Studies exploring the effects of isometric exercise on 24-hour 

ambulatory BP are limited (Stiller-Moldovan, Kenno, and McGowan 2012; Somani, Baross, Levy, et al. 2017; 

Ash, Taylor, Thompson, et al. 2016; Pagonas, Vlatsas, Bauer, et al. 2017) and to date have produced mixed 

findings (Chapter 2, section 2.2.3). The effect of isometric exercise on this measure therefore requires further 

investigation.  

To date, training protocols typically include 4 x 2 minutes of isometric handgrip (unilateral or alternative 

bilateral) or bilateral leg contractions at 30% MVC, repeated 3-5 times per week. A short exercise duration 

and the availability of portable programmable handgrip devices provide exercising individuals with the 

flexibility in relation to exercise location and time of day; this makes isometric exercise an attractive option 

for pre-hypertensive and hypertensive adults. Research has shown that only 3-33% of individuals participate 

in the recommended aerobic exercise guidelines recommended for BP management (Ohta, Tsuchihashi, and 

Kiyohara 2011; Riegel, Moreira, Fuchs, et al. 2012; Al-Kaabi, Al-Maskari, Afandi, et al. 2009; Baynouna, 

Neglekerke, Ali, et al. 2014). The simplicity of isometric exercise should remove many of the common barriers 

associated with aerobic training regimes (Chapter 2, section 2.3). Taking this into consideration, a number of 

researchers have hypothesised that adherence to isometric training would therefore be higher than the 

commonly prescribed aerobic training (Inder, Carlson, Dieberg, et al. 2016; Carlson, Dieberg, Hess, et al. 2014; 

McGowan, Proctor, Swaine, et al. 2017). However, since computerised devices (that are required to program 

the correct training intensity (i.e. 30% MVC) can be expensive, this may constitute a barrier to participant 

uptake. Research into more cost-effective alternatives which can offer greater flexibility about how this type 

of exercise can be performed, has the potential to reach larger population numbers. Chapter 5 details the 

validation of the CR-10 perceived exertion scale (Borg 1982) to self-regulate isometric handgrip exercise 

intensity. Using an estimation-production protocol, findings showed that self-regulating isometric handgrip 
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exercise intensity at CR-10 “Level-6” produced a relative exercise intensity of approximately 33% MVC (Figure 

5.2). Following the establishment of this system of training, it is logical to explore the effects of a self-

regulated isometric handgrip exercise training programme on both resting and ambulatory BP. 

Considering the lack of isometric adherence data (Chapter 2, section 2.3) it would also be prudent to explore 

this aspect of isometric training for BP management. The validation of a self-regulated isometric training 

method (Chapter 5) enables the prescription of a low cost, home-based isometric training regime. This 

provides opportunity to, for the first time, monitor adherence to unsupervised isometric handgrip training. 

In addition to exploring the effect of a self-regulated training programme, there is a need to explore the 

mechanisms associated with attenuated BP levels following training. Indeed, the mechanisms responsible for 

reduced BP after isometric training are still under debate. Researchers have proposed improvements to 

markers of oxidative stress (Peters, Alessio, Hagerman, et al. 2006), improved endothelial function (Badrov, 

Freeman, Zokvic, et al. 2016; McGowan, Levy, Millar, et al. 2006; McGowan, Visocchi, Faulkner, et al. 2007; 

Badrov, Bartol, Dibartolomeo, et al. 2013) augmented cardiovagal control (Taylor, McCartney, Kamath, et al. 

2003) and reduced sympathetic vasomotor tone (Taylor, McCartney, Kamath, et al. 2003). Considering that 

the autonomic nervous system influences and/or is influenced by a number of blood pressure regulating 

processes (neural, hormonal and vascular) it is plausible to propose that a perturbation in these can 

contribute to heightened sympathetic nerve activity and suppression of vagal nerve activity; this change in 

autonomic function could contribute to the development and maintenance of hypertension through 

autonomic stimulation of the heart, peripheral vasculature and kidneys (see Chapter 2, sections 2.i, 2.ii, 2.iii). 

Thus, the measurement of autonomic nervous system activation may provide key mechanistic insight into 

the causes of the BP reductions following isometric exercise training. As reviewed in Chapter 2 (section 2.5.2) 

autonomic function has been previously measured following isometric training (Taylor, McCartney, Kamath, 

et al. 2003; Wiles, Coleman, and Swaine 2010; Badrov, Bartol, Dibartolomeo, et al. 2013; Stiller-Moldovan, 

Kenno, and McGowan 2012). The majority of studies have found no changes in indirect measures of 

autonomic function (Wiles, Coleman, and Swaine 2010; Badrov, Bartol, Dibartolomeo, et al. 2013; Stiller-

Moldovan, Kenno, and McGowan 2012) despite significant decreases in BP . One of the primary limitations 

of this previous research is the measurement of heart rate variability (HRV) over a short time period (5-10 

minutes) which has been shown to be highly variable across consecutive measurements (Ginsburg, Bartur, 

Peleg, et al. 2011; Hojgaard, Holstein-Rathlou, Agner, et al. 2005; Maestri, Raczak, Danilowicz- Szymanowicz, 

et al. 2010; Pinna, Maestri, Torunski, et al. 2007; Ponikowski, Piepoli, Amadi, et al. 1996). Findings from 

published works included in  the current thesis (Chapter 4) showed that 24-hour ambulatory HRV 

measurements provide more reliable measurements (Morrin, Stone, and Henderson 2017) as compared with 

resting HRV. The smaller error associated with 24-hour measurements therefore provide a greater possibility 

of detecting autonomic changes following a therapeutic intervention.  
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This study was divided into 2 key phases. Phase 1 was designed to establish whether the use of CR-10 “Level-

6” to regulate isometric handgrip training intensity can be used to effectively reduce resting and 24-hour 

ambulatory BP in pre-hypertensive and stage 1 hypertensive adults, over the course of a 10-week exercise 

programme. In addition, phase 1 would provide mechanistic insight into potential BP changes through the 

indirect measurement of autonomic function (systolic BPV and HRV). Phase 2 aimed to determine the levels 

of participant adherence during unsupervised, home-based, self-regulated isometric exercise. 

6.2 Methodology  

 

6.2.1 Participants  

 

Seventeen (9 males, 8 females) pre-hypertensive and stage 1 hypertensive adults were randomly allocated 

to a control or experimental group (Table 6.1). All participants met the inclusion criteria outlined in Chapter 

3, (section 3.3). Ethical approval was granted by Buckinghamshire New University research ethics committee. 

Prior to participation, each participant received a printed information sheet detailing the procedures and any 

potential risks involved. Written informed consent was obtained from all participants and appropriateness 

to exercise was determined by the completion of a Physical Activity Readiness Questionnaire; PAR-Q+ 

(Jamnik, Warburton, Makarski, et al. 2011) (Appendix 1). It was intended that all participants would 

participate in phase 1 and phase 2 of the study. One participant from the control group (phase 1) did not 

participate in phase 2 due to personal reasons; their data was removed from the phase 2 analysis (Tables 6.9, 

6.10).  

 

Table 6.1: Baseline characteristics of the participants. Values are presented as mean ± SD 

 

Experimental (n=9) 

 

Control (n=8) 

 

p value 

 

Females (n) 5 3 - 

Males (n) 4 5 - 

Age (yrs) 

 

63.8±6.4 

 

66±5.6 0.484 

Height (cm) 

 

172±15.4 

 

171±5.9 0.828 
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Weight (kg) 

 

81.1±20.8 

 

83.8±16.1 0.767 

 

Body mass index 

(BMI) 

26.9±3.8 28.7±5.5 
0.44 

 

RSBP (mmHg) 

 

139.4±7.5 

 

134.3±6.1 0.140 

RDBP (mmHg) 

 

85.6±9.5 

 

78±10 0.147 

RMAP (mmHg) 

 

103.5±7.93 

 

97±7.7 0.135 

RHR (bpm) 

 

62.3±6.8 

 

69.4±11.3 0.139 

24-hr SBP (mmHg) 

 

137.8±8.3 

 

129.8±7.8    0.031* 

24-hr DBP (mmHg) 

 

82.4±9.6 

 

75.7±8.8 0.156 

24-hr MAP (mmHg) 

 

101±8.73 

 

           93.5±6.9 

 

0.075 

 

Antihypertensive medication 

 

 

 

 

 

 

 

 

 

Calcium channel 

blockers  

n=2 n=2 

 

Angiotensin II 

antagonist 
n= 1 n=1 

 

Diuretic  n=1 
  

Alpha adrenergic 

blocker n=1   

ACE inhibitor n=1 
  

Proportion of group 

on medication 44.4% 25% 0.402 

RSBP, resting systolic blood pressure; RDBP, resting diastolic blood pressure; RMAP, resting mean arterial 

blood pressure; RHR, resting heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, 

mean arterial blood pressure  
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6.2.2 Research design  

 

The data collection period was 28 weeks in duration and was split into 2 phases (phase 1 and phase 2). Phase 

1 was a randomised controlled trial and incorporated a familiarisation session, pre-intervention 

measurements, a 10-week part-supervised isometric handgrip training intervention and post-intervention 

measurements (Table 6.1). Phase 2 included 2 x 7 weeks of unsupervised home-based training with 

measurements taken at the end of each training 7-week period (Figure 6.1)
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Familiarisation  

- Measurements: resting systolic BPV, resting BP, 

isometric handgrip introduction, 24-hour ABPM, 

24-hour HRV  

Baseline measurements  

- Resting systolic BPV, Resting BP, 24-hour ABPM, 

24-hour HRV 

10 week isometric handgrip training intervention  

Lab visits:  

Experimental group: weeks 1,2,4,6,8,10 

Control group: weeks 1,4,10 

Measurements: SBP reactivity, %MVC, MVC 

Post-training measurements 

- Resting systolic BPV, Resting BP, 24-hour ABPM, 

24-hour ambulatory HRV 

Home-based unsupervised training  

- Weeks 1-7 (training block 1) 

Groups: 

1) Longer term training group (experimental group, phase 
1) 

2) Shorter term training group (control group, phase1) 

Post training block 1 measurement 

- resting BP, 24-hour ABPM, 24-hour ambulatory 

HRV 

Home-based unsupervised training  

- Week 9-16 (training block 2) 

Post training block 2 measurement 

- resting BP, 24-hour ABPM, 24-hour ambulatory 

HRV, collection of adherence diaries  

 

7 days  

7 days  

48-

72hours 

0-24 

hours  

48-

72hours 

48-

72hours 

0-24 

hours  

P
h

ase 1
 

P
h

ase 2
 

Figure 6.1: Schematic illustration of phase 1 and phase 2 of self-regulated isometric 
handgrip exercise training intervention. BPV; blood pressure variability, BP, blood 
pressure; HRV, heart rate variability; ABPM, ambulatory blood pressure monitoring. 
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6.2.3 Phase 1 

 

The experimental and control participants visited the lab on 9 and 6 occasions respectively (Figure 

6.1). Each visit was standardised to take place at the same time of day (+/- 2 hours) with participants 

avoiding food (2 hours), caffeine (12 hours) and alcohol (24 hours) prior to each laboratory visit.  

6.2.3.1 Familiarisation  

 

Stature and mass were measured on arrival at the laboratory (Seca, Bonn, Germany). Familiarisation 

included the measurement of i) resting systolic BP variability (BPV); ii) introduction to self-regulation 

of isometric exercise intensity; iii) resting and 24-hour ambulatory BP, and iv) 24-hour ambulatory 

HRV.  

- Resting systolic BPV 

Lying supine, beat-to-beat systolic BPV was measured using a non-invasive Finometer MIDI device 

(Finapres, TNO Instruments, Amsterdam, Netherlands). All systolic BPV recordings were measured 

from the middle finger on the dominant hand. Participants were allowed to rest quietly for 10 minutes 

during the recording. This procedure is described in detail in Chapter 3 (section 3.7). 

- Introduction to self-regulation of isometric exercise intensity  

Participants were seated comfortably in a chair (back supported, legs uncrossed, feet flat on the floor) 

whilst holding a handgrip dynamometer (non-dominant hand) which was connected to an 8-channel 

recorder (Powerlab 26T, AD instruments LTD, Sydney, Australia) and interfaced with a computer 

analysis system (LabChart Pro 7 software, AD instruments LTD, Sydney, Australia). With their arm 

adducted to 90 degrees of flexion at the elbow joint. Participants completed an isometric handgrip 

warm-up (three 15-second contractions at approximately 50%, 75%, and 90% of maximal effort) 

followed by three brief maximal contractions (3-5 seconds). One minute of rest was allowed between 

each maximal contraction. Using an estimation-production procedure, participants were then 

introduced to self-regulation of isometric handgrip intensity; this is described in detail in Chapter 5, 

section 5.2.2.  

Briefly, the highest MVC value was recorded and used to calculate 15%, 25% and 35% MVC. Using a 

visual force output display (Powerlab 26T, AD instruments LTD, Sydney, Australia) participants carried 

out three 2-minute contractions at each intensity (randomised) with 4-minute rest periods in between 

each contraction. During each 2-minute period of exercise, participants were requested to provide a 
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rating from the CR-10 scale (Borg 1982) at 30-second intervals (estimation task). Following the 

estimation task, participants were blinded to the force output display on the handgrip device and 

instructed to carry out two 2-minute contractions at CR-10 “Level-6”; a four minute rest was allowed 

between repetitions (production task).  

- 24-hour ambulatory BP and HRV 

Ambulatory BP and HRV were measured using the Cardiotens and Card(X)plore devices (Meditech, 

Hungary). For BP measurements, a pneumatic cuff was attached to the participant’s non-dominant 

upper arm; detailed fitting methods are provided in detail in Chapter 3, (section 3.4.2). For HRV, 

electrode placement followed a 2-lead (Cardiotens, Meditech, Hungary) or 3-lead (Card(X)plore, 

Meditech, Hungary) configuration, as recommended by the Holter device manufacturer (detailed 

fitting procedures can be found in Chapter 3, (section 3.6.2). To ensure within-subject consistency, 

each participant was fitted with the same device model on each measurement occasion. The 

ambulatory units were then attached to participants using a holter case, clipped around the waist. The 

holter device was set to record BP every 30 minutes between 06.00 and 22.00 and every hour between 

22.00 and 06.00. Participants were instructed to free their hand of any items and relax their arm down 

by their side during each BP recording. Caffeine and alcohol were avoided during the 24-hour 

monitoring period. Participants were also asked to complete a physical activity diary (Bouchard et al., 

1983) for the same 24-hour period (Appendix 3). This tool determined the time that the participants 

went to bed and got up the following morning. Participants were urged to try to maintain a similar 

daily routine (i.e. meal times, bed time) and were requested not to engage in organised sport activity 

or vigorous exercise.  

 

The processing of electrocardiograms is described in detail in Chapter 3 (section 3.6.3 & 3.6.4); beat-

to-beat intervals were considered valid if they were different from the previous interval by less than 

20% (Cardioseries V4, meditech, Hungary). One of the 24-hour HRV samples was deemed 

unacceptable for analysis (phase 1 experimental group) due to the presence of persistent ECG tracings 

that were representative of 2nd degree heart block; this elongated the RR interval at regular intervals 

causing false HRV calculations. All HRV data belonging to this participant was removed from the 

analysis. 
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- Resting BP 

Before leaving the laboratory, three resting BP measurements were recorded. Participants were 

seated comfortably with their elbow supported and forearm rested at heart level. Each measurement 

was separated by 1-minute of quiet rest (Chapter 3, section 3.4.3). 

6.2.3.2 Baseline and post intervention measurements 

 

Within 7 days of completing the familiarisation protocol participants returned to the lab for pre-

intervention measurements. Firstly, participants were positioned supine and prepared for a systolic 

BPV measurement which took place during 10-minutes of quiet rest (Chapter 3, section 3.5.2). 

Participants were then seated comfortably for a resting BP measurement (Chapter 3, section 3.4.3) 

which was taken following a further 5 minutes of rest. Finally participants were prepared for 24-hour 

ambulatory BP and HRV measurements (Chapter 3, section 3.4 & 3.6). 

All measurements were repeated in the same format following the completion of 10 weeks of self-

regulated isometric handgrip training. The experimental group underwent these measurements 

within 48-72 hours of completing their final training session.    

6.2.3.3. 10 week self-regulated isometric hand-grip training intervention    

 

Participants randomised to the IHG training group, trained on three occasions per week for 10 weeks. 

Training consisted of four bouts of 2-minutes of unilateral contractions, performed with the non-

dominant hand on an ergonomic hand exerciser (Rolyan, Patterson Medical, Nottinghamshire, UK) 

(Figure 3.10). Training intensity was self-regulated using the CR-10 “Level-6”. Experimental 

participants were requested to attend one lab-based training session on weeks 1, 2, 4, 6, 8 and 10; the 

time of day (+/- 2hours) of the visit was standardised and caffeine (12 hours), food (2 hours) and 

alcohol (24 hours) were avoided prior to each visit. The laboratory-based training session in week one 

marked the beginning of the training. For subsequent visits (weeks 2, 4, 6, 8 and 10), participants were 

instructed to have completed their last training session within 24-48 hours of the scheduled visit. 

Control participants visited the laboratory for one laboratory-based exercise session on weeks 1, 4 

and 10. Within-session measurements included SBP reactivity, MVC and the relative intensity (%MVC) 

of self-regulated isometric exercise.  
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- SBP reactivity  

On arrival at the laboratory, participants were seated comfortably (back supported, legs uncrossed, 

feet flat on the floor). Using the finometer midi (Finapres, TNO Instruments, Amsterdam, 

Netherlands), BP was continuously recorded for 10 minutes during quiet rest. The resting BP was 

calculated as the average of the final two minutes of the seated rest. The finometer midi remained 

attached and continuously recorded the BP, for the duration of the exercise session. The baseline 

value (resting BP) was utilised to calculate SBP reactivity to each isometric exercise contraction. 

Reactivity was calculated by subtracting the resting BP from the average SBP over the course of each 

2-minute isometric contraction.   

- MVC and relative training intensity (%MVC)  

Following a brief warm-up (three 15-second contractions @ 50%, 75%, 90% maximal effort) and three 

brief (3-5 seconds) MVCs (1-minute rest in between) participants carried out a full training session 

which was self-regulated by using the CR-10 “Level-6”. The relative intensity of the training session 

was recorded (Powerlab 26T, AD instruments LTD, Sydney, Australia).  
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6.2.4 Phase 2  

 

Following phase 1, both experimental and control participants engaged in two 7-week periods of 

home-based self-regulated isometric handgrip training. For the duration of this phase the 

experimental group are referred to as the ‘longer-term training’ group and the control group are 

referred to as the ‘shorter-term training’ group. Training intensity was self-regulated using CR-10 

“Level-6”. Resting BP and 24-hour ambulatory BP and HRV were measured on completion of each 7-

week training period (Figure 6.1). Measurements took place within 48-72 hours of completing the final 

exercise session of each training period. Participants were required to record each exercise session in 

their ‘training log’ and adherence was calculated as:  

                                                  Number of exercise sessions completed  

                                                 Number of exercise sessions prescribed  

  

6.2.5 Statistical analysis  

 

Data were analysed using the statistics package for social sciences (SPSS; IBM, version 23, Armonk, 

NY). All data were firstly assessed for normality using the Shapiro-Wilk test. Non-normally distributed 

data were log transformed by calculating the natural logarithm (Ln). In the event of variables 

maintaining non-normality following transformation, non-parametric statistical analysis was carried 

out.  

Phase 1  

One-way analysis of variance (ANOVA) was carried out on age, height, weight and baseline measures 

of BP (resting and 24-hour average). Small differences were evident between groups in initial baseline 

BP scores at the onset of the study. The majority of differences were non-significant (p>0.05). 

However, the difference in 24-hour average SBP reached statistical significance (p = 0.031) (Table 6.1). 

Due to these differences and the previous findings that have highlighted the association between 

reductions in BP and initial scores (Millar, Bray, McGowan, et al. 2007), analysis of covariance 

(ANCOVA) was used to assess whether change scores in the experimental and control groups were 

significantly different. Baseline scores were used as the covariate. An alpha level of 0.05 was accepted 

as being statistically significant and the Bonferroni post-hoc procedure was used to explore any 

X 100 
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significant differences that were detected by the ANCOVA. In the case of non-normality, data were 

rank-transformed prior to running the ANCOVA test (Fan and Zhang 2017). 

A 2x3 repeated measures ANOVA was carried out on %MVC, MVC and SBP reactivity (repetition 1) to 

detect between-group differences at training weeks 1, 4, and 10.  An alpha level of 0.05 was accepted 

as being statistically significant and the Bonferroni post-hoc procedure was used to explore any 

significant differences that were identified by the factorial ANOVA. 

Pearson correlation coefficients were calculated (experimental group only) to detect correlations 

between: 

i) Change in maximal voluntary contraction (average MVC [weeks 1, 2, 4] - average MVC [weeks 

6, 8, 10]) and change in resting SBP (post intervention - baseline) 

ii) Change in SBP reactivity during repetition 4 (average SBP reactivity [weeks 1, 2, 4] – average 

SBP reactivity [weeks 6, 8, 10]) and change in resting SBP (post intervention - baseline) 

iii) Change in SBP reactivity during repetition 4 (average systolic blood pressure response [weeks 

1, 2, 4] – average SBP reactivity [weeks 6, 8, 10]) and average change in MVC (average MVC 

[weeks 1,2,4] – average MVC [weeks 6,8,10]) 

iv) Baseline SBP (mmHg) and change in SBP following 10 weeks of isometric handgrip training.  

v) Age and change in SBP following 10 weeks of IHG training.  

vi) Systolic blood pressure reactivity and change in SBP following 10 weeks of isometric handgrip 

training.  
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Phase 2  

A 2x3 repeated measures ANOVA was used to determine differences in levels of adherence between 

the shorter-term and longer-term training groups (group*time) and within groups (time) during weeks 

1-7 (phase 2), weeks 9-16 (phase 2) and weeks 1-16 (overall adherence). 

A one-way repeated measures ANOVA was used to determine differences in change scores (BP and 

HRV) within the longer-term exercise group. Change scores were calculated by subtracting 

measurements taken at i) post-intervention (phase 1), ii) following weeks 1-7 (phase 2), iii) following 

weeks 9-16 (phase 2) from baseline measurements (phase 1). An alpha level of 0.05 was accepted as 

being statistically significant and again, the Bonferroni post-hoc procedure was used to explore any 

significant differences identified by the ANOVA. In the case of non-normality, a Friedman test for 

related samples was used to determine statistically significance.  

In addition, a one-way repeated measures ANOVA was used to determine whether changes occurred 

from phase 1 to phase 2 (training block 1 and training block 2) within the shorter-term exercise group. 

As above, an alpha level of 0.05 was accepted as being statistically significant and again, the Bonferroni 

post-hoc procedure was used to explore any significant differences. Variables displaying non-

normality were analysed using the Friedman test for related samples. 
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6.3 Results  

 

Phase 1  

Resting BP and HR 

Following 10 weeks of self-regulated IHG exercise training the experimental group experienced 

reductions in SBP (-6.16mmHg, 95% CI -13.25, 0.92), DBP (-1.8mmHg, 95% CI -9.133,1.265) and MAP (-

4.13, 95% CI -8.816, 0.556). However, these changes were not statistically different (p>0.05).  

There was a small decrease in resting heart rate (1 beat.minute-1), which was not statistically different 

to the changes observed in the control group (p>0.05). Results are shown in Table 6.2.  

Of note, all participants successfully completed the IHG exercise training protocol without experiencing 

clinical abnormalities or inappropriate symptoms during or immediately after isometric exercise. 

24-hour ambulatory BP and HR 

Following 10 weeks of self-regulated isometric handgrip exercise training, there were no significant 

differences in 24-hour average, day-time, night-time ambulatory BP (SBP, DBP, MAP) and HR between 

the experimental and control groups (p>0.05). Results are shown in Table 6.3.   

Autonomic function  

Despite the experimental group showing increases in 24-hour average and daytime markers of vagal 

tone (HF, HFnu, pNN50%, rMSSD) and decreases in LF, LFnu and LF/HF, no significant differences in the 

pre- post-training change were observed between groups across all HRV indices (P>0.05). In addition, 

despite decreases within the experimental group, no significant between-group differences were 

observed in markers of vasomotor sympathetic tone (LF%, LF absolute).These results are presented in 

Table 6.4 and 6.5.  
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Table 6.2: Baseline-post differences (phase 1) in resting measures of heart rate, systolic, diastolic and 

mean arterial blood pressure. Values are mean ± SD 

                           Baseline (week 0, phase 1) Post (Week 10, phase 1)  
Mean 

Difference 
P value  

 

SBP (mmHg)     

Experimental  139.4±7 133.3±6 - 6.1±9 0.676 

Control  134.3±6.1 131.9±6 - 2.4±6  

     

DBP (mmHg)     

Experimental  85.6±9 83.7±9 -1.8±6 0.127 

Control 78.3±10.3 80.0±11 1.8±3  

     

MAP 

(mmHg)     

Experimental 103.5±8 100.2±7 -3.2±6 0.329 

Control 96.9±7.7 97.29±9 0.4±4  

     

HR (bpm)     

Experimental 63.4±6.6 62.3±6.9 -1.0±3.7 0.829 

Control 69.0±11.3 69.4±11.3 0.3±4.8  

     

No significant differences in change were observed between the experimental and control group 

following 10-weeks of self-regulated isometric handgrip training.   

SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; HR, heart 

rate.   
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Table 6.3: Baseline-post differences (phase 1) in 24-hour, daytime and night-time ambulatory HR and BP (SBP, DBP, MAP). Values are mean ± SD. 

 
Baseline (Week 0, 

phase 1) 
Post (Week 10, 

phase 1) 
Mean difference  P value  

24-hour average ambulatory blood pressure 
   

  

SBP (mmHg)   
  

     

Experimental  
 

137.8±8.3 139.1±9.4 1.3±4.9 

0.6±4.1 

0.804 

Control 
 

129.1±6.6 129.7±8.0 

DBP (mmHg)   
  

     

Experimental  
 

82.5±9.7 82.2±9.5 -0.3±3.3 

-0.2±2.5 

0.709 

Control  
 

75.8±8.8 75.6±7.8 

MAP (ln mmHg) 
    

     
Experimental  
 

4.611±0.086 4.613±0.088 0.002±0.029 

0.001±0.026 

0.720 

Control  
 

4.536±0.074 4.537±0.070 

MAP (mmHg)     

     

Experimental 
 

100.9±8.7 101.2±8.9 0.2±3.6 

-0.1±2.3 

 

Control  
 

93.5±7.0 93.62±6.7 

HR (bpm)   
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Experimental  
 

71.5±11.7 70.6±11.7 -0.9±4.5 

0.6±5.3 

0.548 

Control  
 

72.0±10.1 72.6±11.0 

 

 
Daytime ambulatory blood pressure    

  

 
SBP (mmHg)   

  

Experimental  
141.8±9.8 143.0±9.9 1.2±5.0 

0.5±4.6 

0.684 

 
Control 

133.9±6.7 134.5±8.6 

DBP (mmHg)   
  

Experimental  
86.0±10.9 85.3±9.7 -0.7±4.6 

0.8±3.0 

0.809 

 
Control  

79.2±9.7 80.0±9.4 

 
MAP (mmHg)   

  

 
Experimental  

104.6±10.0 104.5±9.2 -0.1±4.5 

0.6±2.4 

0.902 

 
Control  

97.5±7.8 98.1±8.0 

HR (bpm)   
  

Experimental  
75.5±12.4 73.6±11.5 -1.9±5.8 

1.9±6.7 

0.256 

Control  
75.3±3.5 77.2±4.1 

 
Night-time ambulatory blood pressure 

  

 
SBP (mmHg) 

    

     
Experimental  
 

126.9±10.5 127.4±12.3 0.5±14.0 0.729 
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Control 
 

112.2±7.3 118.0±8.6 5.8±5.1 

DBP (mmHg) 
    

     
Experimental  
 

73.5±9.6 72.8±11.3 -0.7±8.1 

1.1±2.8 

0.908 

Control 
 

64.2±6.0 65.2±6.0 

MAP (mmHg)   
  

     

Experimental 
 

91.3±9.4 91.0±11.1 -0.2±9.9 

2.6±3.6 

0.894 

Control  
 

80.1±4.7 82.8±5.3 

HR (bpm) 
   

  

Experimental 
 

61.7±9.3 63.8±13.09 2.1±6.1 

0.5 

0.537 

Control 61.6±10.8 62.1±10.4 0.4±3.7 

     

No significant differences in change were observed between the experimental and control group following 10 weeks of self-regulated isometric exercise 
training  

SBP, systolic blood pressure; DBP, diastolic blood pressure, MAP, mean arterial pressure; HR, heart rate, Ln, natural logarithm.  
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Table 6.4: Baseline-post differences (phase 1) in 24-hour, daytime and night-time ambulatory HRV. Values are mean ± SD. 

 Baseline (Week 0, phase 1) Post (Week 10, phase 1) Mean change P Value 

24-hour average   

ambulatory HRV   
     

SDNN    
 

Experimental  140.9±32.9 136±20.9 -4.88±29.4 0.695 

Control 132.7±44.5 135.6±49.3 2.9±27.0  

~pNN50 %     
 

Experimental 5.9±7.9 7.6±11.4 1.8±4.1 0.597 

Control 2.6±2.7 3.6±4.7 1.0±2.3  

rMSSD    
 

Experimental  28.8±14.9 33.6±23.5 4.9±9.9  

Control 21.4±8.3 22.7±10.3 1.3±3.2  

rMSSD ln    
 

Experimental  3.26±0.4 3.38±0.5 0.11±0.2 0.620 

Control 3.00±0.4 3.04±0.4 0.04±0.2  

LF (ms2)     

Experimental  790.9±551.4 673.8±419.1 -117.1±156.2  

Control  478.8±323.7 598.3±475.5 119.5±197.3  

LF (ms2) Ln     

Experimental  6.51±0.56 6.39±0.50 -0.13(0.15) 0.113 

Control  5.96±0.74 6.05±0.95 0.09±0.35  

LF nu    
 

Experimental  72.75±9.9 67.75±10.8 -5.0±6.3 0.225 

Control 72.5±9.9 71.13±10.2 -1.4±4.6  

HF (ms2)     

Experimental  320.3±432.4 386.0±559.4 65.8±142.4  

Control  162.0±130.1 209±191.2 47.0±73.7  
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HF (ms2) Ln     

Experimental  5.33±0.84 5.48±0.89 0.15±0.39 0.941 

Control  4.8±0.81 4.9±0.94 0.16±0.38  

HF nu    
 

Experimental  23.63±9.2 28.25±10 4.6±5.7 0.196 

Control 24.13±8.3 25.5±8.9 1.4±3.1  

LF/HF    
 

Experimental  3.54±1.4 2.71±1.1 -0.8±0.9 0.130 

Control 3.53±1.9 3.44±2.2 -0.1±0.9  

 Baseline (Week 0, phase 1) Post (Week 10, phase 1) Mean difference P value  

Daytime ambulatory 

HRV 
      

 

     

SDNN    
 

Experimental  101.5±29.3 103.3±23.9 1.9±28.4 0.966 

Control 102.7±32.2 103.4±42.9 0.7±34.8  

~pNN50%    
 

Experimental  4.5±8.2 6.0±9.3 1.5±1.7 0.224 

Control 2.0±2.5 2.5±4.4 0.5±2.0  

~rMSSD    
 

Experimental  25.6±16.1 29.3±15.3 3.7±5.0 0.115 

Control 20.3±8.5 21.2±10.8 0.9±3.2  

LF (ms2)     

Experimental  726.7±723.2 534.5±267.2 -192.2±516.5  

Control  418.6±289.2 426±364.7 8.2±155.3  

LF (ms2) Ln     

Experimental  6.29±0.77 6.18±0.45 -0.11±0.39 0.797 

Control  5.81±0.73 5.76±0.86 -0.06±0.43  

LF nu*    
 

Experimental 70.7±10.8 64.8±16.4 -5.9±12.0 0.365 
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Control 71.9±11.4 73.1±10.9 1.2±8.9  

HF (ms2)     

Experimental  296.0±494.3 311.1±413.3 15.2±97.7  

Control  148.0±140.1 152.6±157.1 4.6±45.5  

HF (ms2) Ln     

Experimental  5.07±0.96 5.31±0.85 0.24±0.34 0.155 

Control  4.65±0.87 4.65±0.93 0.00±0.43  

HF nu    
 

Experimental 24.03±11.2 26.8±7 2.8±6.7 0.551 

Control 23.6±8.9 25±8.3 1.5±5.4  

LF/HF     

Experimental  3.8±2.0 2.8±1.2 -1.0±1.2 0.149 

Control 3.8±2.3 3.6±2.0 -0.2±1.4  

 Baseline (Week 0, phase 1) Post (Week 10, phase 1) Mean difference P Value  

Night-time ambulatory 

HRV 
      

 

     

SDNN (ms)    
 

Experimental  104.4±27.8 101.5±28.5 -2.9±15.7 0.789 

Control  92.3±40.6 101.1±51.1 8.8±57.0  

~pNN50 %     
 

Experimental  8.0±9.2 9.0±13.6 1.0±7.2 0.673 

Control  2.98±3.6 5.18±7.2 2.2±4.1  

rMSSD (ms)    
 

Experimental  32.1±15.3 37±30.2 4.9±18.3  

Control  23.1±8.9 25.8±11.2 2.7±4.1  

rMSSD Ln    
 

Experimental  3.38±0.4 3.43±0.5 0.05±0.3 0.621 

Control  3.07±0.4 3.16±0.4 0.10±0.2  

LF (ms2)     
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Experimental  914.5±479.3 1101.6±1284.5 187.1±924.3  

Control  613.1±473.8 799.4±655.5 186.3±225.5  

LF (ms2) Ln     

Experimental  6.71±0.49 6.69±0.71 -0.02±0.4 0.296 

Control  6.13±0.85 6.29±1.08 0.15±0.49  

LF nu 
  

 

Experimental  71.9±8.7 69.1±10.3 -2.8±7.4 0.890 

Control  74.6±7.8 71.4±10.2 -3.3±4.8  

HF (ms2)     

Experimental  370.0±373.9 743.9±1462.5 373.9±1112.0  

Control  174.1±112.8 262.8±225.1 88.6±132.1  

HF (ms2) Ln     

Experimental  5.59±0.81 5.74±1.13 0.15±0.65 0.453 

Control  4.92±0.79 5.21±0.97 0.29±0.41  

HF nu    
 

Experimental  24.6±7.9 27.8±9.9 3.1±6.0 0.551 

Control  23.5±7.2 25.6±9.2 2.1±4.2  

LF/HF    
 

Experimental  3.3±1.3 2.9±1.4 -0.4±1.1  

Control  3.7±1.9 3.4±2.1 -0.3±0.7  

LF/HF Ln      

Experimental  1.12±0.4 0.95±0.5 -0.17±0.4 0.819 

Control  1.21±0.5 1.07±0.6 -0.13±0.2  

No significant differences in change were observed between the experimental and control group following 10 weeks of self-regulated isometric exercise 

training.  ~, non-parametric test; HRV, heart rate variability; SDNN, standard deviation of all NN intervals; pNN50%, the percentage of adjacent NN 

intervals  differing by more than 50ms; rMSSD, root mean square of successive differences; LF, low frequency; HF, high frequency; nu, normalised units; 

ln, natural logarithm 
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Table 6.5: Baseline-post differences (phase 1) in resting systolic BPV. Values are displayed as mean ±SD. 

  
Baseline (Week 0, 

phase 1) 

Post (Week 10, 

phase 1) 

Mean  
P value  

difference 

 

LF mmHg2     

Experimental  6.57±3.5 5.17±2.5 -1.39±4.8  

Control 4.68±5.4 5.13±4.8 0.32±1.4  

     

LF mmHg2 Ln      

Experimental  1.76±0.5 1.54±0.5 -0.22±0.8 0.632 

Control 1.07±1.2 1.27±0.9 0.27±0.5  

     

LF (%)      

Experimental  24.44±7.9 20.56±6.4 -3.89±8.4 0.241 

Control 17.42±9.3 20.0±6.4 2.57±5.5  

     

No significant differences in change were observed between the experimental and control group 

following 10 weeks of self-regulated isometric exercise training 

BPV, blood pressure variability; LF, low frequency; Ln, natural logarithm  
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Maximal voluntary contraction (MVC).  

Within the experimental group, MVC increased from 268.89±98.0 N (baseline) to 286.89±87.9 N (week 10). 

As compared with the control group, this increase in maximal handgrip strength was not statistically 

significant (p>0.05).  

Within the experimental group, a moderate correlation (-0.517, p = 0.90) was found between the change 

in MVC (average MVC [weeks 1, 2 and 4] – average MVC [weeks 6, 8 and 10]) and reductions in resting SBP. 

This correlation did not reach statistical significance (Figure 6.2). 

Self-regulated %MVC  

No interaction effects (group x time) or main effects (time) were observed for the self-regulated %MVC 

training intensity, following the training intervention (Table 6.6). Within the experimental group, average 

training intensity ranged from 32.81±5.2% (week 1) to 31.97±3.8% (week 10).  

SBP reactivity 

No interaction effects (group x time) or main effects (time) were observed for SBP reactivity (repetition 1) 

following the training intervention (Table 6.6). 

Within the experimental group a significant correlation (-0.741, p = 0.022) was observed between the 

change in SBP reactivity during repetition 4 (average SBP reactivity [weeks 1, 2, 4] – average SBP reactivity 

[weeks 6, 8, 10]) and change in resting SBP (week 10 - baseline) (Figure 6.3).  

In addition, a significant correlation (0.699, p = 0.039) was observed (experimental group) between change 

in SBP reactivity during repetition 4 (average SBP reactivity [weeks 1, 2 and 4] – average SBP reactivity 

[weeks 6, 8 and 10]) and change in MVC (average MVC [weeks 1, 2 and 4] – average MVC [weeks 6, 8 and 

10]) (Figure 6.4).   

Participant characteristics and physiological response to isometric exercise as predictors of isometric 

handgrip training effectiveness 

In the training group, Pearson correlations showed that baseline systolic BP was significantly associated 

with the training-induced reductions in resting systolic BP (Figure 6.5a). Systolic BP reactivity and age were 

not significantly associated with training induced reductions in resting systolic BP (Figure 6.5b, Figure 6.5c).  
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Table 6.6: SBP reactivity, MVC and %MVC measured at baseline, week 4 and week 10. Values are mean ± SD. 

 
Training week 1 Training week 4  Training week 10 

P value 

(group x 

time) 

P value 

(time) 

      

SBP reactivity  

(repetition 1) 
   

  

Experimental  22.61±13.0 23.56±16.8 24.55±16.46 0.759 0.976 

Control  25.00±14.5 24.75±9.3 23.75±13.4   

    
  

MVC (Newtons) 
   

  

Experimental  268.89±98.0 273.44±87.2 286.89±87.9 0.355 0.310 

Control 277.25±104.6 283.00±91.6 279.50±102.7   

    
  

%MVC 
   

  

Experimental  32.81±5.2 32.47±3.5 31.97±3.8 0.303 0.661 

Control 30.94±8.7 32.88±9.0 32.66±6.8   

      

No significant main or interaction effects observed for SBP reactivity (repetition 1), MVC or %MVC.  

SBP reactivity, systolic blood pressure reactivity; MVC, maximal voluntary contraction; %MVC, percentage of maximal voluntary contraction.  
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Figure 6.2: Correlation between the change in maximal voluntary contraction (average MVC [weeks 1, 2, 

4] - average MVC [weeks 6, 8, 10]) and change in resting SBP (post intervention - baseline)   
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Figure 6.3: Correlation between the change in SBP reactivity (systolic blood pressure reactivity) during 

repetition 4 (average SBP reactivity [weeks 1, 2, 4] – average SBP reactivity [weeks 6, 8, 10]) and change in 

resting SBP (post intervention - baseline) 
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Figure 6.4: Correlation between the change in SBP reactivity during repetition 4 (average systolic blood 

pressure reactivity [weeks 1, 2, 4] – average systolic blood pressure reactivity [weeks 6, 8, 10]) and average 

change in MVC (average MVC [weeks 1,2,4] – average MVC [weeks 6,8,10]) 
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Figure 6.5: Correlation analysis between A) Baseline systolic blood pressure (mmHg) and change in systolic 

blood pressure following 10 weeks of isometric handgrip training. B) Age and change in systolic blood 

pressure following 10 weeks of isometric handgrip training. C) Systolic blood pressure reactivity and change 

in systolic blood pressure following 10 weeks of isometric handgrip training. * = significant correlation 

(p<0.05).  
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Phase 2  

 

Adherence  

Participant retention in both the longer-term (phase 1 experimental group) and shorter-term exercise 

groups (phase 1 control group) was 100% (Figure 6.6). Adherence during weeks 1-7 was lower in the longer-

term training group (89±14.6%) as compared with the shorter-term training group (98.6±2.3%). However, 

there was no group x time interaction effects (df = 1, F=1.483, p = 0.196). In addition, there was no main 

effect for time (df = 1, F = 0.485, p=0.498). During weeks 9-16 similar adherence rates were observed in 

both the longer-term and shorter-term training groups (95.5±5.6%, 96.5±4.5% respectively; Figure 6.6). 

 

Physiological changes from baseline (Phase 1); longer-term training group only. 

No statistically significant differences were found between the mean differences from baseline 

measurements and measurements taken at the end of phase 1, end of training period 1 (phase 2), and end 

of training period 2 (phase 2) (Table 6.7). However, resting SBP showed a strong trend of returning back 

towards baseline levels, by the end of training period 2 (phase 2). Similarly, markers of vagal tone (rMSSD, 

pNN50%, HFnu) showed a strong trend of returning back towards baseline levels by the end of training 

period 2 (phase 2) (Table 6.8). Twenty-four-hour average and daytime ambulatory BP recordings showed a 

trend towards increasing above baseline values by the end of training period 2 (phase 2) (Table 6.7).  

Blood pressure and autonomic function; shorter-term training group only 

No main effect for time was found within any BP or autonomic variable (HRV, systolic BPV; Table 6.9 and 

Table 6.10). However, the pattern of change within a number of variables between baseline and the end of 

training period 1 were similar to the changes observed in the experimental group during phase 1 of the 

study. These patterns include; i) decreases in resting SBP, DBP, MAP, 24-hour average LFnu and 24-hour 

average LF/HF; ii) increases in 24-hour average rMSSD, pNN50%, HFnu and HF; iii) no change in 24-hour 

average SBP, DBP, MAP, daytime SBP, DBP, MAP and night-time SBP, DBP or MAP. 
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Figure 6.6: Participant retention and percentage of completed exercise sessions during weeks 1-7 (phase 2), 

weeks 9-16 (phase 2) and overall (phase 2) in the longer-term training group and shorter-term training group. 

Values are percentage of prescribed sessions completed ±SD. No significant differences were observed within 

(time) and between (group x time) both training groups. 
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Table 6.7: Calculated differences in resting and ambulatory blood pressure following phase 1 and phase 2 of study in the longer-term training group. Values 

are mean (95% confidence intervals). 

 

Mean difference 

(10 weeks [phase 1] – baseline) 

Mean difference  

(training block 1 [phase 2] – 

baseline) 

Mean difference  

(training block 2 [phase 2] – 

baseline) 

 

Effect for time 

(P value) 

Resting blood pressure     

SBP (mmHg) -6.167 (-13.253, 0.920) -7.722 (-15.521, 0.077) -0.944 (-4.336, 2.447) 0.107 

     

DBP (mmHg) -1.833 (-6.521, 2.854) -2.314 (-6.973, 2.344) -3 (-6.641, 0.641) 0.971 

     

MAP (mmHg) -3.278 (-8.028, 1.473) -4.117 (-9.228, 0.994) -2.499 (-5.613, 0.615) 0.651 

24-hour ambulatory blood pressure     

SBP (mmHg) 1.453 (-2.766, 5.671) 2.651 (-1.215, 6.516) 5.519 (0.377, 10.661) 0.277 

     

DBP (mmHg) -0.236 (-3.176, 2.704) 2.424 (0.042, 4.806) 2.516 (-1.546, 6.578) 0.233 

     

MAP (mmHg) 0.326 (-2.856, 3.508) 2.500 (-0.147, 5.146) 3.517 (-0.844, 7.878) 0.262 

Daytime ambulatory blood pressure     

SBP (mmHg) 2.507 (-1.963, 6.077) 4.426 (-1138, 9.990) 3.517 (-0.844, 7.878) 0.167 

     

DBP (mmHg) -0.280 (-4.131, 3.571) 2.964 (-1.256, 7.185) 3.646 (0.341, 6.952) 0.109 

     

MAP (mmHg) 0.499 (3.452, 4.996) 3.452 (-0.957, 7.860) 4.996 (1.303, 8.689) 0.121 
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No significant differences in change from baseline between phase 1 and phase 2 of intervention study 

SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure;  

  

Night-time ambulatory blood pressure    

SBP (mmHg) -1.200 (-12.671, 10.271) -2.786 (-10.642, 5.070) -2.066 (-10.249, 6.117) 0.831 

DBP (mmHg) -1.811 (-8.403, 4.782) 1.077 (-4.765, 6.918) -2.993 (-10.244, 4.257) 

 

0.325 

MAP (mmHg) -1.607 (-9.680, 6.466) 1.077 (-4.765, 6.918) -2.722 (-8.226, 2.781) 

 

0.405 
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Table 6.8: Calculated change scores in 24-hour average ambulatory heart rate variability between baseline measurements and phase 1 and phase 2 of intervention 

(longer-term training group only) 

Data is presented as average change scores between baseline measurements and phase 1 and 2 (training block 1 and training block 2) of the intervention  

* =significant difference between training block 2 [phase 2] minus baseline 

SDNN, standard deviation of all NN intervals, pNN50%, the percentage of adjacent NN intervals  differing by more than 50ms; rMSSD, root mean square of 

successive differences; LF, low frequency; HF, high frequency; nu, normalised units; Ln, natural logarithm 

 Mean difference Mean difference  Mean difference  Effect for   

 

(10 weeks [phase 1] – baseline) 

 

(training block 1 [phase 2] – 

baseline) 

(training block 2 [phase 2] – 

baseline) 

time  (P 

value) 

 

      

SDNN (ms) -4.88 (-29.487, 19.737) 6.00 (-10.431, 22.431) -12.13*(-33.001,8.751) 0.027  

pNN50% 1.75 (-1.646, 5.146) 3.13 (-1.420, 7.670) -1.50 (-4.291, 1.291) 

  

      

pNN50% Ln 0.23 (-0.342, 0.799) 0.45 (-0.533, 1.430) -0.13 (-0.732, 0.473) 0.192  

rMSSD (ms) 4.88 (-3.382, 13.132) 5.50 (-3.096, 14.096) -3.13 (-6.980, 0.730) 

 

0.100 

 

      

LF nu  -5.00 (-10.287, 0.287) -7.38 (-12.623, -2.127) -0.88 (-8.156, 0.406) 0.095  

      

HF nu  4.63 (-0.145, 9.395) 5.63 (1.861, 9.389) 0.88 (-5.340, 7.090)   

      

HF nu Ln 0.19 (-0.342, 0.799) 0.24 (-0.533, 1.430) 0.072 (-0.732, 0.473) 0.098  

      

LF/HF  -0.83 (-1.599, -0.051) -1.11 (-2.043, -0.182) -0.39 (-1.364, 0.589) 0.113  
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Table 6.9: Resting, 24-hour average, daytime and night-time HR and BP (SBP, DBP, MAP) in shorter-term training group only. Values are mean ± SD 

 
Baseline (phase 1) Post (phase 1) 

Training block 1  

(phase 2) 

Training block 2  

(phase 2) 

Effect for  

Time (P value) 

Resting blood pressure  

SBP (mmHg) 132.4±3.5 131.4±5.8 124.4±12 126.3±8.3 0.112 

DBP (mmHg) 78.4±11.2 80.0±12.1 74.4±11.2 78.4±10.3 0.080 

MAP (mmHg) 96.4±8.2 97.1±9.2 91.0±10.5 94.3±9.5 0.082 

HR (b.min-1) 69.4±11.4 69.0±10.5 68.3±10.4 69.4±11.6 0.324 

24-hour average ambulatory blood pressure 

SBP (mmHg) 129.4±8.0 129.6±7.8 129.7±13.1 128.7±9.1 0.921 

DBP (mmHg) 75.3±9.4 75.3±8.4 75.4±9.4 73.9±10.0 0.561 

MAP (mmHg) 93.1±7.5 93.6±7.2 93.5±9.4 92.2±8.9 0.692 

HR (b.min-1) 73.1±10.4 72.8±11.9 69.9±9.2 68.9±10.4 
 

HR (b.min-1) ln 4.28±0.14 4.28±0.17 4.24±0.13 4.22±0.15 0.123 

Daytime ambulatory blood pressure  

SBP (mmHg) 134.0±7.3 134.9±9.2 134.7±14.6 132.9±10.4 0.829 

DBP (mmHg) 78.8±10.4 79.2±9.9 79.5±9.8 77.0±9.8 0.430 

MAP (mmHg) 97.2±8.4 97.7±8.6 97.9±10.3 95.6±10.2 0.564 

HR (b.min-1) 76.4±10.3 76.8±12.6 72.8±10.5 71.2±10.7 0.160 

Night-time ambulatory blood pressure  
 

SBP (mmHg) 111.5±7.6 117.6±9.1 110.8±3.9 115.7±5.8 0.052 

DBP (mmHg) 63.5±6.1 65.0±6.5 62.5±8.5 65.1±6.6 0.324 

MAP (mmHg) 79.5±4.7 82.6±5.7 78.6±6.3 82.0±5.2 0.129 

HR (b.min-1) 62.9±11.0 62.9±11.0 62.0±8.0 61.9±9.8 
 

HR (b.min-1) Ln 4.13±0.17 4.13±0.17 4.12±0.13 4.11±0.16 0.762 

No significant main effects for time were found.  

SBP, systolic blood pressure; DBP, diastolic blood pressure, MAP, mean arterial pressure; HR, heart rate. 
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Table 6.10: 24-hour average ambulatory heart rate variability and resting systolic blood pressure variability in shorter-term training group only. Values are 

mean ±SD. 

 Pre (phase 1) Post (phase 1) 
Training 

block 1 (phase 2) 
Training 

block 2 (phase 2) 
Effect for time 

(P value) 

24-hour ambulatory HRV     

SDNN (ms) 139.0±44.0 148.6±35.5 136.4±31.1 130.9±30.1 0.295 

pNN50% 2.6±2.9 3.9±5.0 3.6±2.4 3.6±3.5  

pnn50% Ln 0.61±0.78 0.84±1.00 1.04±0.78 0.94±0.86 0.136 

rMSSD (ms) 20.9±8.8 22.3±11.0 28.7±10.1 23.1±8.4 0.084 

LF (ms2) 453.7±341.2 598.3±513.6 578.1±400.8 575.4±509.8 0.192 

LF nu 72.4±10.8 71.7±10.8 65.6±15.4 70.9±12.2 0.088 

HF (ms2) 153.7±138.2 202.1±205.4 232.6±141.3 164.0±117.8  

HF (ms2) Ln 4.72±0.84 4.88±1.00 5.28±0.66 4.88±0.71 0.116 

HF nu 24.1±9.0 25.0±9.5 29.1±12.3 25.4±10.0 0.183 

LF/HF  3.6±2.0 3.6±2.3 3.1±2.4 3.5±2.3  

LF/HF Ln 1.15±0.55 1.12±0.59 0.89±0.73 1.09±0.63 0.178 

Resting systolic BPV     

LF (mmHg2) 4.7±5.4 5.0±4.8 3.8±2.9 6.6±7.7 0.221 

LF % 17.4±9.3 20.0±6.4 15.7±6.9 21.1±10.5 0.181 

No significant main effects for time were found  

SDNN, standard deviation of all NN intervals; pNN50%, the percentage of adjacent NN intervals  differing by more than 50ms; rMSSD, root mean square 
of successive differences; LF, low frequency; HF, high frequency; nu, normalised units; Ln, natural logarithm; BPV, blood pressure variability 
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6.4 Discussion  

 

The purpose of this 2-phase study was to determine the physiological effectiveness and practicality of 

prescribing self-regulated isometric exercise training. Phase 1 aimed to determine the effects of self-

regulated IHG training on resting and 24-hour ambulatory BP. In addition, phase 1 aimed to determine 

whether alterations in markers of autonomic function (24-hour HRV and resting systolic BPV) may be 

contributory factors in any BP changes. Phase 2 primarily aimed to assess levels of adherence to home-based, 

unsupervised isometric exercise training. In addition, the maintenance of physiological changes that occurred 

during phase 1 was measured during phase 2. 

Phase 1 

Resting and ambulatory blood pressure  

The results showed that 10-weeks of self-regulated IHG exercise (phase 1) induced non-significant reductions 

in resting SBP (-6.16mmHg, 95% CI -13.25, 0.92), DBP (-1.8mmHg, 95% CI -9.133, 1.265) and mean arterial 

pressure (-4.13, 95% CI -8.816, 0.556). Although the magnitude of SBP reduction is consistent with other 

research (Millar, Levy, Mcgowan, et al. 2013; Badrov, Bartol, Dibartolomeo, et al. 2013; Millar, Bray, 

McGowan, et al. 2007) carried out on hypertensive participants the reasons for the changes not reaching 

statistical significance was probably due to the reduction (-2mmHg) observed in the control group. It is 

difficult to explain why the control group experienced these small reductions in resting blood pressure but 

the most plausible explanation is that this change reflected inadvertent changes in physical activity and diet, 

made by participants following the diagnosis of pre-hypertension or stage 1 hypertension. Despite this, the 

magnitude of change in resting BP has, for the first time, revealed that isometric exercise training can be 

carried out successfully in a self-regulated way at home. Self-regulated isometric exercise training, using the 

CR-10 scale, provides the pre-hypertensive and hypertensive patient with a simple means of performing 

training in a carefully-controlled way that is suitable to be carried out on affordable and portable equipment 

that does not need regular recalibration with maximal voluntary contractions. However, although  66% of 

individuals showed clinically relevant (≥2mmHg) (Pescatello, Franklin, Fagard, et al. 2004a) decreases in SBP 

(-7mmHg, - -23mmHg), 34% of individuals did not show a change (-1mmHg - +4mmHg). These disparate 

findings within population groups are not uncommon (Millar, McGowan, Cornelissen, et al. 2014) and require 

further understanding. The current study revealed correlations between i) changes in MVC and reductions in 

resting SBP (Figure 6.2) and ii) SBP reactivity during repetition 4 and reductions in resting SBP (Figure 6.3). 

These findings are discussed in Chapter 7, section 7.3. 

In contrast to the trends observed in relation to resting BP, 24-hour average, daytime and night-time 

ambulatory BP did not show any changes. Although the literature exploring ambulatory BP changes, following 
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isometric training interventions is scarce, these findings are consistent with those of other isometric training 

interventions carried out on pre-hypertensive and hypertensive participants (Stiller-Moldovan, Kenno, and 

McGowan 2012; Ash, Taylor, Thompson, et al. 2016; Pagonas, Vlatsas, Bauer, et al. 2017). In contrast to these 

previous findings and those of the current study, findings by Somani et al., (2017) reported that 10 weeks of 

isometric handgrip training induced significant reductions in ambulatory BP in healthy, normotensive 

participants (Somani, Baross, Levy, et al. 2017). 

Taken together with previous findings and those of the current study, isometric training has yet to show 

improvements in ambulatory BP in those with pre-hypertension and hypertension (medicated and un-

medicated). In contrast to resting BP, ambulatory measurements capture an individual’s BP fluctuations 

during daily life activities. These activities include  a range of physical and mental stressors and therefore 

reflects an individual’s BP responses to numerous stimuli and therefore their ability to control BP during 

ambulatory conditions (Schultz and Sharman 2013). It is possible that the physiological mechanism 

responsible for hypertensive responses (i.e. reduced baroreceptor sensitivity) was not affected by the 

isometric handgrip training and therefore changes in ambulatory BP was not observed. This is supported by 

the lack of change observed in SBP reactivity (repetition 1; Table 6.6). Discussion of these findings can be 

found in Chapter 7, section 7.5.  

Heart rate and systolic blood pressure variability  

Despite increases in markers of cardiovagal tone and decreases in LF and LF/HF following 10-weeks of 

isometric exercise training, findings from the current study showed that the between-group changes were 

not significantly different for all HRV indices (Table 6.4). Similar patterns of change were observed during 

phase 2 (training period 1) in the shorter-term exercise group (Table 6.10). Similar to the current findings, 

Taylor et al., (2003) reported a trend towards a decrease in LF/HF in addition to a significant increase in HF 

in hypertensive participants. The researchers concluded that there was an improvement in vagal control of 

the heart and improved sympathovagal balance (Taylor, McCartney, Kamath, et al. 2003). In contrast to these 

changes, other studies involving normotensive populations and well-controlled hypertensives have reported 

no significant changes in HRV (Wiles, Coleman, and Swaine 2010; Badrov, Bartol, Dibartolomeo, et al. 2013; 

Stiller-Moldovan, Kenno, and McGowan 2012). Taken together, these limited findings suggest that an 

alteration to the autonomic control of the heart may play a role in reducing resting BP in pre-hypertensive 

and hypertensive adults, but perhaps not in normotensive and well-controlled hypertensive adults. However, 

due to the poor reproducibility of resting HRV measurements (Morrin, Stone, and Henderson 2017) the lack 

of sensitivity in this measurement may not allow the detection of small changes (Wiles, Coleman, and Swaine 

2010; Badrov, Bartol, Dibartolomeo, et al. 2013) following isometric training. 

Similar to the findings in HRV, the current study found that the changes in sympathetic vasomotor tone (LF, 

LF %) following training were not significantly different to the changes observed following a control period. 
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However, the experimental group displayed decreases in the LF components of systolic BPV whilst the control 

group experienced a slight increase. These small changes were observed within the control group after the 

first seven week period of training, during phase 2. Considering the poor reproducibility of 5-minute 

recordings of systolic BPV (Chapter 4) the non-significant findings of the current study are not conclusive and 

warrant further investigation. However, these findings lend some support to the significant reduction in the 

LF component of systolic BPV found by Taylor and colleagues (Taylor, McCartney, Kamath, et al. 2003) in 

hypertensive adults.  

The potential mechanisms responsible for BP reductions are discussed more thoroughly in Chapter 7 (section 

7.6). 

Phase 2 

The current research is the first to design a study with an unsupervised home-based isometric exercise phase. 

The levels of adherence (Figure 6.4) reported within the current thesis demonstrate the ease of isometric 

exercise training completion. Following the completion of phase 1, the longer-term training group (phase 1; 

experimental group) showed a reduced exercise completion rate during training period 1 (phase 2) as 

compared with the shorter-term training group. This difference was not statistically significant but highlights 

the potential for training “fatigue” following the completion of phase 1. Despite the lower level of adherence 

observed in the longer-term training group, the reductions in resting BP (SBP, DBP, MAP) and changes to 

rMSSD, pNN50%, LF nu, HF nu and LF/HF were maintained following training period 1 (Table 6.7 & Table 6.8) 

and therefore, the reduction in adherence during training period 1 would not appear to have been 

detrimental to the sustainability of the changes in resting BP and HRV.  

Adherence during training period 2 was excellent in both the longer-term and shorter-term training groups 

(95.5% and 96.5% respectively). Despite this, the reductions in resting SBP and MAP observed in the longer-

term exercise group showed a trend of returning back towards baseline whilst, 24-hour average and daytime 

blood pressures showed a trend towards increased levels, compared with baseline. These findings are 

discussed in Chapter 7 (section 7.4). 

6.5 Conclusion  

 

In conclusion, 10 weeks of self-regulated isometric exercise induced reductions in resting BP which were 

similar in magnitude to previously reported findings. These findings lend support to the clinical relevance of 

isometric handgrip exercise training. However, 24-hour ambulatory BP was not altered, thereby suggesting 

that there might be a different mechanism responsible for controlling resting and ambulatory BP. The data 

also displayed a trend towards changes in autonomic control of both heart rate (HRV) and vasculature 

(systolic BPV); this, could offer some explanation for the observed reductions in resting BP.  
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Adherence to self-regulated isometric exercise training was excellent, overall. Despite these adherence levels 

the longer-term training group did not maintain the positive changes in SBP, MAP, and HRV upon completion 

of training period 2.  
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7 Chapter 7: General discussion 
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7.1 Introduction and summary of main findings 

 

The primary aims of this thesis were to i) Determine a method of self-regulating isometric hand-grip (IHG) 

exercise, ii) Measure the effectiveness of self-regulated IHG exercise on 24-hour ambulatory BP and resting 

BP and iii) Assess adherence levels to an unsupervised, self-regulated isometric training programme. The 

secondary aim of this thesis was to add insight into the effectiveness of a self-regulated IHG training 

programme on autonomic function. 

To achieve these aims in an effective manner, three individual studies were carried out. Chapter 4 

determined the reproducibility of 24-hour ambulatory BP, HRV and systolic BPV and the need for 

familiarisation sessions prior to data collection. Chapter 5 focused on validating the use of the CR-10 scale 

for self-regulation of isometric hand-grip exercise. Chapter 6 implemented the use of a self-regulated 

isometric exercise in a 2-phase training intervention. Phase 1 measured the effects of a 10-week, part 

supervised, self-regulated isometric handgrip training programme on BP (24-hour ambulatory and resting) 

and autonomic function. Phase 2 measured adherence to an unsupervised, home-based isometric training 

programme and compared this in a longer-term training group (24 weeks) and shorter-term training group 

(14 weeks). In addition, the maintenance of physiological change during longer-term isometric training was 

assessed.    

The main findings of the studies included in this thesis were: 

1) The CR-10 “Level-6” was shown to be a valid method by which individuals can self-regulate their 

isometric exercise intensity, and is thus useful for isometric training purposes. 

2) A 10-week, part-supervised, self-regulated isometric handgrip training programme did not induce 

changes in ambulatory BP (systolic, diastolic, mean arterial pressure) but did induce clinically 

significant reductions in resting SBP (mean -6mmHg) that were similar in magnitude to those 

previously reported.  

3) The group changes in resting SBP, after this training, were not statistically significant, largely because 

the control group experienced a mean reduction of -2 mmHg in their resting SBP. 

4) This training programme induced small, non-significant improvements in markers of cardiovagal 

tone, as measured by 24-hour HRV. In addition, small, non-significant reductions in the LF component 

of systolic BPV (indicative of a reduction in sympathetic vasomotor tone) was found. 

5) Self-reported compliance with the training programme, indicated that self-regulated isometric 

training is well adhered to in both shorter-term and longer-term training groups. Adherence was 

superior in participants who were new to the training regime (shorter-term training group) than 

those who had already completed 10-weeks of exercise (longer-term training group).  
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6) The longer term training group maintained resting BP changes following training block 1 (phase 2) 

whilst a trend for resting BP returning back to baseline was observed following training block 2 (phase 

2).  

7) Whilst resting SBP returned back towards baseline, daytime and 24-hour average BP showed a trend 

towards increasing above baseline levels.  

 

7.2 Finding: The CR-10 “Level-6” was shown to be a valid method by which 

individuals can self-regulate their isometric exercise intensity, and is thus 

useful for isometric training purposes. 

Question: What are the benefits of using the RPE scale for self-regulation of 

exercise, in particular isometric exercise? 

 

Chapter 5 employed an estimation-production protocol to determine whether participants were able to 

effectively utilise the CR-10 scale to self-regulate IHG exercise intensity. Results from the estimation task 

indicated that there was a strong linear relationship between the CR-10 scale and %MVC (Figure 5.1) and 

that “Level- 6” aligned with an average %MVC of 33% (95% CI; 36.2%, 30%). Considering that the most 

common isometric exercise prescription, aimed at lowering BP in previous studies, has been set at 30% MVC 

(Millar, Bray, McGowan, et al. 2007; Taylor, McCartney, Kamath, et al. 2003; Wiley, Dunn, Cox, et al. 1992; 

Badrov, Horton, Millar, et al. 2013) these findings indicated that the CR-10 “Level-6” would most closely 

approximate the exercise intensity that has been used previously. Following the estimation task, the 

production task revealed that participants were able to adequately self-regulate their exercise intensity 

(%MVC) using “Level-6” on the CR-10 scale (Figure 5.2). As discussed in Chapter 2 (section 2.4), strong linear 

relationships have also been found between the different levels on an RPE scale and markers of aerobic 

exercise intensity (Borg, Hassmén, and Lagerstrӧm 1987; Ueda and Kurokawa 1995; Marriott and Lamb 1996; 

Borg and Kaijser 2006; Scherr, Wolfarth, Christle, et al. 2013; Goslin and Rorke 1986; Chen, Fan, and Moe 

2002; Utter, Robertson, Green, et al. 2004) and dynamic resistance exercise training (Lagally and Amorose 

2007; Tiggemann, Korzenowski, Brentano, et al. 2010; Row, Knutzen, and Skogsberg 2012). With regard to 

isometric exercise, one previous study had shown a strong linear relationship between the Borg CR-10 scale 

and %MVC during 5-second contractions (Pincivero, Coelho, and Erikson 2000). However, its relationship with 

%MVC during longer isometric contractions was until now, unknown. 

However, it is important to note, that although studies have highlighted that exercise interventions regulated 

by perceived exertion have been successful in increasing aerobic capacity (Fujiwara, Asakuma, and Iwasaki 
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2000; Kobayashi, Hosoi, Takeuchi, et al. 2001; Parfitt, Evans, and Eston 2012), anaerobic capacity (Fujiwara, 

Asakuma, and Iwasaki 2000) and muscular strength (Allen, Canning, Sherrington, et al. 2010; Dibble, Hale, 

Marcus, et al. 2006) studies have not investigated whether exercise programmes designed for BP 

management are successful when self-regulated using a perceived exertion scale. Despite this, the most 

recent guidelines for exercise and BP management suggest that moderate aerobic exercise can be self-

regulated using RPE 11-13 (Pescatello, Macdonald, Lamberti, et al. 2015) on the Borg 6-20 scale. Considering 

the relative importance of exercise intensity for BP management  (Pescatello, Franklin, Fagard, et al. 2004a; 

Mancia, Fagard, Narkiewicz, et al. 2013; Ghadieh and Saab 2015; Brook, Appel, Rubenfire, et al. 2013; James, 

Oparil, Carter, et al. 2014) it would seem prudent for more studies to verify the effectiveness of RPE regulated 

exercise on BP management exercise programmes. Chapter 6 describes the first study to utilise a perceived 

exertion chart (CR-10 scale) for the primary purpose of regulating isometric exercise prescribed with the 

intention of aiding BP management. This novel study showed that self-regulation of isometric exercise was 

effective in reducing resting SBP in pre-hypertensive and hypertensive individuals (Table 6.2). 

The use of perceived exertion scales in the prescription of exercise for BP management has a number of 

benefits; 1) Cost effectiveness 2) Simplicity 3) Individualised training 4) Reduced need for the recalculation 

of training zones 5) Exercise flexibility 6) Improved exercise adherence.  

Cost effectiveness 

RPE scales are freely available online. This cost-effective resource therefore provides opportunity to large 

portions of the population to self-regulate a prescribed exercise intensity without the need for specialised 

equipment such as isometric handgrip devices, physiological monitoring instruments (e.g. gas analysis 

systems or HR monitors), gym-based resistance machines and an exercise professional who can assist 

individuals with identifying the correct training loads for exercise training.   

Simplicity 

RPE scales are simple to understand and use. However, considering the importance of exercise intensity in 

the prescription of BP management training regimes (Pescatello, Franklin, Fagard, et al. 2004a; Mancia, 

Fagard, Narkiewicz, et al. 2013; Ghadieh and Saab 2015; Brook, Appel, Rubenfire, et al. 2013; James, Oparil, 

Carter, et al. 2014) the ability to reproduce markers of exercise intensity is of paramount importance for the 

successful application of perceived exertion charts. The necessity for familiarisation protocols prior to 

successful self-regulation is debatable. It has been argued that the reproduction of a prescribed intensity will 

be more accurate following instructor led feedback during production trials (Dishman 1994). A study carried 

out by Soriano-Maldonado and colleagues (2013) showed that practice trials improved individuals ability to 

reproduce target HR’s using the 6-20 RPE scale (Soriano-Maldonado, Romero, Femia, et al. 2013). However, 

other researchers have concluded that individuals are able to reproduce markers of cardiorespiratory stress 
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(Marriott and Lamb 1996; Green, Michael, and Solomon 1999; Dunbar, Robertson, Baun, et al. 1992; Eston, 

Davies, and Williams 1987; Paulson, Bishop, Leicht, et al. 2013; Goosey-Tolfrey, Lenton, Goddard, et al. 2010), 

physical capacity (Goosey-Tolfrey, Lenton, Goddard, et al. 2010; Paulson, Bishop, Leicht, et al. 2013; Marriott 

and Lamb 1996) and resistance training load (Lagally and Amorose 2007) during a single production task and 

therefore others conclude that familiarisation sessions are not necessary.  

Findings from Chapter 5 showed that the accuracy of isometric exercise intensity production did not improve 

over the course of three separate production trials (Figure 5.2). This finding would suggest that individuals 

are able to self-regulate isometric exercise intensity without the need for feedback from an exercise 

professional. However, it is important to note that all individuals underwent a detailed introduction to the 

CR-10 scale which involved anchoring procedures led by the primary researcher (Chapter 5, section 5.2.2). 

Future studies will need to determine whether a brief and self-instructed anchoring procedure would be 

sufficient to familiarise participants with the CR-10 “Level-6”. This would further enhance the simplicity and 

accessibility of a self-regulated isometric exercise.  

Participant led training intensity 

The use of perceived exertion to regulate exercise intensity as opposed to prescribing a specific intensity 

calculated from an individual’s maximum capacity allows the intensity of exercise to be participant led. 

Imposing a relative exercise intensity on exercise participants could introduce prescription error and cause 

individuals to work at a too low or too high an exercise intensity.  For example, aerobic exercise intensities 

based off HR can cause some problems. One common procedure of calculating HR max is to use age-predicted 

HR max (220-age); this calculation can introduce errors of approximately 11 beats.min-1 above or below the 

true maximum (Arena, Myers, and Kaminsky 2016). In addition, hypertensive adults on beta blockers have a 

blunted HR response at rest and during exercise (Wonisch, Hofmann, Fruhwald, et al. 2003). Exercise 

prescription based off HR is therefore of limited accuracy and again may cause individuals to exercise at too 

high a level in order to meet the prescribed HR zone. In this scenario it could be healthier to use methods of 

self-perception to control intensity (di Blasio, Sablone, Civino, et al. 2009).  

In relation to isometric exercise prescription, the use of maximal contractions to prescribe exercise intensity 

is limited and could also introduce significant prescription errors. For example, individuals with arthritis or 

frailty may be unable to carry out a true maximal contraction. The calculation of %MVC would therefore be 

based on an inaccurate maximal contraction and would result in individuals working below the prescribed 

intensity.  

Instead of imposing a relative exercise that could introduce significant prescription errors, Parfitt et al., (2012) 

argues that participant led intensity regulation, using an RPE scale, encourages autonomy which is an 
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important component of developing an individual’s intrinsic motivation which is linked with long-term 

exercise adherence (Ryan, Fredrick, Lepes, et al. 1997). 

Reduced need for recalculation of training zones   

The use of the RPE scale reduces the necessity for regular recalculation of training zones. For example, 

isometric exercise training will increase strength (Table 6.6) and therefore relative exercise intensity is 

traditionally recalculated prior to commencing each exercise session. This typically involves 3 x maximal 

isometric contractions (Chrysant 2010). As discussed, the use of maximal contractions is limited in older 

adults due to frailty and arthritis. It is also recommended that abrupt increases in SBP should be avoided in 

those at cardiovascular risk (Pescatello, Franklin, Fagard, et al. 2004b). The use of the RPE scale avoids the 

need for recalculation of training zones. Findings from Chapter 6 showed that as individuals got stronger the 

%MVC elicited at CR-10 “Level-6” did not significantly change (Table 6.6). This finding proves that individuals 

adjust their self-regulated power outputs in accordance with strength gains; removing the need to regularly 

recalculate training zones.  

This benefit is also applicable to dynamic resistance exercise prescription where an individual’s 1RM would 

naturally improve during the course of training. Without regular recalculation of training zones through a 

1RM test, individuals could end up exercising at too low an intensity and may not, therefore, achieve the 

desirable benefits.   

Exercise flexibility 

The use of a perceived exertion chart also provides individuals with exercise flexibility. Although isometric 

exercise already offers flexibility (i.e. short exercise timeframe, portable exercise devices) the use of 

perceived exertion to self-regulate isometric handgrip exercise enables individuals to carry out the exercise 

on any immoveable object found in the workplace or home. In relation to other exercise modalities, the use 

of the RPE scale to regulate intensity offers individuals the opportunity to engage in exercise without the 

need to access gym equipment and/or an exercise professional that could assist in monitoring exercise 

intensity for them. For example, the use of perceived exertion for the regulation of dynamic resistance 

training would allow individuals to carry out the exercises in the home using cost-effective items like 

resistance bands or free weights.  

Improved exercise adherence 

Finally, the use of RPE scales in the prescription of exercise for BP management has the potential to elicit 

improved exercise adherence. As previously mentioned the possibility of instilling intrinsic motivation by 

providing autonomy could be linked to improved adherence (Ryan, Fredrick, Lepes, et al. 1997). Also, 

considering that cost and lack of convenience (Bethancourt, Rosenberg, Beatty, et al. 2014; Franco, Tong, 
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Howard, et al. 2015; Jefferis, Sartini, Lee, et al. 2014) are common barriers associated with poor exercise 

adherence it could be suggested that the cost effectiveness and reduced necessity to access specialist 

equipment would encourage continued exercise participation. Findings from Chapter 6 showed that 

adherence to isometric training was excellent (Figure 6.6). It is unknown whether exercise adherence outside 

the confines of a research study would be of the same quality – however the small time commitment and 

the ability to self-regulate isometric exercise on any immovable object in the home or workplace would 

suggest that individuals should be able to participate in and comply with isometric exercise.   

7.3 Finding: A 10-week self-regulated isometric training programme induced clinically-

significant reductions in resting SBP that were similar in magnitude to those 

previously reported. However, these changes were not statistically significant, 

largely because the control group experienced a mean -2 mmHg change in their 

resting SBP. 

Question: Do figures 6.2, 6.3 and 6.4 provide insight into inter-individual differences 

in resting BP reductions following 10-weeks of self-regulated isometric exercise 

training? 

 

Despite the reported poor reproducibility for measurement of resting BP (Campbell, Ghuman, Wakefield, et 

al. 2010; Fotherby and Potter 1993; Mansoor, McCabe, and White 1994; Stergiou, Baibas, Gantzarou, et al. 

2002; Wendelin-Saarenhovi, Isoaho, Hartiala, et al. 2001; van der Steen, Lenders, Graafsma, et al. 1999) the 

majority of previous isometric training studies have employed well controlled RCTs or crossover trials and 

have shown significant reductions in resting SBP (Ray and Carrasco 2000; Howden, Lightfoot, Brown, et al. 

2002; Wiley, Dunn, Cox, et al. 1992; Millar, Bray, MacDonald, et al. 2008; Wiles, Coleman, and Swaine 2010; 

Devereux, Wiles, and Swaine 2011; Badrov, Horton, Millar, et al. 2013; Devereux and Wiles 2015; Gill, Arthur, 

Swaine, et al. 2015; Taylor, McCartney, Kamath, et al. 2003; McGowan, Levy, Millar, et al. 2006; Baross, Wiles, 

and Swaine 2013). 

In all of these previous studies, the isometric training intensity has been regulated by ‘feedback’ during the 

exercise, to which the participant responds by adjusting their effort until they match a predetermined target. 

The feedback is usually either exercising force (e.g. 30% MVC), but it has also been exercising EMG (Wiles, 

Coleman, and Swaine 2010; Devereux, Wiles, and Swaine 2010). These methods of regulating isometric 

training intensity require an exercise device that can measure force, and display it, so that the participant 

can view it. This has invariably involved relatively expensive exercise devices. It also requires a degree of 

‘cognitive ability’, to interpret the force display and respond to it.  Therefore, these devices might not be 
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suitable for some people (e.g. the very elderly). The current thesis employed a self-regulated isometric 

handgrip training protocol (Chapter 5). This protocol does not require an exercise device that measures force 

and provides continuous feedback to the participant. Despite a sizeable decrease in resting SBP in the 

isometric training group (-6mmHg), this change was not significantly different to the change observed in the 

control group (-2mmHg).  

The largest and most recent meta-analysis of randomised control trials (n=302) revealed post-training 

reductions in resting systolic BP of -5.2mmHg (Inder, Carlson, Dieberg, et al. 2016). Specifically research on 

hypertensive adults with similar baseline BP to that of the participants within the current thesis found that 

isometric handgrip training successfully reduced systolic BP by between 5 and 8 mmHg (Badrov, Horton, 

Millar, et al. 2013; Millar, Levy, Mcgowan, et al. 2013). These findings are similar to those of the current thesis 

and therefore suggests that the self-regulated isometric exercise training programme did work.  

However, it is important to note that there was wide inter-individual responses amongst those within the 

experimental group (Figure 7.1); 66% (n=6) reduced their systolic BP (range from -23.5 to -7mmHg) whilst 

34% (n=3) experienced a very small reduction or increase (range -1.0 to -4.5mmHg). Large inter-individual 

variability in the magnitude of BP changes is not unusual and has been observed in previous studies (Millar, 

Bray, McGowan, et al. 2007; Millar, Bray, MacDonald, et al. 2008; Devereux, Coleman, Wiles, et al. 2012; 

Badrov, Horton, Millar, et al. 2013). To date, studies have shown that participant characteristics (Millar, Bray, 

McGowan, et al. 2007; Millar, Bray, MacDonald, et al. 2008) and physiological responses to a single period 

(usually 2 minutes) of isometric exercise (Devereux, Coleman, Wiles, et al. 2012; Badrov, Horton, Millar, et 

al. 2013) are related to BP reductions following a period of regular isometric exercise.  
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Figure 7.1: Area graph displaying individual changes in resting systolic blood pressure following 10-weeks of 

self-regulated isometric handgrip training. Resting systolic BP changes ranged from -23mmHg – 4.5mmHg 

With regards to participant characteristics, older individuals (Millar, Bray, MacDonald, et al. 2008) and those 

with a higher baseline BP (Millar, Bray, McGowan, et al. 2007) experience greater BP reductions following an 

isometric training intervention. Physiological responses such as SBP reactivity (Badrov, Horton, Millar, et al. 

2013) and lactate production (Devereux, Coleman, Wiles, et al. 2012) have been shown to be related to the 

magnitude of resting BP reductions following training. As discussed in Chapter 5, Badrov et al., (2013) found 

that SBP reactivity to a single isometric task was positively correlated with BP reductions. In relation to lactate 

production, findings have shown a positive relationship between reduced SBP following 4-weeks of isometric 

training and training lactate levels (Devereux, Coleman, Wiles, et al. 2012). This provides evidence that 

isometric training intensity needs to be sufficiently high enough to induce local muscle anaerobiosis and 

accumulation of metabolites (i.e. lactate) (Lawrence, Cooley, Huet, et al. 2014). The accumulation of 

metabolites is known to induce the metaboreflex (Kaufman and Hayes 2002); the repeated stimulation of 

this reflex via the type III afferents is believed to be related to BP reductions (Brook, Appel, Rubenfire, et al. 

2013). 

The data from the 10-week training intervention revealed that baseline SBP significantly correlated with 

baseline BP reductions (Figure 6.5a). On the other hand this study does not support the relationship between 

age, SBP reactivity and reductions in resting SBP (Figure 6.5b. Figure 6.5c). This suggests that a number of 

other factors may play a role. For example an individual’s physical and physiological adaptations to an 

isometric training programme and its impact on reductions in resting SBP have not been explored. Findings 

from previous studies have shown that 4-weeks of rhythmic isometric exercise decreases lactate 

accumulation during ischemic exercise (Mostoufi-Moab, Widmaier, Cornett, et al. 1998), suggesting that 

adaptations to training can raise the ‘ischemic threshold’. In addition, other forms of resistance training have 

been shown to increase the activation of oxidative enzymes (Frontera, Meredith, O’Reilly, et al. 1990), 

mitochondrial proteins (Frank, Andersson, Pontén, et al. 2016; Andersson, Frank, Ponten, et al. 2017), shift 

muscle fibre characteristics towards a more oxidative profile (Frank, Andersson, Pontén, et al. 2016) and 

improve lactate clearance following a resistance exercise session (Juel, Klarskov, Nielsen, et al. 2004). These 

adaptations indicate an increase in muscle aerobic capacity and would therefore result in reduced lactate 

accumulation at a given exercise intensity (Kraemer and Ratamess 2004). Given the evidence suggesting that 

the production of blood lactate is related to BP reductions (Devereux, Coleman, Wiles, et al. 2012), and 

isometric training improves muscle oxidative capacity (Mostoufi-Moab, Widmaier, Cornett, et al. 1998) it 

would be pertinent to use this discussion to explore how individual training adaptations to 10-weeks of self-

regulated isometric training may have contributed to the wide variability in BP reductions.  
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Figure 6.2 shows a moderate negative correlation between changes in strength (as measured by MVC) and 

reductions in resting SBP. This finding indicates that individuals who increased their MVC during the second 

half of the training programme (weeks 6, 8 and 10) as compared with the first half of the training programme 

(weeks 1, 2 and 4) benefited from greater resting SBP reductions following 10-weeks of isometric handgrip 

training. Research supports inter-individual differences in isometric strength gains following a resistance 

training programme (Hubal, Gordish-Dressman, Thompson, et al. 2005; Erskine, Jones, Williams, et al. 2010). 

Inter-individual differences in isometric strength adaptations could provide insight into inter-individual BP 

responses. It would seem that those who do not increase their MVC in the second half of the training 

programme are less likely to experience reductions in resting SBP. In contrast, those whose strength 

increased were more likely to benefit from BP reductions. This finding provides us with some evidence for 

the need of continued overload to increase the likelihood of strength adaptations and potentially maximise 

BP reductions.  

To further support the influence of training adaptations on reductions in resting SBP, Figure 6.3 shows a 

significant negative correlation between changes in how much the BP reacts (SBP reactivity) to a single period 

of exercise (repetition 4) and reductions in resting SBP. This finding indicates that individuals who maintained 

or increased their pressor response (SBP reactivity, repetition 4) during the 2nd half of the training programme 

were more likely to benefit from reduced resting SBP pre- to post-training. Findings from Chapter 5 (Figure 

5.2) showed that the SBP response to isometric exercise gradually increased throughout an isometric training 

session (four repetitions). As discussed in Chapter 5 the larger pressor responses observed during repetition 

4 are likely to be the result of an accumulation of metabolic by-products which would also be associated with 

muscle fatigue. The maintenance or increase in pressor response (significantly raised BP, during the training) 

would therefore indicate that the exercise stimulus was continuing to induce sufficient metabolic stress. This 

indication of continued metabolic stress, during training, seems to occur quite differently in different 

individuals. 

Finally, the data reveals a significant correlation (Figure 6.4) between changes in MVC and changes in ‘SBP 

reactivity’ (in response to repetition 4) – this correlation suggests that those individuals who increased their 

MVC were experiencing maintained or possibly increased metabolic stress as the training programme 

progressed; an important component of BP reductions (Devereux, Coleman, Wiles, et al. 2012). 

In summary, the findings presented in Figure 6.2, 6.3 and 6.4 indicate that individuals who do not experience 

continued increases in isometric strength adaptations (plateau) also experience a reduced ‘SBP reactivity’ 

during repetition 4 (indicative of reduced metabolic stress) and a lack of SBP reduction following isometric 

training. Individual training adaptations to the isometric training stimulus could be an important area of 

further study; this would further advance the understanding of inter-individual differences in adaptations to 

isometric training programmes.  
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7.4 Finding (1): Self-reported compliance with the training programme 

indicated that the participants engaged well, with the self-regulated 

isometric training. This was evident in both the shorter-term (16-weeks) 

and the longer-term (24-weeks) training groups. Compliance was superior 

in participants who were new to the training regime (in the shorter-term 

training group) than those who had already completed 10-weeks of 

exercise (the longer-term training group).  

Finding (2): The longer term training group maintained resting BP 

reductions following training block 1 (phase 2) whilst a trend for resting BP 

to return back to baseline was observed following training block 2 (phase 

2).  

Question: What is the long-term applicability (compliance and maintenance 

of physiological adaptations) of unsupervised, self-regulated isometric 

training? 

 

The current thesis is the first to record isometric exercise compliance levels and compare them between a 

longer-term training group (24-weeks) and a shorter-term training group (14-weeks). Exercise compliance 

was recorded using a multi-method approach combining self-reporting alongside objective measures (HRV, 

systolic BPV, resting BP, 24-hour ambulatory BP) (De Geest and Sabaté 2003).   

The novel use of self-regulated isometric exercise (Chapter 5) made it possible to prescribe a cost-effective, 

home-based, unsupervised, isometric exercise programme (Chapter 6). Considering the high compliance 

reported in phase 2 of this training programme (Figure 6.6) it could be concluded that the isometric training 

regime was well-accepted and sustainable, within both the shorter-term and longer-term training groups. In 

addition, no drop-outs were observed, in either training group (Figure 6.6). This is in contrast to a number of 

previous longer-term aerobic training studies where drop-out rates can be as high as 50% (Nam, Dobrosielski, 

and Stewart 2012; Schmidt, Gruman, King, et al. 2000; Stiggelbout, Hopman-Rock, Tak, et al. 2005; Young 

and Stewart 2006).  

Considering the high compliance levels it is reassuring to show that the longer-term training group 

maintained their resting BP reductions following training block 1 (Table 6.7). However, despite continued 

compliance during training block 2, findings show that the average resting BP in the longer-term training 

group (total training duration; 24 weeks) increased back towards baseline BP. Previous studies have shown 
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that 4-10 weeks of isometric training is effective in inducing reductions in resting BP  (Ray and Carrasco 2000; 

Howden, Lightfoot, Brown, et al. 2002; Wiley, Dunn, Cox, et al. 1992; Millar, Bray, MacDonald, et al. 2008; 

Wiles, Coleman, and Swaine 2010; Devereux, Wiles, and Swaine 2011; Badrov, Horton, Millar, et al. 2013; 

Devereux and Wiles 2015; Gill, Arthur, Swaine, et al. 2015; Taylor, McCartney, Kamath, et al. 2003; McGowan, 

Levy, Millar, et al. 2006; Baross, Wiles, and Swaine 2013) but no previous study has examined whether 

continued isometric training maintains those physiological adaptions. Considering the high adherence 

recorded in Chapter 6, the return of BP back toward baseline at the end of 24 weeks of training requires 

further discussion. The following 2 sub-sections will expand on the possible explanations for the loss of 

training-induced reductions in resting BP with longer-term isometric training (i) lack of compliance (despite 

self-reported compliance being high) and (ii) physiological adaptation. This might help steer the development 

of future isometric training studies.  

Lack of compliance, as an explanation for the loss of isometric training-induced reductions in resting blood 

pressure 

As the current thesis is the first to utilise a longer-term (24-week) isometric training intervention, there are 

few previous studies with which to compare the findings. Most other previous isometric training studies have 

utilised interventions of 4-10 weeks in duration (Ray and Carrasco 2000; Howden, Lightfoot, Brown, et al. 

2002; Wiley, Dunn, Cox, et al. 1992; Millar, Bray, MacDonald, et al. 2008; Wiles, Coleman, and Swaine 2010; 

Devereux, Wiles, and Swaine 2011; Badrov, Horton, Millar, et al. 2013; Devereux and Wiles 2015; Gill, Arthur, 

Swaine, et al. 2015; Taylor, McCartney, Kamath, et al. 2003; McGowan, Levy, Millar, et al. 2006; Baross, Wiles, 

and Swaine 2013). However, in contrast to isometric exercise, many studies have measured BP changes 

following longer-term aerobic training (≥24 weeks). Interestingly meta-analyses have shown that the 

magnitude of BP reductions diminish in accordance with longer (≥24 weeks) training interventions (Lee, 

Watson, Mulvaney, et al. 2010; Cornelissen and Smart 2013; Cornelissen and Fagard 2005). In a review 

examining the effects of walking interventions, Lee et al., (2010) found that only four out of twelve 

interventions lasting 6 to 12 months had a significant positive effect on BP. Authors conducting meta-analyses 

suggest that this finding is due to a lack of compliance during long-term aerobic training regimes (Lee, 

Watson, Mulvaney, et al. 2010; Cornelissen and Smart 2013; Cornelissen and Fagard 2005). 

Unfortunately, the limitation of assessing compliance through self-reporting, is of concern (Bollen, Dean, 

Siegert, et al. 2014; Prince, Adamo, Hamel, et al. 2008). In comparison with direct measures, self-reporting 

has been shown to underestimate or overestimate participation levels (Prince, Adamo, Hamel, et al. 2008). 

However, in contrast to self-recalling and self-reporting of day-to-day levels of other types of exercise (e.g. 

aerobic exercise), isometric training programmes have the advantage of being of a simple structure (e.g. 4 x 

2 minutes of exercise). Therefore, isometric training is likely to be recalled more accurately. Other types of 

day-to-day exercises can span a variety of activities, from structured and planned exercise sessions to 
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unplanned chores (walking to shops, housework). Exercise can take place numerous times throughout the 

day at a range of differing intensities and therefore accurate recall of exercise type, duration, distance and 

intensity can be more challenging than that for isometric training. Indeed, self-reporting of the isometric 

training sessions in the work of this thesis required a simple “yes” or “no”.  

In addition, recall bias and desire to avoid criticism may lead to over exaggeration (De Geest and Sabaté 2003) 

of exercise completion. To assist with this, participants were not required to add any personal information 

to the diary and were informed that the real life compliance with isometric exercise was of great importance. 

For these reasons, it is therefore likely that this will have enabled accurate self-report measurement.   

In contrast to the self-reported completion of the exercise sessions in the isometric training programmes 

(compliance), the maintenance of appropriate intensity during self-regulated isometric training could not be 

verified in the same way. In phase 1 of the exercise intervention (Chapter 6) an attempt was made to verify 

whether individuals maintained an appropriate relative exercise intensity whilst self-regulating at CR-10 

“Level-6”. The findings showed that, despite some small overall increases in absolute strength (Table 6.6), 

the use of the CR-10 scale to regulate intensity ensured that participants adjusted their relative exercise 

intensity appropriately (Table 6.6). This enabled them to meet the perceived exercise intensity. However, 

this was only verified every 2 weeks, for 10 weeks (phase 1). Due to the unsupervised, “hands-off” approach 

in phase 2 (Chapter 6), strength changes and thus verification of the relative exercise intensity whilst using 

the scale over a longer period of time, was not possible.   

Research involving longer-term training that is self-paced or regulated by perceived exertion, is scarce. It 

appears that, objective verification of training intensity during self-regulated interventions have not been 

carried out previously. However, it would seem that outcome measures such as improvements in physical 

fitness are used to monitor the appropriateness of ‘exercise effectiveness’. For example, studies have shown 

that exercise interventions regulated by perceived exertion (Fujiwara, Asakuma, and Iwasaki 2000; 

Kobayashi, Hosoi, Takeuchi, et al. 2001) or self-selected walking pace (Arthur, Smith, Kodis, et al. 2002) have 

been successful in increasing aerobic (Fujiwara, Asakuma, and Iwasaki 2000; Kobayashi, Hosoi, Takeuchi, et 

al. 2001; Arthur, Smith, Kodis, et al. 2002) and anaerobic (Fujiwara, Asakuma, and Iwasaki 2000) capacity 

following 6 (Arthur, Smith, Kodis, et al. 2002; Kobayashi, Hosoi, Takeuchi, et al. 2001) and 12 months 

(Fujiwara, Asakuma, and Iwasaki 2000) of aerobic training. In addition, Creasy and colleagues (2017) showed 

that home-based, self-regulated exercise using the Borg 6-20 perceived exertion chart had the same 

physiological benefits (aerobic capacity) to a centre-based, heart-rate-controlled training intervention 

(Creasy, Rogers, Davis, et al. 2017), and Tang et al., (2017) showed that RPE-guided, home-based exercise 

elicited the same cardiovascular response as a centre-based, heart rate controlled, training programme. 

Unfortunately, both of these studies (Creasy, Rogers, Davis, et al. 2017; Tang, Zwisler, Berg, et al. 2017) took 

place over 12 weeks, and therefore they do not add to the debate about self-regulated training intensity and 
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the longer-term appropriateness of regulating exercise with a perceived exertion chart (Fujiwara, Asakuma, 

and Iwasaki 2000; Kobayashi, Hosoi, Takeuchi, et al. 2001; Arthur, Smith, Kodis, et al. 2002). Further studies 

on longer term compliance to a prescribed exercise intensity whilst self-regulating exercise, using a perceived 

exertion chart, is required. 

Physiological explanations for the loss of training-induced blood pressure reductions, with longer-term 

isometric training 

Although poor exercise compliance is a plausible and accepted reason for the reduced effectiveness of 

longer-term training programmes on resting BP, this theory may not fully explain the important findings of 

previous meta-analyses relating to other types of exercise (Lee, Watson, Mulvaney, et al. 2010; Cornelissen 

and Smart 2013; Cornelissen and Fagard 2005) and that of the current study which indicate an attenuated 

effect of training on resting BP with longer-term (≥24 weeks) training (Table 6.7).  

For example, despite some studies (Church, Earnest, Skinner, et al. 2007; Dobrosielski, Gibbs, Ouyang, et al. 

2012) reporting high exercise compliance (~95%), neither study found decreases in resting BP following 6 

months of aerobic training. In addition, longer-term training studies aimed at lowering BP, commonly include 

strictly-supervised training sessions, whereby adherence and drop-outs are closely monitored. Drop-out 

rates are sometimes accounted for, by using an ‘intention to treat’ analysis (Liu-Ambrose, Best, Davis, et al. 

2016) but other studies have simply excluded those who only comply partially from the final analysis (Swift, 

Johannsen, Tudor-locke, et al. 2012). The influence of compliance on final outcomes could therefore be 

questionable.    

Curiously, longer-term studies reporting no change in BP, almost invariably show increases in aerobic exercise 

capacity (Church, Earnest, Skinner, et al. 2007; Dobrosielski, Gibbs, Ouyang, et al. 2012; Cononie, Graves, 

Pollock, et al. 1991; Santa-Clara, Szymanski, and Fernhall 2003; Georgiades, Sherwood, Gullette, et al. 2000; 

Babbitt, Perkins, Diaz, et al. 2017). This indicates an appropriate exercise prescription and maintenance of 

‘exercise quality’ throughout the training intervention. In addition, short-term aerobic training studies, aimed 

at reducing BP, have prescribed similar exercise programmes and have found significantly reduced BP 

(Cornelissen and Smart 2013). It is therefore important to scrutinise long-term training programmes and 

understand why BP benefits are smaller or non-existent following long-term training programmes.   

As already discussed the self-regulation of isometric training, using the CR-10 method, aims to ensure that 

individuals continually adapt their relative exercise intensity as absolute strength changes. However, section 

7.2 of this discussion has highlighted that a plateau in training adaptations (e.g. strength gains) could have a 

bearing on the magnitude of BP reductions. Alongside the relative intensity (self-regulated), training volume 

(4 x 2minutes), inter-rep rest (4 minutes) and body part (non-dominant hand) all remained constant 

throughout the training. Taking the potential negative impact of training plateaus into consideration, the 
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downfall of this training programme is that it lacks potential for progressive overload through variation of 

training volume – these are known training components believed to be essential for optimising a training 

stimulus (Kraemer and Ratamess 2004). It is very likely that by the end of training block 2 (Chapter 6, phase 

2) a sufficient training stimulus had ceased in all individuals, causing resting BP to revert back towards 

baseline (rather like ‘detraining’). The need to alter components of a longer-term training programme 

designed to reduce BP or maintain BP reductions, does not seem to have been discussed to date.   

In support of the progressive overload theory, longer-term aerobic training studies (≥24 weeks) that have 

shown reductions in resting BP have often used a progressive overload training programme whereby training 

volume (e.g. number of repetitions and/or training intensity) are increased over the course of the training 

regime; (Cononie, Graves, Pollock, et al. 1991; Cox, Burke, Morton, et al. 2001; Ketelhut, Franz, and Scholze 

2004; Liu-Ambrose, Best, Davis, et al. 2016; Braith, Pollock, Lowenthal, et al. 1994). Indeed, longer-term 

training studies that maintain a constant training intensity and training session duration do not always 

demonstrate resting BP reductions (Church, Earnest, Skinner, et al. 2007; Dobrosielski, Gibbs, Ouyang, et al. 

2012; Swift, Johannsen, Tudor-locke, et al. 2012; Georgiades, Sherwood, Gullette, et al. 2000). Although this 

type of exercise prescription is suitable for the maintenance of exercise performance adaptations (i.e. VO2 

peak), it seems that a plateau (whereby no further adaptations will occur) will inevitably be reached 

(Kraemer, Ratamess, and French 2002). With regards to resting BP, the influence of this training plateau 

occurring early in a 10-week training programme (Section 7.2) or later in a 24-week training programme, 

could inevitably reduce the training-induced reductions in resting BP after isometric training. It could be 

suggested that, due to training adaptations, the metabolic stress/anaerobiosis required for a sufficient 

stimulus of the metaboreflex is no longer being reached.  

As discussed in section 7.2, recent evidence suggests that the production of blood lactate is an important 

training component that is linked with reductions in resting BP. Considering the evidence that isometric 

training improves muscle oxidative capacity and reduces metaboreflex activity (Mostoufi-Moab, Widmaier, 

Cornett, et al. 1998) it would be pertinent to determine whether the principle of overload is a mandatory 

part of long-term isometric exercise prescription that is aimed at reducing resting BP.  

Overload can be introduced by changes in training intensity and volume. In resistance training, manipulating 

rest intervals, and number of repetitions has been shown to overload the muscle, placing greater stress on 

the glycolytic system (Abdessemed, Duche, Hautier, et al. 1999; Rogatzki, Wright, Mikat, et al. 2014). Thereby 

resulting in increased reliance on anaerobic energy pathways and therefore lactate production. In specific 

reference to isometric training, increasing the number of repetitions, reducing rest between repetitions, or 

altering body part being exercised, are potential methods of manipulating the overload in relation to 

isometric training.  
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7.5 Finding(1): A 10-week, part-supervised, self-regulated isometric handgrip 

training programme did not induce changes in ambulatory BP (systolic, 

diastolic, mean arterial pressure). 

Finding(2): A 10-week self-regulated isometric training programme 

introduced clinically significant reductions in resting SBP that were similar 

in magnitude to those previously reported. These changes were not 

statistically significant. 

Question: How might the effects of self-regulated isometric exercise differ 

between resting and 24-hour ambulatory blood pressure?  

 

Findings from Chapter 4 (Table 4.5) showed that 24-hr ABPM is more reproducible as compared with 

previously reported variability in resting BP measurements – the increased sensitivity associated with 24-hr 

BP monitoring should therefore make the detection of post-intervention changes easier. In addition to its 

superior reproducibility (Chapter 4), ABPM is applicable to real-life activities, removes the potential of a 

placebo effect, observer bias and white coat hypertension (De La Sierra, Segura, Banegas, et al. 2011; Felício, 

Pacheco, Ferreira, et al. 2007; Mancia, Omboni, Parati, et al. 1995). For these reasons, ABPM is widely 

recommended for the diagnosis of hypertension and the assessment of anti-hypertensive treatments (NICE 

2011) 

Despite the disadvantages of resting BP measurements, the ability to control the environment, position of 

the patient and pre-measurement resting conditions, it remains a popular method when assessing post-

intervention changes in BP. The majority of isometric training studies have carried out well-designed 

randomised control trials (RCTs) or crossover trials and have almost consistently revealed larger BP changes 

in the training group compared with a control group (Ray and Carrasco 2000; Howden, Lightfoot, Brown, et 

al. 2002; Wiley, Dunn, Cox, et al. 1992; Millar, Bray, MacDonald, et al. 2008; Wiles, Coleman, and Swaine 

2010; Devereux, Wiles, and Swaine 2011; Badrov, Horton, Millar, et al. 2013; Devereux and Wiles 2015; Gill, 

Arthur, Swaine, et al. 2015; Taylor, McCartney, Kamath, et al. 2003; McGowan, Levy, Millar, et al. 2006; 

Baross, Wiles, and Swaine 2013). The work of the current thesis employed a RCT design and although changes 

in resting BP (SBP, DBP, MAP) were not statistically significant (Table 6.2) larger decreases were observed in 

the experimental group. In contrast to resting BP measurements, 24hr-average, daytime and night-time BP 

did not show any significant changes.  

As introduced in Chapter 2 (section 2.2.3) the literature exploring changes in ambulatory BP, following 

isometric training interventions, is scarce. Despite positive reductions in ambulatory BP found in healthy 
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normotensive participants following isometric training (Somani, Baross, Levy, et al. 2017), the current 

findings add to the body of literature reporting a lack of change in ambulatory BP in those with pre-

hypertension and hypertension (medicated and un-medicated) (Pagonas, Vlatsas, Bauer, et al. 2017; Stiller-

Moldovan, Kenno, and McGowan 2012; Ash, Taylor, Thompson, et al. 2016). Unfortunately, the concomitant 

measurement of resting and ambulatory BP following isometric exercise is not commonly employed. It 

appears that only one study measured both resting and ambulatory BP (Stiller-Moldovan, Kenno, and 

McGowan 2012) and reported no significant reductions in either measurement. 

However, the disparate findings between resting and ambulatory BP following other training regimes are not 

in isolation. Meta-analyses show that the effect of aerobic exercise training on ambulatory BP is consistently 

smaller than resting measurements (Sosner, Guiraud, Gremeaux, et al. 2017; Cornelissen, Buys, and Smart 

2013; Cardoso, Gomides, Queiroz, et al. 2010). In addition, aerobic training studies carried out on pre-

hypertensive and hypertensive individuals have found similarly conflicting outcomes (Seals and Reiing 1991; 

Seals, Tanaka, Clevenger, et al. 2001; Bursztyn, Ben-Ishay, Shochina, et al. 1993) to that of the work of this 

thesis, where reductions in resting BP were observed, without ambulatory BP changes.  

When taken together, findings from previous research and that of the work of this thesis, suggest that 24-

hour ambulatory BP recordings can provide quite different information on training intervention effects. It 

would seem that resting measurements may not reflect training-induced changes in arterial pressure during 

ambulatory conditions.  Despite this, there remains a link between lowering resting BP and reduced CV risk 

(Ettehad, Emdin, Kiran, et al. 2016). Therefore, it is unclear whether discrepancies in training-induced BP 

reductions seen during resting and ambulatory conditions, affect the clinical importance of the findings. 

Considering the discrepancies between findings on resting and ambulatory BP, a discussion between the 

inherent differences in these measurements is required. In contrast to resting BP, ambulatory BP 

measurements capture an individual’s BP during daily life activities. This ambulatory state includes a range 

of physical and mental stressors and therefore reflects an individual’s hypertensive responses to stimuli and 

their ability to control BP during ambulatory conditions (Schultz and Sharman 2013). Research suggests that 

pre-hypertensive and hypertensive individuals and those with a family history of hypertension have 

exaggerated sympathetic and pressor responses to physical (Greaney, Matthews, Boggs, et al. 2014; Delaney, 

Greaney, Edwards, et al. 2010; Vongpatanasin, Wang, Arbique, et al. 2011; Schultz and Sharman 2013) and 

mental stressors (Armario, Del Rey, Martin-Baranera, et al. 2003; Fredrikson and Matthews 1990) with a 

number of studies showing direct relationships between an individual’s hypertensive responses to 

exercise/lab-based tasks and ambulatory BP monitoring in real life conditions (Leite, Melo, Mello, et al. 2010; 

Lima, Spritzer, Herkenhoff, et al. 1995; Miyai, Arita, Morioka, et al. 2005; McKinney, Miner, Rüddel, et al. 

1985). For example, despite no differences in resting BP measurements, Leite and colleagues (2010) showed 

that those with an increased SBP response to an exercise treadmill test had significantly greater average, 
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daytime and night-time systolic BP values. With this in mind, the ability of exercise interventions to lower 

resting BP and not ambulatory BP, may be associated with a limited effect on the mechanisms responsible 

for exaggerated pressor responses/systolic BP reactivity during tasks of daily living. This is commonly 

observed in pre-hypertensive and hypertensive adults (Greaney, Matthews, Boggs, et al. 2014; Delaney, 

Greaney, Edwards, et al. 2010; Vongpatanasin, Wang, Arbique, et al. 2011; Schultz and Sharman 2013). The 

mechanisms responsible for these exaggerated hypertensive responses are not yet fully understood. 

However, researchers have proposed an impairment of endothelial dependent vasodilation, arterial stiffness 

and neuro-humoral factors (e.g. increased levels of Angiotensin II) as possible contributors (Kim and Ha 2016). 

The impact of arterial stiffness is particularly relevant to older populations where it is more commonly 

observed (Pinto 2007; Tanaka, Dinenno, Monahan, et al. 2000). Arterial stiffness would reduce the buffering 

capacity of the vascular system, to changes in BP and therefore individuals will experience heightened BP 

reactivity to physical and mental stressors during ambulatory conditions. The potential impact of isometric 

training on arterial stiffness is discussed more thoroughly in section 7.5. 

Findings from Chapter 6 showed that SBP reactivity to repetition 1 of the isometric exercise session was 

unaffected following 10 weeks of training (Table 6.6). It could be hypothesised that this finding is related to 

the lack of change in ambulatory BP recordings. In contrast to this finding, Badrov et al., (2013) found a 

reduction in SBP reactivity in a similar population group following a comparable handgrip isometric training 

intervention. However, 24-hr ABP was not measured and therefore the link between changes in ‘SBP 

reactivity’ and ambulatory BP cannot be determined.  

7.6 Finding: A 10 week self-regulated isometric handgrip training programme 

induced small, non-significant improvements in markers of cardio-vagal 

tone as measured by 24-hour HRV. In addition, small, non-significant 

reductions were observed in the LF component of systolic BPV, which is 

indicative of a reduction in sympathetic vasomotor tone. 

Question: Does the current thesis offer further insight into the physiological 

mechanisms responsible for resting blood pressure reductions following 

isometric training? 

 

The mechanisms responsible for resting BP reductions following a period of isometric exercise training 

continue to remain elusive. Proposed mechanisms include vascular and neural adaptations (Millar, 

McGowan, Cornelissen, et al. 2014). In relation to vascular adaptations, findings have shown reductions in 

markers of oxidative stress (Peters, Alessio, Hagerman, et al. 2006) and increased endothelial dependent 

vasodilation (McGowan, Visocchi, Faulkner, et al. 2007; McGowan, Levy, Millar, et al. 2006; Badrov, Freeman, 
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Zokvic, et al. 2016). Considering the impact of autonomic dysfunction on the development of hypertension 

(see Chapter 2, section 2.i), the potential effects of isometric exercise on autonomic function is a common 

line of enquiry. To date, findings are mixed (Wiles, Coleman, and Swaine 2010; Ray and Carrasco 2000; Stiller-

Moldovan, Kenno, and McGowan 2012; Millar, Levy, Mcgowan, et al. 2013; Badrov, Bartol, Dibartolomeo, et 

al. 2013). 

The work of this thesis used indirect measurements of autonomic function (HRV, systolic BPV) as a means of 

providing mechanistic insight into the effects of isometric training on BP. Chapter 6 demonstrated that 24-

hour HRV was not significantly altered following 10-weeks of this type of training. However, there was a trend 

towards an increase in ‘vagal HRV parameters’ (pNN50%, rMSSD, HFnu) and an improvement in the ratio 

between LF and HF (LF:HF) in the experimental group (Chapter 6, phase 1). A common interpretation of the 

LF:HF ratio is an improvement in sympatho-vagal balance (Malliani, Pagani, Lombardi, et al. 1991; Pagani, 

Lombardi, Guzzetti, et al. 1986) although there is recent controversy with regards to its true physiological 

meaning (Shaffer et al. 2014; Heathers, 2014). In relation to systolic BPV changes were not significantly 

different following 10-weeks of isometric handgrip training but showed a trend towards a decrease in LF% in 

the experimental group, indicating reduced levels of sympathetic vasomotor activity (Cevese, Grasso, 

Poltronieri, et al. 1995; Montano, Lombardi, Gnecchi Ruscone, et al. 1992; Stafford, Harris, and Weissler 

1970). In the work of this thesis, similar trends in both systolic BPV and HRV were observed in the shorter-

term training group (Table 6.10) following 7-weeks of isometric training. 

Considering the day-to-day variability in these indirect measurements, the sample size within the work of the 

present thesis (Chapter 6) did not provide sufficient power to enable the detection of statistically significant 

differences (Chapter 4, Table 4.6). However, similar to the findings of Chapter 6, Taylor and colleagues (2003) 

reported changes in HRV. Their findings revealed a trend towards a reduced LF:HF and a significant increase 

in the HF spectral band. These findings suggested an increase in cardio-vagal tone (Taylor, McCartney, 

Kamath, et al. 2003). However, considering the large random variation associated with the HF frequency 

band (Chapter 4, Table 4.5) it is unfortunate that the less variable time domain measures (Chapter 4; Table 

4.5) were not reported; this would have provided further support for their findings (Taylor, McCartney, 

Kamath, et al. 2003). In addition, Millar et al., (2013) found increases in non-linear heart rate complexity, a 

measure known for its ability to detect subtle changes in vagal modulation (Millar, Cotie, Amand, et al. 2010). 

No changes were observed in the traditional HRV measurements (Millar, Levy, Mcgowan, et al. 2013). 

Participants in both studies (Taylor, McCartney, Kamath, et al. 2003; Millar, Levy, Mcgowan, et al. 2013) 

included hypertensive males and females aged 60-80 years and are therefore comparable to the population 

of pre-hypertensive and hypertensive males and females aged between 55-77 years used in the work of this 

thesis. In contrast, other findings have revealed no significant or trending changes in HRV in young healthy 

males (Wiles, Coleman, and Swaine 2010), young healthy women (Badrov, Bartol, Dibartolomeo, et al. 2013) 

and well-controlled hypertensives (Stiller-Moldovan, Kenno, and McGowan 2012) following isometric 
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training. Overall, the findings from the current thesis and previous research indicate that isometric training 

could make a small contribution to a change in cardio-vagal tone in older participants. However, whilst small 

changes may be observed in HRV, the limited data available does not provide strong evidence in support of 

modified HRV as the primary mechanism responsible for resting BP reductions. 

The inconclusive findings within the isometric training literature is compared to aerobic training where there 

is growing support for its positive influence on both resting (Melanson and Freedson 2001; Collier, Kanaley, 

Carhart, et al. 2009; Cozza, Di Sacco, Mazon, et al. 2012) and 24hr HRV (Pigozzi, Alabiso, Parisi, et al. 2001; 

Tulppo, Hautala, Mäkikallio, et al. 2003; Hallman, Holtermann, Søgaard, et al. 2017; Kiviniemi, Tulppo, 

Eskelinen, et al. 2014; Kiviniemi, Hautala, Makikallio, et al. 2006; Madden, Levy, and Stratton 2006) in healthy 

(Tulppo, Hautala, Mäkikallio, et al. 2003; Pigozzi, Alabiso, Parisi, et al. 2001; Melanson and Freedson 2001; 

Hallman, Holtermann, Søgaard, et al. 2017; Kiviniemi, Tulppo, Eskelinen, et al. 2014; Kiviniemi, Hautala, 

Makikallio, et al. 2006) and hypertensive participants (Cozza, Di Sacco, Mazon, et al. 2012; Collier, Kanaley, 

Carhart, et al. 2009). Similar to the findings in isometric training, studies provide little evidence in support of 

changes in HRV following dynamic resistance training (Karavirta, Costa, Goldberger, et al. 2013; Cooke and 

Carter 2005; Madden, Levy, and Stratton 2006; Kingsley and Figueroa 2016). However, the majority of studies 

have recruited healthy individuals (Cooke and Carter 2005; Karavirta, Costa, Goldberger, et al. 2013; Madden, 

Levy, and Stratton 2006) and more research involving hypertensive individuals is required. Some studies have 

directly compared HRV following aerobic and dynamic resistance training and found that aerobic training had 

a positive effect on HRV, whilst dynamic resistance did not (Collier, Kanaley, Carhart, et al. 2009; Karavirta, 

Costa, Goldberger, et al. 2013; Madden, Levy, and Stratton 2006). Interestingly, these disparate findings 

between exercise modalities are consistent with those for training-induced bradycardia – a common 

adaptation associated with aerobic training (Rivera-Brown and Frontera 2012) and not dynamic resistance 

(Fleck 1988; Schmidt, Hansen, Andersen, et al. 2014; Morra, Zaniqueli, Rodrigues, et al. 2014; Rossow, Fahs, 

Thiebaud, et al. 2014) or isometric training  (Wiles, Coleman, and Swaine 2010; Badrov, Horton, Millar, et al. 

2013; Badrov, Bartol, Dibartolomeo, et al. 2013; Taylor, McCartney, Kamath, et al. 2003). The findings of the 

current thesis are in agreement with these findings (Chapter 6, Table 6.2). 

The different mechanical stimuli offered by aerobic and resistance training (isometric, dynamic resistance) 

could provide some insight into the disparate mechanistic findings between aerobic and resistance (dynamic 

and isometric) training. For example, it has been suggested that aerobic exercise offers a continuous pulsatile 

stretching of collagen fibres within the vasculature, whereas resistance training induces abrupt and sustained 

pressor effects (Madden, Levy, and Stratton 2006) resulting from mechanical compression of the 

intramuscular vasculature (Fisher, Young, and Fadel 2015; Lind and McNicol 1967b; Goodwin, McCloskey, 

and Mitchell 1972). It could be hypothesised that the stress placed on the heart during aerobic training 

provides a unique mechanical stimulus that is not as prominent during resistance training.  
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For example, in addition to improved HRV, aerobic training is also associated with improved baroreflex 

sensitivity (BRS; (Iwasaki, Zhang, Zuckerman, et al. 2003; Iellamo, Legramante, Massaro, et al. 2000; Collier, 

Kanaley, Carhart, et al. 2009) and arterial compliance (Tanaka, Dinenno, Monahan, et al. 2000; Pierce, Harris, 

Seals, et al. 2016; Vaitkevicius, Fleg, Engel, et al. 1993; Heffernan, Collier, Kelly, et al. 2007). Considering the 

relationship between BRS and arterial stiffness (Mattace-Raso, van den Meiracker, Bos, et al. 2007; Okada, 

Galbreath, Shibata, et al. 2012; Pierce, Harris, Seals, et al. 2016) it could be hypothesised that the unique 

mechanical stimulus induced during aerobic training is responsible for the commonly observed increases in 

arterial compliance (Tanaka, Dinenno, Monahan, et al. 2000; Pierce, Harris, Seals, et al. 2016; Vaitkevicius, 

Fleg, Engel, et al. 1993) and therefore improved BRS (Mattace-Raso, van den Meiracker, Bos, et al. 2007; 

Okada, Galbreath, Shibata, et al. 2012; Pierce, Harris, Seals, et al. 2016). In turn, improved BRS would 

subsequently lead to improved HRV through better signalling by the baroreceptors (Carthy 2014). These 

physiological changes, commonly associated with aerobic training, are in contrast to dynamic resistance and 

isometric training where changes in arterial stiffness (Rossow, Fahs, Thiebaud, et al. 2014; Cortez-Cooper, 

DeVan, Anton, et al. 2005; Heffernan, Collier, Kelly, et al. 2007; Pagonas, Vlatsas, Bauer, et al. 2017) BRS 

(Cooke and Carter 2005; Collier, Kanaley, Carhart, et al. 2009) and HRV (Collier, Kanaley, Carhart, et al. 2009; 

Karavirta, Costa, Goldberger, et al. 2013; Madden, Levy, and Stratton 2006; Wiles, Coleman, and Swaine 

2010; Stiller-Moldovan, Kenno, and McGowan 2012; Badrov, Bartol, Dibartolomeo, et al. 2013) are not as 

readily observed. 

However, it is important to note that, increases in both HRV and BRS have been recorded following an acute 

bout of isometric exercise (Taylor, Wiles, Coleman, et al. 2017). In addition, Devereux and colleagues showed 

that BRS following an acute bout of isometric exercise improved following training (Devereux and Wiles 

2015). These changes, however, have only been observed in the acute post exercise phase; and do not lend 

support for training-related adaptations. Instead, these observations could be simply related to ‘reactive 

hyperaemia’, a phenomenon associated with an acute bout of isometric exercise. Reactive hyperaemia is 

associated with a surge in NO bioavailability which has a positive association with vagal tone (Chowdhary and 

Townend 1999, 2001). Researchers have hypothesised that the acute changes in autonomic activity following 

acute isometric exercise provides insight into the mechanisms responsible for chronic BP adaptations (Taylor, 

Wiles, Coleman, et al. 2017). However, these acute changes are not observed following aerobic training 

(Chapter 2, section 2.7.1) where evidence undoubtedly suggests that BRS and HRV improve following training 

– therefore the relationship between acute autonomic effects and chronic autonomic effects of training 

should therefore remain as speculative.  

Alongside the current thesis, one previously-published study has measured systolic BPV following a period of 

isometric training (Taylor, McCartney, Kamath, et al. 2003). Findings from the work of the current thesis and 

that of Taylor and colleagues suggest a decrease in the LF component of systolic BPV and therefore a decrease 

in vasomotor sympathetic activity (Cevese, Grasso, Poltronieri, et al. 1995; Montano, Lombardi, Gnecchi 
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Ruscone, et al. 1992; Stafford, Harris, and Weissler 1970). In addition, whilst changes in HRV were not 

observed following dynamic resistance training improvements in the LF component of BPV was observed in 

hypertensives following 4 weeks training (Collier, Kanaley, Carhart, et al. 2009). In contrast to these findings 

others have found no change in LF systolic BPV following 8 (Cooke and Carter 2005) and 12 (Alex, Lindgren, 

Shapiro, et al. 2013a) weeks of resistance training. However, participants were normotensive and it could be 

suggested that peripheral sympathetic nerve activity is less likely to undergo changes in healthy vessels. 

As discussed in detail in Chapter 2, endothelial dysfunction and autonomic nervous system imbalance are 

inter-related. For example, a dysfunctional endothelium undergoes a reduction in the bioavailability of NO 

which exposes it to the pro-inflammatory and vasoconstrictor effects of ROS, angiotensin II and endothelin 1 

(Chapter 2, section 2.iii). Considering the positive influence of isometric training on endothelium dependent 

vasodilation (McGowan, Visocchi, Faulkner, et al. 2007; McGowan, Levy, Millar, et al. 2006; Badrov, Freeman, 

Zokvic, et al. 2016), it could be hypothesised that, if isometric training decreases vasomotor sympathetic 

tone, it could do this via improvements in endothelial function. Improvements in endothelial function 

following handgrip (IHG) training has been suggested to be related to an increase in nitric oxide bioavailability 

and/or improved oxidative stress (Green, Maiorana, O’Driscoll, et al. 2004). Oxidative stress has previously 

been shown to improve following IHG training (Peters, Alessio, Hagerman, et al. 2006). This theory, 

connecting improvements in endothelium function and vasomotor sympathetic activity, remains speculative 

and further analysis using more sensitive measures of vasomotor sympathetic tone is required.  

This system of isometric exercise training provides the clinical and elderly populations with an opportunity 

to engage with isometric exercise as an additional option for BP management. Although aerobic exercise is 

still the most widely recommended exercise modality for BP management (Ghadieh and Saab 2015; 

Pescatello, Franklin, Fagard, et al. 2004a; Mancia, Fagard, Narkiewicz, et al. 2013; Brook, Appel, Rubenfire, 

et al. 2013; James, Oparil, Carter, et al. 2014) research suggests that compliance is poor (Ghadieh and Saab 

2015; Pescatello, Franklin, Fagard, et al. 2004a; Mancia, Fagard, Narkiewicz, et al. 2013; Brook, Appel, 

Rubenfire, et al. 2013; James, Oparil, Carter, et al. 2014). In specific reference to the elderly patient, there 

are a number of barriers that prevent the uptake and long-term engagement with aerobic exercise. For 

example, lack of mobility, chronic conditions and fear of injury are cited as common barriers to aerobic 

exercise participation in this population group (Jefferis, Sartini, Lee, et al. 2014; Franco, Tong, Howard, et al. 

2015). Considering that the prevalence of hypertension increases with age (Knott and Mindell 2011; Piepoli, 

Hoes, Agewall, et al. 2016; Franklin, Gustin, Wong, et al. 1997; Chobanian, Bakris, Black, et al. 2003), the 

opportunity to participate in an alternative exercise option that is easy to self-regulate, cost-effective and 

chair based should be welcomed by these individuals. 

With reference to clinical populations, individuals recovering from cardiovascular events (e.g. myocardial 

infarction and stroke) are advised to engage in long-term exercise participation (Rand, Eng, Tang, et al. 2009; 
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Dalal, Doherty, and Taylor 2015). However, it has been shown that large numbers of individuals recovering 

from cardiovascular events continue to lead sedentary lives (Rand, Eng, Tang, et al. 2009; Dalal, Doherty, and 

Taylor 2015). The primary barriers associated with exercise participation following stroke are physical 

impairments, lack of motivation and environmental factors (Damush, Plue, Bakas, et al. 2007). For patients 

required to engage in a cardiac rehabilitation programmes, geographical location, access to transport and a 

dislike of group-based exercise sessions are cited as common barriers to participation (Dalal, Doherty, and 

Taylor 2015). Although engaging in aerobic exercise has a number of social and physical benefits for these 

clinical populations, the option to engage in a self-regulated isometric exercise training programme should 

at least provide these individuals with an opportunity to participate in an effective exercise intervention for 

BP management and therefore aid in the prevention of future cardiovascular events.  

As compared with aerobic exercise, it has been previously proposed that the simplicity, time-effectiveness 

and home-based possibility of isometric exercise would result in superior exercise sustainability (Inder, 

Carlson, Dieberg, et al. 2016; Carlson, Dieberg, Hess, et al. 2014; McGowan, Proctor, Swaine, et al. 2017). 

However, research also suggests that compliance to other seemingly simple approaches to BP management 

(e.g. medications, dietary changes) are also associated with poor adherence (Riegel, Moreira, Fuchs, et al. 

2012; Rajpura and Nayak 2014; Brook, Jackson, Giorgini, et al. 2015). It was therefore important for this study 

to measure levels of isometric exercise adherence. The validation of the CR-10 scale provided the opportunity 

to prescribe a home-based, unsupervised isometric exercise programme and assess participant’s levels of 

exercise adherence over 24 weeks. Compliance to this self-regulated, home-based isometric exercise was 

excellent (Figure 6.6) and therefore highlights that the development of the CR-10 “Level-6” isometric exercise 

system provides individuals with an effective, easy to complete exercise with the potential for long-term 

exercise adherence. 

7.7 Thesis limitations and future directions  

 

Considering the prevalence of hypertension, levels of mortality and costs to the economy (Chapter 1) the 

prescription of CR-10 “Level-6” must be easily applied to large portions of the population. In order to 

introduce the participants to the use of the CR-10 scale, the current thesis used a familiarisation protocol 

(see section 6.2.3). Future studies are required to determine whether a brief and self-instructed ‘anchoring 

procedure’ would be sufficient to familiarise participants with the CR-10 scale. This would obviate the 

necessity for an exercise professional to train participants in relation to the use of the scale and provide the 

general practitioner with a simple prescription procedure (e.g. instruction pamphlet). This would further 

enhance the simplicity and accessibility of the self-regulated isometric exercise method.  

The current thesis provided each participant with a basic ergonomic handgrip exerciser (Figure 3.10) (Rolyan, 

Patterson Medical, Nottinghamshire, UK) for the performance of self-regulated isometric handgrip training. 
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Despite the low cost of these handgrip exercisers, it is important to further enhance the accessibility of self-

regulated isometric exercise; future studies are required to test the effectiveness of isometric exercises that 

might be performed on immovable items commonly found within the home, in addition to isometric 

exercises that may not even require equipment (e.g. hand clasp).  

Appropriate management of BP requires life-long lifestyle changes. Considering that the results of this thesis 

indicated a loss of resting BP effects (Table 6.7) during longer-term exercise training (24 weeks), further 

research is required to clarify the long-term applicability of self-regulated isometric handgrip exercise on BP 

management. A long-term RCT study should be carried out to clarify whether a loss of training-induced BP 

changes does indeed occur. As suggested in section 7.4, isometric exercise carried out beyond the traditional 

8-10 week exercise programme may need progressive exercise training where overload is consistently 

applied through changes in rest duration, number of repetitions or intensity of contraction. The effect of 

adding an overload component should be compared with a traditional training protocol (which doesn’t 

usually have this type of progressive overload).   

 

The work of this thesis highlighted inter-individual differences in resting BP reductions following 10-weeks of 

self-regulated isometric exercise training (Figure 7.1). Section 7.3, discusses some key individual differences 

in isometric training adaptations (e.g. strength changes and pressor response during repetition 4) and how 

they could be related to changes in resting SBP. In order to understand individual differences in BP response, 

the study of individual training adaptations and their effect on BP changes is an important area of further 

study.   

 

Although the work of this thesis indicated a trend towards changes in autonomic nervous system regulation 

of BP following isometric exercise training, the inherent variability within these measurements alongside the 

small sample size means that the findings have not provided conclusive evidence in relation to the role of 

changes in autonomic function when BP is reduced after training. Further, indirect measures of autonomic 

function, such as those used in the current thesis (HRV and systolic BPV) may not be sensitive enough to 

detect small changes. Although 24-hour ambulatory BP measurements were found to be more reproducible 

than 5-minute resting measurements (Chapter 4), further research on more-reliable indices of autonomic 

function are needed, to clarify the effects of isometric handgrip training on these variables. 

 

Finally, little is still known about the influence of isometric training on 24-hour ambulatory BP measurements. 

Findings from the current thesis suggest that ambulatory BP does not change in a group of pre-hypertensive 

and hypertensive adults following isometric handgrip training (Chapter 6). However, other limited research 

suggests that normotensive adults experience ambulatory BP reductions following isometric training 

(Somani, Baross, Levy, et al. 2017). Further research is therefore required to directly compare the 24-hour 
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ambulatory BP effects of isometric training on normotensives, pre-hypertensives, medicated hypertensives 

and non-medicated hypertensives. As discussed in section 7.5, pre-hypertensive and hypertensive adults 

display exaggerated pressor responses during physical and mental tasks associated with daily living (Greaney, 

Matthews, Boggs, et al. 2014; Delaney, Greaney, Edwards, et al. 2010; Vongpatanasin, Wang, Arbique, et al. 

2011; Schultz and Sharman 2013; Fredrikson and Matthews 1990; Armario, Del Rey, Martin-Baranera, et al. 

2003); these responses may be due to an impairment of endothelial-dependent vasodilation, arterial stiffness 

and/or neuro-humoral factors (e.g. increased levels of Angiotensin II) (Kim and Ha 2016). Further 

understanding of the influence of isometric training on ambulatory BP in individuals with differing BP status 

could begin to offer further insight into some of the potential mechanisms unaffected by isometric training 

(e.g. endothelial dependent vasodilation, arterial stiffness and neuro-humoral factors). 

7.8 Conclusion  

 

Isometric exercise is a simple, time-efficient, non-pharmacological approach to lowering BP (McGowan, 

Proctor, Swaine, et al. 2017). However, the current methods of isometric handgrip intensity prescription 

(%MVC) are not suitable and easily accessible to all members of the population. This is especially true for 

clinical and elderly populations where the performance of maximal isometric contractions is contraindicated 

or limited due to frailty or arthritis. In addition, the cost of specialised digital devices that measure force 

imposes a financial barrier to isometric exercise participation. 

This thesis provides strong support for the use of the CR-10 scale to self-regulate isometric handgrip exercise 

intensity at “Level-6”, whilst also proving effective for BP management in pre-hypertensive and hypertensive 

participants. This new system of isometric intensity regulation eliminates the need for regular maximal 

contractions and provides the exerciser with the flexibility to perform isometric handgrip training on non-

specialist handgrip instruments. This thesis therefore provides an important step forward in providing an 

alternative method for intensity regulation which will make the prescription and execution of isometric 

handgrip exercise training easier for both medical staff and patients.  
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Can the rating of perceived exertion scale be used to regulate the sympathetic response in pre-
hypertensive and hypertensive adults (≥55years) during an isometric handgrip task? 

Information Sheet for Participants 

Invitation 

We would like to invite you to take part in our research study. Before you decide on whether you would like 

to participate we would like you to understand the purpose of our research and what it would involve for 

you. We are very happy to answer any questions that you might have.  

 

Purpose of the research 

Research has previously shown that isometric exercise (similar to holding a moderately heavy shopping bag) 

has positive effects on lowering blood pressure – however, some findings demonstrate that some people do 

not respond to the exercise programme. It has been shown that your bodies’ immediate response (i.e. change 

in blood pressure) to the exercise could predict how you will respond to the exercise. Using this information 

we would like to find out if there is a different way in which we can prescribe exercise to you – the exercise 

will be individualised and become your own personal exercise programme. This will hopefully give you the 

best chance of lowering your blood pressure.  

 

We therefore need to test a new method of monitoring the exercise intensity. This method is called the Rate 

of Perceived Exertion – this is a simple chart that asks you to express feelings of how hard you are working in 

a numerical format.  

 

What is involved in participating? 

You will be required to visit the lab on 5 separate days.  

 

Visit 1, part i) We will firstly need to confirm that you have high blood pressure. For this part of the research 

we will need you to visit the Human Performance Laboratory (High Wycombe Campus, Buckinghamshire New 

University) for a blood pressure measurement. You will be requested to avoid food (2 hours), caffeine (12 

hours) and alcohol (24 hours) prior to the visit. You will also be asked to void your bladder in advance of the 

testing session.  

Following 10 minutes of seated rest you will have your blood pressure taken between 2 and 4 times.  

Visit 1, part ii) If you do have high blood pressure and are eligible for study participation we will introduce 

you to the perceived exertion scale (Category-ratio scale). We will take some resting measures (see below) 

and determine your maximal handgrip strength – this will involve 3 x maximal handgrip exercises with your 
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non-dominant hand. Following this you will be asked to carry out 3 x 2minte handgrip exercises (between 20-

60% of your maximal strength). A 5 minute rest will be given following each exercise.  

 

Resting measures  

- The finger cuff will be attached onto the middle finger of your dominant (writing) hand.   
- Once the device have been attached, you will be given time to relax. A resting reading of blood 

pressure, heart rate will be measured.  
 

Isometric exercise 

- Remaining seated you will perform 3 maximal handgrip exercises for 5 seconds. This will be 
followed by 3 x 2 minute handgrip contractions followed by 5 minutes rest. 

 

Preparation for your appointment 

- Wear a t-shirt/short sleeved shirt 
- Avoid food for (2 hours), caffeine (12 hours) and alcohol (24 hours) prior to the visit.  

 

Visit 2) You will return to the lab and following resting blood pressure and heart rate measurements you will 

be requested to perform 8 x 2 minute isometric handgrip contractions of varying intensity – your intensity 

will be displayed on a screen. Each contraction will be followed with a 5 minute rest 

 

Preparation for your appointment 

- Avoid food for (2 hours), caffeine (12 hours) and alcohol (24 hours) prior to the visit.  
 

Visit 3, 4, 5) During this visit you will be asked to repeat 4 x 2 minute handgrips whilst controlling the intensity 

using the perceived exertion scale instead of the on screen intensity regulator. You will receive a 4 minute 

rest in between each contraction.  

 

Benefits and risks  

 

As a participant of this research you will contribute to new ways of potentially prescribing isometric exercise 

to those with high blood pressure.  

Your safety is our upmost priority. Although participating in exercise is safe for most individuals, we will 

ensure that you are appropriately screened prior to participation (questionnaire). You will be asked to 

indicate to the researcher of any adverse signs associated with the exercise – for example, new onset or 

recurring anginal pain (chest pain or pressure, an ache in the jaw or neck, discomfort down the left or right 

arms (not associated with the exercise), pain across the shoulders and back); unaccustomed or unusual 

shortness of breath; dizziness or light-headedness. The researcher will also be monitoring blood pressure 

throughout the exercise. 
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In the unlikely event of you experiencing adverse reactions the exercise will be stopped immediately. The 

researcher working with you is first aid qualified. 

 

Terms for withdrawal 

You have the right to withdraw at any time without prejudice and without providing a reason. Withdrawal 

must be before 31st March 2016. Any data collected up until the point of withdrawal will be used in the 

analysis.  

 

Usage of the data  

Collected data will be analysed and used for publication within a PhD thesis document and a peer-reviewed 

journal. Data will remain stored on the researcher’s computer – data may be used/shared with other 

researchers for publication in journals, reports, webpages and other research outputs.  

 

Strategies for assuring ethical use of the data   

Your identity as a participant will be protected throughout the research. All data from each participant will 

be anonymised using a unique reference code for each individual. The computer programme where your 

data is stored will be password protected and accessible only by Niamh Morrin (PhD student) and Dr Mark 

Stone (1st research supervisor)    

 

Researcher contact 

If you have any questions about the research throughout your participation please do not hesitate to contact 

Niamh Morrin.  

- Niamh.morrin@bucks.ac.uk  

- +447842902909 
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Activity Diary  
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Write in every space provided the 

categorical value which corresponds 

best to the dominant activity of each 

15-minute period.  Please consult the 

activity table to establish the proper 

coding. 
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Activity Description Value 

Sleeping or Resting in bed 1 

Sitting: eating, listening, writing, etc 2 

Light activity standing: washing, shaving, combing, cooking, etc 3 

Slow walk (<4 km/h), driving, to dress, to 
shower, etc 4 

Light manual work: floor sweeping, window 
washing, driving a truck, painting, waiting 
on tables, nursing chores, several house 
chores, electrician, barman, walking at 4 to 
6 km/h 5 

Leisure activities and sports in a recreational 
environment: baseball, golf, volleyball, canoeing 
or rowing, archery, bowling, cycling 
(<10 km/h), table tennis, etc 6 

Manual work at moderate pace: mining, carpentry, 
house building, lumbering and 
wood cutting, snow shoveling, loading and 
unloading goods, etc 7 

Leisure and sport activities of higher intensity 
(not competitive): canoeing (5 to 8 km/h), 
bicycling (>15 km/h), dancing, skiing, badminton, 
gymnastic, swimming, tennis, horse 
riding, walking, (>6 km/h), etc 8 

Intense manual work, high intensity sport activities or sport 
competition: tree cutting, carrying heavy loads, jogging and 
running (>9 km/h), racquetball, badminton, swimming, tennis, 
cross country skiing (>8 km/ h), hiking and mountain climbing, etc 9 
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