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Abstract: Background and Objectives: It is commonly assumed that allometric biomass models
are species-specific and site-specific. However, the magnitude of species and site dependency
in these models is not well-known. This study aims to investigate the variation in allometric
models (i.e., aboveground biomass predicted by diameter at breast height and tree height) that
has originated from the differences between tree species and between sites, thereby contributing to
a better understanding of species and site-specificity issue in these models. Materials and Methods:
The study is based on two large biomass datasets of 4921 and 5199 trees, from Eurasia and Canada.
Using a nested ANOVA model on relative aboveground biomass residuals (with species and site
as random effects), the proportion of variance explained by species or site was assessed by means
of Variance Partition Coefficient (VPC). Results: The proportion of variance explained by species
(VPCspecies = 42.56%, SE = 6.10% for Dataset 1 and VPCspecies = 47.54%, SE = 6.07% for Dataset 2) was
larger than that explained by site (VPCsite = 20.08%, SE = 3.35% for Dataset 1 and VPCsite = 8.27%,
SE = 1.38% for Dataset 2). The proportion of variance explained by site decreased by 24%–44% and
the proportion of variance explained by species changed only slightly, when height is included in the
allometric biomass models (i.e., models based on diameter at breast height alone, compared to models
based on diameter at breast height and tree height). Conclusions: Allometric biomass models were
more species-specific than they were site-specific. Therefore, the species (i.e., differences between
species) seems to be a more important driver of variability in allometric models compared to site
(i.e., differences between sites). Including height in allometric biomass models helped reduce the
dependency of these models, on sites only.

Keywords: biomass; allometric model; species; site; location; random effects; transferability; generic
allometric model; variance; specificity

1. Introduction

Allometric biomass models are key components for any forest GHG (greenhouse gas) inventory [1,2].
These are regression models that use tree dimensions, such as diameter at breast height (D, at 1.3 m from
the ground) and/or tree height (H) to predict aboveground biomass (AGB) [3]. The power-law function
(AGB = αDβ) [4] is a widely accepted form of allometric biomass model. Despite the allometric scaling
theory, which support an invariant allometric scaling (the scaling exponent β = 8/3) [5,6], there is little
support from empirical evidence for this theory [7,8].

It is well-known that allometric biomass models vary by species [7,9,10] and by site [10,11].
As tree architecture and wood density (which define tree allometry) are genetically controlled [12,13],
it is expected that allometry would differ between species. The allometry of trees (defined here
as the relationship between aboveground biomass and tree diameter and/or height) is the result of
the interaction between endogenous growth processes and exogenous constraints exerted by the
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environment [14]. Therefore, allometric biomass models are expected to be altered by environmental
conditions, which vary from site-to-site.

The environmental factors that define the site conditions, and which affect allometric biomass
models are: (i) Soil properties, (ii) climate conditions, and (iii) current and past competition [10]. It was
demonstrated that soil fertility (nutrients and water) can modify the allocation of biomass [15,16].
Among soil properties that were shown to influence allometry are, the cation exchange capacity
and carbon to nitrogen ratio [17], salinity, and compaction [18]. Besides soil, the climate conditions
(irradiance, precipitation, temperature, and atmospheric composition, such as enhanced CO2) were
also reported to alter biomass allocation among tree organs [2,18,19]. Additionally, when in different
stages of development, the trees were shown to have different allometries [20,21]. Competition between
trees modifies the H-D ratio and crown size [22] with direct consequences on aboveground biomass
allometry. This was confirmed by a study on allometry of dominant and supressed trees [23]. As trees
do not respond very quickly to changes in competition, it is not only the current tree competition
that is important, but also previous competition [10]. The type of mixture, exposing different levels
of interspecific competition were shown to affect aboveground biomass allometry [24]. Furthermore,
competition (intraspecific and interspecific) can be adjusted through measures of forest management.
For example, thinning reduces competition between trees being proven to reduce the ratio between fine
roots and leaf biomass [25]. Also, in even-aged stands, the patterns of tree competition are different
compared to uneven-aged stands, where greater structural diversity may result in more diverse tree
allometries. However, all these factors affecting allometry usually interact with each other, and also
with the genotype. Therefore, including such factors as a fixed effect variable in allometric models,
often give poor results. By considering the site only, as a vector of all these effects (main effects and
their interactions) seems to be a more practical approach [2].

Because allometric biomass models are species- and site-specific and because measuring biomass
is a very laborious operation, an important and pressing question for practice is how transferable
these models are (from one species to another and from one site to another). Knowing the magnitude
of species- and site-specificity would tell whether the transfer could be done with insignificant
costs regarding prediction accuracy loss, or not. There was an intense focus lately in comparing
generic allometric models with site-specific models [26–33]. Therefore, there is a strong interest
in gaining a deeper understanding of species- and site-dependency of allometric biomass models.
A straightforward and easy way to investigate this issue is to check the proportion of variance that
is explained by differences between species and differences between sites. The intuition is simple:
A very small proportion of variance that is explained for example by ‘site’ would indicate that there is
much more variability within sites than between. Since the differences between sites are small, the cost
(on prediction accuracy) associated with the transfer of an allometric model from one site to another
would also be small. A large proportion, on the other hand, would indicate that transfers of allometric
models should be avoided.

The magnitude of species- and site-specificity in allometric biomass models is not well known.
Therefore, using two large biomass datasets, this paper investigated, (i) the proportion of variance
that was caused by differences between species and between sites, (ii) how the proportion of variance
explained by species and site changes when adding height as additional predictor of aboveground
biomass, and (iii) the species and site random effects.

2. Materials and Methods

2.1. Biomass Data

To reliably assess the random effects of species and sites in allometric biomass models, two large
biomass datasets [34–36] were used, containing observations of forest trees (Table 1). Dataset 1 [34]
contains 9613 trees sampled from Europe and Asia, whereas Dataset 2 [35,36], 9808 trees sampled from
Canada. The ‘site’ as used in this study represents a delimitation of a geographical area characterized
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by common conditions regarding soil and climate. Because the location name was not provided for all
trees, the trees were grouped by ‘site’, based on their geographical coordinates. Although, latitude
and longitude were provided for each tree, the coordinates describe the location of the site (e.g., forest
stand, plot) and not the location of individual trees. Therefore, the trees sharing similar latitude and
longitude were grouped in a ‘site’. The precision of latitude and longitude was 0.01 decimal degrees
(i.e., 787.1 m at 45◦ N and 435.0 m at 67◦ N) for Dataset 1 and 0.001 decimal degrees (i.e., 78.7 m at
45◦ N and 43.5 m at 67◦ N) for Dataset 2.

Both datasets were prepared for analysis: (i) All trees lacking one or more of the measurements for
diameter at breast height (D), tree height (H), and aboveground biomass (AGB), latitude and longitude
were removed (i.e., 3175 observations were removed from Dataset 1 and 3629 from Dataset 2); (ii) all
trees with D < 5 cm were removed, because they represent a small share of total biomass and because
they would dominate the regression line [2] (i.e., 1320 observations were removed from Dataset 1 and
770 from Dataset 2); (iii) all categories (species or sites) with less than 5 trees per category were removed,
in order to reliably assess the parameter estimates and random effects [37] (i.e., 186 observations were
removed from Dataset 1 and 192 from Dataset 2); (iv) the outliers were removed (i.e., 11 observations
from Dataset 1 and 18 from Dataset 2 were removed; the outliers were identified as observations that
correspond to residuals which fall outside the interval described by ±3 standard deviations).

Table 1. The characteristics of analyzed datasets.

Characteristic Dataset 1 Dataset 2

Region Europe and Asia Canada
Sample size 4921 5199

D range (cm) 5.0–72.9 5.0–74.3
H range (m) 3.1–42.8 2.5–40.8

AGB range (kg) 2.2–4291.3 2.2–2951.4
Number of tree species 56 38

Number of trees per species (range) 5–1656 11–704
Number of sites 133 237

Number of trees per site (range) 5–278 5–164
References [34] [35,36]

Both datasets showed a comparable range for the number of trees per species and trees per site
(Table 1). The distribution of number of trees per species (Figure 1a) was slightly different for Dataset 1
and 2. For Dataset 1, there was a larger number of species with relatively low number of trees per
species (35 species out of 56 had less than 20 trees per species). For Dataset 2, only 5 species (out of 38)
had less than 20 trees per species. However, the distributions of number of trees per site were relatively
similar (Figure 1b). The proportion of sites with less than 20 trees per site was 56% for Dataset 1 and
64% for Dataset 2.
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2.2. Methods

2.2.1. The Rationale for the Proposed Methodology

The variance proportions were estimated by means of Variance Partition Coefficient (VPC) [38].
The VPC, also known as the intraclass correlation coefficient [39], is a straightforward and simple
statistic that shows the proportion of variance that is attributable to the differences between clusters [38].
In a multilevel modelling approach, the VPC is fixed only when a random intercept model is used.
In case of a random intercept and slope model, the VPC is variable, and is a function of an independent
variable (of the model). The random intercept model assumes that slopes of all categories are identical
(for a linear model on log-log transformed data, the regression lines, for each species or for each site,
are parallel). Therefore, it assumes an invariant allometric scaling among species and among sites [40].
However, the assumption of invariant allometric scaling (constant slope of a log-log linear allometric
model) was greatly debated [7,8]. Because of this limitation, in this study, a method adapted from
Chave et al. [2] was applied, which uses VPC from a nested ANOVA model on relative AGB residuals.

Furthermore, it is crucial that the random effects (in the nested ANOVA model) are correctly
modelled, because the results may largely depend on how the random effects were included into the
model. A common situation is when the site is nested within species (trees of the same species are
sampled from several sites). However, in these two datasets it was not a typical case where the site
was nested within species. It is often the case that trees of the same species were sampled from at least
two sites. There were 23 species (in Dataset 1) and 34 species (in Dataset 2) for which the trees were
sampled from at least two sites. Within Dataset 2, the Picea glauca (Moench) Voss (White spruce) trees
were sampled from 66 sites, whereas Pinus sylvestris L. (Scots pine) trees in Dataset 1 were sampled
from 37 sites. However, it was also common that several species were sampled from the same site.
There were 151 sites (out of 237) in Dataset 2 from which at least two species were sampled. For Dataset
1 the number was lower, 33 sites (out of 133) with at least two species from each site. The site with the
largest number of species was in Dataset 2 (10 species) compared to Dataset 1 (9 species). Therefore,
when modelling the random effects, the crossed random effects (non-nested) approach was adopted.

2.2.2. VPC of nested ANOVA

A nested ANOVA model was fitted on relative AGB residuals, with ‘species’ and ‘site’ as crossed
random effects. Then, the VPCs were calculated based on the random effects (species and site) of
nested ANOVA model.

(1) Calculation of relative AGB residuals was performed following the next steps:

(a) A multilevel model (random intercept and slope model) was fitted to log-log transformed data
(for each dataset),

ln(AGB)ijk = β0 + δj0 + γk0 + β1 × ln(D)ijk + δj1 + γk1 + β2 × ln(H)ijk + δj2 + γk2 + εijk (1)

where ln(AGB)ijk is the log of AGB for tree i from site j and species k; β0 is the fixed part of the
intercept; β1 is the fixed part of the ln(D) slope; β2 is the fixed part of the ln(H) slope; δj0 is the
random part of the intercept attributable to differences between sites; δj1 is the random part of
the ln(D) slope attributable to differences between sites; δj2 is the random part of the ln(H) slope
attributable to differences between sites; γk0 is the random part of the intercept attributable to
differences between species; γk1 is the random part of the ln(D) slope attributable to differences
species; γk2 is the random part of the ln(H) slope attributable to the differences between species;
εijk is the error term of tree i from site j and species k, εijk~N(0,σ2).



Forests 2019, 10, 976 5 of 13

(b) A back-transformed nonlinear model was used to calculate the predicted AGB. As the error
distribution becomes lognormal in original scale, a back transformation correction factor
(exp(σ2/2)) [41,42] was used, where σ is the residual standard error of the model in log-log
scale. The back-transformed model that predicts AGB as a function of D and H is:

ˆAGBijk = exp(β0) ×Dijk
β1 ·Hijk

β2 × exp
(
σ2

2

)
(2)

where β0 is the fixed part of the intercept (Equation (1)); β1 is the fixed part of ln(D) slope
(Equation (1)); β2 is the fixed part of ln(H) slope (Equation (1)); D and H are the diameter at breast
height and tree height; σ2 is the residual variance in Equation (1).

(c) The relative residual for each tree was calculated as,

Pijk =
AGBijk− ˆAGBijk

ˆAGBijk
× 100 (3)

where AGBijk is the observed AGB of tree i, from site j and species k; ˆAGBi jk is the predicted AGB
of tree i, from site j and species k (Equation (2)).

(2) Fitting of nested ANOVA model on relative residuals, with species and site as random effects,

Pijk = µ+ δj + γk + εijk (4)

where Pijk is the relative residual (Equation (3)) of tree i from site j and species k; µ is the overall mean
of relative residuals; δj is the random effect attributable to the differences between sites, δj~N(µ, σsite

2);
γk is the random effect attributable to differences between species, γk~N(µ, σspecies

2); εijk is the error
term of tree i from site j and species k, εijk~N(0, σε2).

(3) The Variance Partition Coefficient (VPC). The VPC values were calculated as,

VPCspecies =
σspecies

2

σspecies
2+σsite

2+σε2 × 100 (5)

VPCsite =
σsite

2

σspecies
2+σsite

2+σε2 × 100 (6)

where σspecies
2 = var(γk) is the variance explained by species in Equation (4), σsite

2 = var(δj) is the
variance explained by site in Equation (4) and σε2 = var(εijk) is the residual variance in Equation (4).

2.2.3. Bootstrap Analysis

A parametric bootstrap analysis with 100,000 simulations (using ‘bootMer’ function of ‘lme4′

package in R) [43,44] was used, in order to determine the standard errors of VPC. From each simulation
resulted a VPC value, therefore, for each dataset and each source of VPC (VPCspecies and VPCsite,
Equations (5) and (6) resulted 100,000 VPC values. These values were used further to calculate the
standard errors (SE) of VPC and to plot the density of VPC values, when comparing datasets and
VPC sources.

2.2.4. The effect of Including H as Predictor in Allometric Biomass Models

One of the aims of the study was to investigate whether the addition of height (H) in allometric
models (therefore using both D and H to predict AGB, compared to when using D alone to predict
AGB) has any effect on the proportion of variance attributable to differences between species, or to the
differences between sites. Therefore, the models described above (Equations (1)–(6)), and which are based
on both D and H, were fitted again but using a single predictor (i.e., D). It was further compared the VPC
values of models based on both D and H with the VPC values resulted from models based on D only.
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2.2.5. Analysis of Random Effects

In Equation (4), each species has its own mean relative residual (i.e., γk), and so has each site (i.e., δj).
Therefore, based on these species-specific means, we can evaluate how similar is allometry among species,
and how the species can be grouped by their allometry. Two species with similar γk values, show that
trees of similar D and H share also similar aboveground biomass (AGB). To ease the interpretation of γk,
the γk values were centred to zero, by subtracting the overall multispecies mean of relative residuals (µ,
Equation (4)) from γk. As a result, γk > 0 means that trees of similar D and H from species k show greater
AGB compared to the overall multispecies mean. The opposite is for γk < 0. To show how the species are
grouped by their allometry, a dendrogram was developed. The variable (i.e., γk) was first standardized,
Euclidean distances were calculated and then the Ward error sum of squares hierarchical clustering method
(‘ward.D2’) was used [45].

Furthermore, the site random effect (i.e., δj in Equation (4)) would also tell how the allometry of
trees vary between sites. However, the site, as defined above, unlike the species, has a precise spatial
delimitation. As a consequence, in order to find whether the effects of site on biomass allometry depend on
geographical gradients, the correlations between site random effect (i.e., δj) and the geographical gradients
(e.g., latitude, longitude, altitude) were presented. Because altitude was not provided for all locations,
the altitude was extracted as a function of latitude and longitude, using package ‘elevatr’ in R [46].

2.2.6. Data Processing

All analyses were performed in R [44] version 3.6.1, using the packages ‘lme4’ [43], ‘overlapping’ [47],
‘lattice’ [48], ‘dendextend’ [49], ‘elevatr’ [46], ‘raster’ [50].

3. Results

3.1. The Species Explained a Larger Proportion of Variance in Allometric Models Compared to Sites

The proportion of variance attributable to the differences between species was systematically
larger than that attributable to differences between sites (Figure 2). The proportion of variance
explained by differences between species was VPCspecies = 42.56% (SE = 6.10%; 95% confidence
interval: 29.56%–53.41%) for Dataset 1 and VPCspecies = 47.54% (SE = 6.07%; 95% confidence interval:
34.44%–58.15%) for Dataset 2. By contrast, the proportion of variance that was attributable to
differences between sites was VPCsite = 20.08% (SE = 3.35%; 95% confidence interval: 14.16%–27.26%)
for Dataset 1 and VPCsite = 8.27% (SE = 1.38%; 95% confidence interval: 5.89%–11.29%) for Dataset
2. The distributions of VPC values resulted from bootstrap analysis, show a clearer differentiation
between VPCspecies and VPCsite for Dataset 2, where the was no overlapping of distributions (Figure 2).
However, the difference between VPCspecies and VPCsite was significant for both datasets (p < 0.0001).
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3.2. Including H as Predictor in Allometric Models Reduced The Proportion of Variance Attributable to
Differences between Sites, but Had Marginal Effect on That Attributable to Differences between Species

Including H as the predictor in allometric biomass models had a greater effect on VPCsite (Figure 3).
When both D and H were used to predict AGB, instead of D alone, the proportion of variance explained
by site in allometric biomass models was reduced by 24%–44%, from 26.32 to 20.08% (for Dataset 1)
and from 14.63% to 8.27% (for Dataset 2). By contrast, the VPCspecies increased slightly, from 40.77%
to 42.56% for Dataset 1 and from 46.66% to 47.54% for Dataset 2. Furthermore, the distributions of
VPC values resulted from bootstrap analysis showed an overlap of 25% for Dataset 1 and only 4% for
Dataset 2 (Figure 3). Nevertheless, the distributions of VPCspecies showed a much greater overlap, of
80% for Dataset 1 and 89% for Dataset 2 (Figure 3a1,a2). This suggests that, including H in allometric
models helps reduce site-specificity, with only a marginal effect on species dependency.
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3.3. The Species and Site Random Effects

The dendrogram in Figure 4, which is based on random effects attributable to species (γk in
Equation (4)), shows how the species were grouped by their allometry. A large and positive γk

value shows that, on average, the trees of similar D and H exhibit greater AGB for species k than the
multispecies average. For example, the species Quercus mongolica Fisch. ex Ledeb. (Mongolian oak)
stands out in Dataset 1, showing the largest AGB (on average, 43.2% larger than the multispecies mean),
whereas the species Populus nigra L. (Black poplar) stands out as the species producing the lowest AGB
for trees of similar D and H (on average, 33.2% less than the multispecies mean) (Figure 4). There are
many similarities between the two datasets. For example, Quercus spp., Acer spp., Fagus sylvatica L.,
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showed larger AGB than the multispecies mean in both datasets; Populus sp. showed lower AGB than
the multispecies average. Also, the species that were common to both datasets showed relatively similar
γk values (e.g., Pseudotsuga menziesii: 1.5% vs. 4.7%; Quercus rubra: 20.5% vs. 30.1%; Fagus sylvatica:
30.6% vs. 36.9%). However, as can be observed in Figure 4, the allometry of species within the same
genus or family can vary greatly. Therefore, using a species-specific model to another species within
the same genus or family (being justified that species within the same genus of family share a larger
proportion of genotype) can risk producing large prediction bias.
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Dataset 2. Note: (1) The γk values (Equation (4)) are presented in parenthesis for each species (γk was
centred to zero by subtracting the mean µ from each γk value) and the sample size for each species. (2)
In different colours are the species that were grouped by cutting the dendrogram at a distance of 1.0
(vertical dashed red line).

For Dataset 2, δj (i.e., site random effect in Equation (4), taking one value for each site) was significantly
correlated with altitude (r = −0.140, p = 0.031), latitude (r = −0.213, p < 0.001) and longitude (r = 0.189,
p = 0.003). Therefore, in Canada, the trees (of given D and H), located at lower altitudes, tend to have greater
AGB than those located at higher altitudes; the trees located in the South tend to have greater AGB than



Forests 2019, 10, 976 9 of 13

those located in the North; the trees located in the West tend to have greater AGB than those located in
the East. The latter may be a side effect caused by the Rocky Mountains range in western Canada which
creates conditions across the country for a gradient in tree biomass allometry. However, for Dataset 1,
the correlations between δj and geographical coordinates were not significant (Altitude: r = 0.027, p = 0.749;
Latitude: r = −0.096, p = 0.271; Longitude: r = −0.119, p = 0.172).

4. Discussion

In this paper, it was demonstrated that in allometric biomass models, the proportion of variance
attributable to differences between species is greater than that attributable to differences between sites.
The species explained almost half of total model variance, that proportion being 2.1 to 5.7 times larger
than the proportion of variance explained by site. If species explains a greater proportion of variance
in allometric biomass models, that also means the variability in allometric biomass models driven by
differences between species is greater, compared to that between sites. Therefore, allometric biomass
models are more species-specific than they are site-specific. Therefore, the main recommendation of this
study is to develop allometric models at species level (species-specific allometric models. These results
are important for the improvement of biomass prediction in forests. Knowing the level of variability in
allometric biomass models that is driven by either species or site is important for several reasons.

First, it indicates the appropriateness of transferring models from one species to another and from
one site to another, and with what costs. If the proportion of variance, as explained by differences
between sites is large, it means that a species-specific allometric model can be used at another site,
but with relatively high costs regarding prediction accuracy. For Dataset 1 the proportion of variance
explained by differences between sites was larger compared to Dataset 2. Therefore, we would risk
larger bias (due to using the model at another site) if using the model based on Dataset 1, because the
variability between sites is larger.

Second, the conclusions resulted from this study would support further improvement of AGB
prediction. The large proportion of variance, explained at species level, suggests that any differences
between species greatly contribute to the overall variability in allometric biomass models. Although
a large influence from species on allometric models was assumed in the past (that being reflected
in management practices across the world, e.g., species-specific volume tables), the results of this
study confirm that, and show the particular level of influence from the species. It has been shown that
including wood density as a predictor in generic allometric models (i.e., AGB is predicted as a function
of D, H and wood density) the species-specific models were not necessarily better than the generic
model [26]. This suggests that the variability caused by differences between species may have been
almost entirely captured by wood density variation, which is a convenient solution especially for highly
species-diverse forests. If wood density explains the complete amount of variance attributable to the
differences between species, the allometric models, based on D, H, and wood density to predict AGB,
would show relatively low proportions of variance explained by site. For tropical trees, the proportion
of variance explained by differences between sites was reported 21.4% [2]. However, using the same
method as in this study on the tropical data [2], resulted VPCsite = 23.61% (for model based on D, H
and wood density to predict AGB). This value is larger than VPCsite values reported here (i.e., VPCsite

= 20.08% for Dataset 1 and VPCsite = 8.27% for Dataset 2). Therefore, because of the larger VPC value
(23.61%), it can be speculated that wood density may not have explained entirely the variance that
arose from differences between species.

The differences between species in allometric biomass modes are driven by differences in tree
architecture and differences in wood density [51,52]. This was confirmed by the results presented
in Figure 4, where it was shown that species with greater wood density (e.g., Quercus sp., Fagus sp.,
Acer sp.) revealed positive and large γk (Equation (4)) parameters (meaning greater AGB for trees
of similar D and H), whereas species with generally low wood density (e.g., Populus spp., Salix spp.,
Pinus spp., Picea spp.) have shown generally negative values of γk (Figure 4).
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The differences between sites, as it was mentioned above, are typically driven by differences in
soil, climate conditions, competition between trees, and within species genetic variability. Therefore,
the difference between Dataset 1 and Dataset 2, with respect to the proportion of variance explained by
site (20.08% vs. 8.27%), may have been caused by a series of factors, including (i) what was defined
by ‘site’ in each dataset used in this study, (ii) diversity of environmental conditions in each dataset,
and (iii) differences in forest management practices (between the two regions, Eurasia and Canada),
which may have resulted in systematic differences in tree competition. It is hard to say whether the
meaning of ‘site’ was consistent and the same in both datasets (since these datasets are compilations
from different studies). However, the geographical coverage of Dataset 1 is larger compared to
Dataset 2. Dataset 1 contains trees sampled from a wider latitudinal range (from 34.6◦ to 69.9◦ N for
Dataset 1 [34] and from 43.9◦ to 64.0◦ N for Dataset 2 [35,36]) and also a wider longitudinal range.
Therefore, due to the wider geographical extent, the sites within Dataset 1 can reasonably be assumed,
thereby exposing a wider range of environmental conditions. Extracting the Mean annual temperature
(MAT) and Mean annual precipitation (MAP) from WorldClim [53] using the package ‘raster’ [50],
the above assumption was confirmed. Dataset 1 showed a wider range of MAT (i.e., from −15.1 ◦C to
15.4 ◦C) and a wider MAP (i.e., 229 mm to 2047 mm), compared to Dataset 1 (i.e., MAT: from −6.4 ◦C
to 9.8 ◦C; MAP: from 249 mm to 1642 mm). Therefore, the wider range of environmental conditions
within Dataset 1 may have caused, in turn, a larger proportion of variance to be explained by the site.

The significant correlation between the site random effects and the geographical coordinates
(for Dataset 2) suggest that, including Latitude or Elevation as predictors in allometric models, may explain
a significant part of the residual variance. Indeed, for Dataset 2, there was a significant fixed effect of Latitude
(−0.329, p < 0.001) and of Altitude (−0.033, p < 0.001) on AGB. Therefore, for the Canadian dataset, a 1%
increase in Latitude produced a decrease of 0.329% in tree AGB (for trees of similar D and H), whereas a 1%
increase in Altitude produced a 0.033% decrease in AGB (again, for trees of similar D and H). These effects
may be partly caused by the variation in wood density with latitude and altitude [54]. As expected, the fixed
effects of Latitude and Altitude were not significant for Dataset 1.

It is well known that including H in allometric models improves AGB prediction, because, for a tree
of given D, if H is higher, the AGB is expected to be larger. Hence, H-D ratio is an important driver of
variance in allometric models [55]. Including H in allometric biomass models, the variance explained by site,
decreased (Figure 3). This suggests that there may be a greater variability of H-D ratio between sites than
between species. Using the H-D ratio instead of relative residual in Equation (4), this hypothesis (i.e., H-D
ratio varies more between sites than between species) was tested. The distributions of VPC for H-D ratio in
Figure 5 confirm that the proportion of variance explained by site (Dataset 1: VPCH-D = 22.68%, SE = 3.75%;
Dataset 2: VPCH-D = 20.77%, SE = 2.12%) was greater than that explained by species (Dataset 1: VPCH-D =

11.96%, SE = 3.05%; Dataset 2: VPCH-D = 16.17%, SE = 3.60%), for both datasets. Therefore, these results
validate the assumption that, the reason for the reduction in site dependency of allometric models when H is
included as a predictor, is related to the fact that H-D ratio varies more between sites than between species.
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5. Conclusions

The key conclusions of the study are as follows: (1) Allometric biomass models were
more species-specific than they were site-specific, the variance proportion explained by species
(42.56%–47.54%) being larger than that explained by site (8.27%–20.08%); (2) including height in
allometric biomass models (using D and H to predict AGB, instead of using D alone to predict AGB)
helped reduce the dependency on site; (3) using the dendrogram to assess differences between species
(regarding their biomass allometry) was practical and informative; (4) the lower proportion of variance
explained by site within Dataset 2 (compared to Dataset 1), suggests that the negative consequences
on prediction accuracy in transferring a species-specific allometric model from one site to another
within Canada, are less severe compared to the transfers within Eurasia; (5) a large proportion of
variance, caused by differences between species, indicates that a species-specific allometric biomass
model should not be transferred to another species without appropriate model calibration, because
that may induce large prediction bias.
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