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Abstract 11 

 12 

Developing allometric biomass models is an important process because reliability of forest biomass 13 

and carbon estimations largely depend on the accuracy and precision of such models. The effects of 14 

tree sampling on tree aboveground biomass (AGB) prediction accuracy and precision are complex 15 

and can, therefore, be difficult to quantify. In this paper we use a Monte Carlo simulation to 16 

investigate how model prediction accuracy and precision are affected by tree sampling approaches. 17 

Because diameter at breast height (D, in cm) is the most common predictor of tree AGB (in kg dry 18 

weight), we focused our analysis on the AGB-D relationship. The following sample characteristics 19 

were investigated: (i) sample size; (ii) extent of the D-range (difference between the largest and the 20 

smallest D value); (iii) position of D-range (characterized by the starting point of D-range); and (iv) 21 

the size-distribution (distribution of D) of sample trees. We found that, although the natural variability 22 

of AGB-D relationship was a key driver for both prediction accuracy and precision, the above sample 23 

characteristics were important for improving prediction accuracy. Although having a negligible effect 24 

on precision, both sample size and size-distribution of sample trees, greatly influenced prediction 25 

accuracy. We demonstrate that selecting a constant number of trees for each D class (i.e. uniform 26 

distribution of the sample trees over the D-range) generally produced models that were more accurate 27 

predictors of AGB. The extent and position of D-range, although considerably affecting the goodness 28 
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of fit and the standard errors of allometric model parameters, had only a marginal effect on AGB 29 

prediction accuracy and precision. Furthermore, we showed that R2 was a poor indicator of model 30 

prediction accuracy and precision, due to its sensitivity to changes in D-range. These findings inform 31 

certain practical recommendations we report for improving the accuracy and precision of biomass 32 

prediction. 33 

 34 

Keywords: allometric biomass models, tree sample size, aboveground biomass, diameter at breast 35 

height, diameter distribution, sampling characteristics  36 

  37 
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Abbreviations 38 

D  tree diameter at breast height (in cm);  39 

AGB  aboveground biomass of a tree (in kg dry weight);  40 

D-range an interval of simulated D observations used to develop an allometric model, and 41 

characterized by the starting and ending points of the interval;  42 

S3  a D-range between 0.1 and 60 cm;  43 

S2  a D-range between 10 and 60 cm;  44 

S1  a D-range between 20 and 60 cm;  45 

Imin  a D-range between 30 and 60 cm;  46 

B1  a D-range between 30 and 70 cm;  47 

B2  a D-range between 30 and 80 cm;  48 

B3  a D-range between 30 and 90 cm;  49 

Imax  a D-range between 0.1 and 90 cm;  50 

RSE  residual standard error;  51 

n  sample size;  52 

β0  the intercept of a linear allometric model in logarithmic scale;  53 

β1  the slope of linear allometric model in logarithmic scale;  54 

SE(β0)  standard error of the intercept;   55 

SE(β1)  standard error of the slope;  56 

R2  coefficient of determination;  57 

PA  standard deviation of relative bias, reported as a measure of prediction accuracy;  58 

PP mean coefficient of variation of predicted biomass, reported as a measure of 59 

prediction precision. 60 

 61 

1. Introduction 62 

It is widely accepted that forests play a critical role in the fight against climate change (Grassi et al., 63 

2017), and that the accumulation of carbon in tree biomass is regarded as an important service 64 



4 
 

provided to society. However, the development of sustainable mitigation measures and programmes 65 

such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation) requires that 66 

accumulation of carbon in forests is accurately and precisely estimated. Estimating carbon 67 

accumulation in forests is typically achieved using forest inventory records, to which allometric 68 

models are applied (Brown, 2002; Chave et al., 2004; Clark et al., 2001; Stephenson et al., 2014). To 69 

determine carbon sequestration forest biomass is first estimated, then, using a constant proportionality 70 

ratio, e.g. 0.47 (IPCC, 2006), the equivalent carbon content may then be calculated, which can be 71 

further converted to express CO2. Therefore, since the ratio between biomass and carbon is a constant, 72 

the terms ‘carbon accumulation’ and ‘biomass accumulation’ have approximately the same meaning. 73 

Producing accurate and precise predictions of biomass is challenging for several reasons. 74 

First, it needs an unbiased forest inventory design with accurate measurements of tree attributes. 75 

Second, it requires that allometric biomass models are representative for the forest inventory data to 76 

which the model is applied. Selection of the allometric model has been shown to be an important step 77 

for reducing biomass prediction uncertainty (Picard et al., 2015). Allometric biomass models are 78 

nonlinear regression models that typically use tree diameter at breast height (D, in cm) and/or tree 79 

height (H, in m) to predict tree aboveground biomass (AGB, in kg dry weight). Models are based on a 80 

sample of trees for which biomass was measured. Representativeness of the model to the forest 81 

inventory data requires that sample trees are selected from the inventoried population. Allometric 82 

biomass models were shown to be greatly influenced by site conditions (Dutcă et al., 2018a). This in 83 

turn may increase the complexity of tree sampling and reduce their transferability of the models to 84 

other sites (Dutcă, 2019). 85 

The range of tree sizes and their distribution across the range are important prerequisites for 86 

determining sample strata. The range represents the difference between largest and the smallest value 87 

of predictor (e.g. D) for the sample trees used to build the model. The distribution of sample trees (on 88 

D-range) is often referred to as ‘D class distribution’ (Chave et al., 2004; Roxburgh et al., 2015) 89 

because D is usually measured in forest inventories in scales of increment categories (e.g. intervals of 90 

2 cm). However, when developing allometric biomass models, diameter at breast height (D) is 91 

measured as accurately as possible and represented as a continuous variable.  92 
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Because allometric models are site-specific (Dutcă, 2019; Dutcă et al., 2018a), there are 93 

numerous examples of published allometric models based on trees sampled from one or few forest 94 

stands (Chojnacky et al., 2014; Jia et al., 2015; Marziliano et al., 2015; Morhart et al., 2016, 2013; 95 

Mosseler et al., 2014; Zianis et al., 2005), which therefore have limited and less than optimal D-range. 96 

Alternatively, allometric models may be deliberately developed to represent biometrics of small trees 97 

only (e.g. Pajtík et al. 2008; Dutcă et al. 2010; Blujdea et al. 2012; Ciuvat et al. 2013). Nevertheless, 98 

tree size is subject to natural limitations; maximum tree height is influenced by physiological stress 99 

and resource abundancy as well as hydraulic constraints (Koch et al., 2004). Although maximum tree 100 

height is physically limited, trees continue to accumulate biomass by increasing their diameter 101 

(Stephenson et al., 2014). Generic allometric models and biomass databases often include very large 102 

trees, for example, D of up to 212 cm (Chave et al., 2014), up to 293 cm (Jucker et al., 2017) or even 103 

as much as 648 cm (Falster et al., 2015). 104 

The process of biomass measurement is very resource intensive. It is, therefore, important that 105 

sampling is optimized to ensure that the resulting allometric model predicts biomass as accurately and 106 

precisely as possible. In this paper, using a Monte Carlo analysis, we investigate which approaches of 107 

tree selection affect biomass prediction accuracy and precision and how these factors exert their 108 

influence. The sample characteristics that were investigated are: (i) sample size; (ii) the extent of D-109 

range (i.e. difference between largest and the smallest sample tree); (iii) position of D-range (i.e. the 110 

starting or ending point of the range); and (iv) the distribution of sample trees (i.e. the frequency 111 

distribution of selected trees across the D-range).  112 

To demonstrate the effects of sample characteristics on biomass prediction accuracy and 113 

precision we performed a simulation study. This  involved  the following steps: (1) bivariate sets of 114 

AGB-D data were simulated to capture key characteristics of the sample trees (e.g. AGB-D 115 

variability, sample size, D-range, size-distribution of the sample trees); (2) allometric biomass models 116 

were fitted to simulated data; (3) the allometric biomass models were then applied to predict the 117 

biomass in a plot and the errors from model parameters and residual variability were propagated to 118 

determine their effects on plot AGB prediction; (4) the AGB prediction accuracy and precision (at 119 

plot level) were assessed; (5) an examination was made to identify which characteristics of the sample 120 
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trees considered in the first step (i.e. AGB-D variability, sample size, D-range, size distribution of the 121 

sample trees) affected the model’s prediction accuracy and precision, and to determine the nature and 122 

extent of these affects. Our study aims to inform improvements in the overall accuracy and precision 123 

of biomass prediction for forests, and to suggest measures for developing robust allometric biomass 124 

models.  125 
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2. Material and methods 126 

 127 

2.1. Some rationale on the simulation design 128 

Although logarithmic transformation (Huxley, 1932; Snell, 1892) is widely regarded as a standard 129 

procedure in the development of allometric biomass models, its use is the subject of some debate 130 

(Kerkhoff and Enquist, 2009; Packard, 2012; Packard and Boardman, 2008; Xiao et al., 2011). The 131 

standard assumptions of this type of transformation are: (i) heteroscedasticity, which is common in 132 

allometric models, is entirely removed by transformation; and (ii) because errors are lognormally 133 

distributed when back-transformed (original scale), they will be normally distributed in log-log scale. 134 

If these two assumptions hold true, then the back-transformed errors can be assumed to be 135 

multiplicative (Cole and Altman, 2017). In other words, the back-transformed residuals may be 136 

expressed as a ratio between observed and predicted biomass and therefore indicate the percent 137 

variation of observed biomass relative to predicted biomass. However, if the two assumptions do not 138 

hold true, then the logarithmic transformation is not recommended, as the general assumptions of a 139 

linear model (e.g. normality of residuals, homogeneity of variance) would not be met. Xiao et al. 140 

(2011) showed that although both the multiplicative and the additive error-type relationships occur in 141 

nature, multiplicative errors were much more frequent. Also, because diameter at breast height (D) is 142 

the most common predictor of individual tree aboveground biomass (AGB), we have focused our 143 

simulation on AGB-D relationship, starting with a log-log linear model:  144 

ln(AGB) = β0 + β1 ⋅ ln(D) + ε        (Eq. 1) 145 

Where: AGB is the aboveground biomass (in kg dry weight); D is the diameter at breast height (in 146 

cm); ‘ln’ is the natural logarithm; β0 and β1 are the model parameters in logarithmic scale; and ε is 147 

the additive error term (additive for the log-log scale), normally distributed with a mean of zero. We 148 

then defined some true parameters for a hypothetical population. Because the population is 149 

hypothetical, to make the values of parameters credible, we derived the parameters from a real 150 

biomass dataset reported by Schepaschenko et al. (2017). The true model parameters for our 151 

hypothetical population were: 152 

ln(AGB) = −2.11 + 2.33 ⋅ ln(D) + ε      (Eq. 2) 153 
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Starting with these true parameters, we generated random sets of ln(AGB) – ln(D) data which were 154 

further fitted. The error term (ε in Eq. 2) is normally distributed with the mean zero and standard error 155 

of residuals, RSE. The resulting model was then applied to a plot dataset to estimate the biomass. 156 

Each generated dataset had specified characteristics, such as RSE (residual standard error) of log-log 157 

model, number of observations, D-range extent, position and distribution. A Monte Carlo approach 158 

(described below) was used.  159 

 160 

2.2. Natural variability of AGB-D relationship  161 

Sampling design should capture the natural variability of AGB-D relationship that is intrinsic to the 162 

population. Because we assumed that heteroscedasticity is removed by logarithmic transformation and 163 

that errors are lognormally distributed in original scale, the natural (or intrinsic) variability of AGB-D 164 

relationship can be expressed as the residual standard error (RSE) of the log-log linear model (see Eq. 165 

2). Since the residuals of a back-transformed log-log linear model show relative variation of AGB 166 

(relative to predicted AGB), the RSE can be interpreted, for original scale, as a form of coefficient of 167 

variation (Cole and Altman, 2017). We tested two values of RSE in this study, 0.2 and 0.3, which can 168 

be interpreted as 20% and 30% coefficient of variation. These two values lie within the expected 169 

range for allometric biomass models (Roxburgh et al., 2015).  170 

 171 

2.3. Sample characteristics 172 

 173 

2.3.1. Number of observations (sample size) 174 

The number of sample trees necessary to develop an allometric model depends on the precision 175 

required, the level of intrinsic variability in the AGB-D relationship and other factors. Roxburgh et al. 176 

(2015) performed a simulation study to find the number of sampled trees necessary to develop 177 

allometric models. They concluded that, given the intrinsic variability of trees and the differences 178 

between distribution of tree diameters used to construct the model and the distribution of tree 179 

diameters of the inventory data, a number of anywhere between 17 to 166 trees were required to 180 

obtain prediction with a standard deviation within 5% from the mean. However, Picard et al. (2012) 181 
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suggested that approximately a minimum number of 100 trees was needed to construct reliable 182 

volume models. In our simulation design we tested three values of sample size, n = 100, n = 150 and n 183 

= 1000 trees. The first two values (n = 100 and n = 150) were intended to determine the effect of a 184 

50% increase in sample size, as to compare it to a 50% increase in RSE (from RSE = 0.2 to RSE = 185 

0.3). The third value (n = 1000) was intended to see how increasing the sample size influences model 186 

prediction performance.  187 

 188 

2.3.2. The extent of D-range 189 

The range of diameter at breast height (D) used in allometric biomass models varies greatly. In a 190 

review of allometric models, Zianis et al. (2005) most models were based on a relatively narrow D-191 

range with no consistent starting point (minimum D) for the range. For example, the largest tree of 90 192 

cm was recorded in an allometric model for Quercus ilex in Italy and the minimum recorded diameter 193 

was 20 cm. Comparable maximum limits of D-range are reported in recent biomass datasets for boreal 194 

and temperate forests (Schepaschenko et al., 2017; Ung et al., 2017), and larger D-range are reported 195 

for trees sampled in tropical regions (Chave et al., 2014; Falster et al., 2015; Jucker et al., 2017). For 196 

our simulation study, we assumed a maximum D-range in allometric biomass models between 0.1 and 197 

90 cm (after the D-range reported by Zianis et al., 2005), and divided the range into three equal 198 

diameter intervals of 30 cm. Starting from the second interval (i.e. Imin = [30, 60]), we gradually 199 

expanded Imin in two directions (i.e. towards small diameter and towards large diameters) until 200 

reaching the limits of the maximum D-range. This resulted in seven D-ranges. We examined the 201 

entire D-range (i.e. Imax = [0.1, 90]), thereby testing a total of eight D-ranges (as summarised in Table 202 

1).  203 

 204 

Table 1 205 

D-ranges used for simulation (D is the diameter at breast height) 206 

Code D-range (cm) Description  
S3 [0.1, 60] Imin + 30 cm towards small diameters 
S2 [10, 60] Imin + 20 cm towards small diameters 
S1 [20, 60] Imin + 10 cm towards small diameters 
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Imin [30, 60] The minimum D-range 
B1 [30, 70] Imin + 10 cm towards large diameters 
B2 [30, 80] Imin + 20 cm towards large diameters 
B3 [30, 90] Imin + 30 cm towards large diameters 
Imax [0.1, 90] The maximum D-range 

 207 

2.3.3. The position of D-range 208 

The position of D-range is characterized by the starting point of D-range. Each member of each pair 209 

of identical D-range extent began at a different position (Table 1). For example, the ranges S1 and B1 210 

have the same 40 cm range but their starting positions differ by 10 cm. This difference increases to 20 211 

cm for S2 vs. B2 and to 30 cm for S3 vs. B3 (Table 1). 212 

 213 

2.3.4. Distribution of sample trees  214 

The frequency distribution required for sampling trees and for developing robust models is an 215 

important consideration because it determines the level of resources and logistics required for 216 

measuring biomass. If trees were entirely randomly sampled, the sample size-distribution would 217 

approach that of the population. However, trees are not entirely randomly sampled because the sample 218 

is first stratified for each D-class, before random sampling is conducted within D-classes (McRoberts 219 

et al., 2015). A ‘D class’ groups trees within a specified D-range. Thus, for a 2 cm D class the entire 220 

D-range is divided into intervals (classes) of 2 cm (e.g. D = 10 to 12 cm). Workers therefore are able 221 

to determine how they represent frequency distributions through their selection of the range 222 

represented and the bins for each D-class. Nevertheless, the distribution of sample trees will influence 223 

how well the model is informed across the range of D, with consequences for confidence in model 224 

prediction. In our simulation, we explored four types of distribution (Fig. 1): 225 

(a) Uniform distribution on D-range (Fig. 1, a) of the sample frequency, where a constant number 226 

of sample trees is selected for each D class. 227 

(b) Normal distribution on D-range of the sample frequency (Fig. 1, b), where the sample 228 

frequency reflects a normal distribution of D. In other words, the largest number of sample 229 

trees is from the middle of D-range and decreases towards the margins of the range;  230 
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(c) Uniform distribution on ln(D)-range (Fig. 1, c1), which, for the original scale is equivalent to 231 

inverse of uniform distribution (Fig. 1, c2, the result of exponentiation of observations 232 

sampled from a uniform distribution on ln(D)-range).  233 

(d) Normal distribution on ln(D)-range (Fig. 1, d1). This is equivalent to lognormal distribution 234 

on D-range (Fig. 1, d2). For both, the uniform and normal distribution on ln(D)-range, a 235 

larger number of small trees is sampled compared to large trees (Fig. 1, c2 and d2).  236 

 237 

Fig. 1. Distributions of sample trees used for simulations: (a) Uniform distribution on D-range (D is 238 

the tree diameter at breast height); (b) Normal distribution on D-range; (c1) Uniform distribution on 239 

ln(D)-range, which is equivalent to the inverse of uniform distribution (c2); (d1) Normal distribution 240 

on ln(D)-range, for which, the equivalent of original scale is the lognormal distribution (d2). 241 

 242 

It is relatively straightforward to define D-limit ranges for uniform distributions. However, the normal 243 

distribution for D theoretically extends to infinity. For our simulation we therefore sampled from a 244 

truncated normal distribution, for which the lower and upper bounds of D-range were established 245 

using the ‘truncnorm’ package in R (Mersmann et al., 2018). We set the D-range to correspond to + 246 
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two standard deviations, equal to an interval expected to include 95% of observations from a normal 247 

distribution. The mean of the normal distribution (μd) was the mean of D of the corresponding 248 

sample:  249 

μd = Dmin + (Dmax−Dmin)
2

       (Eq. 3) 250 

and the standard deviation (σd) was calculated as:  251 

σd = μd−Dmin
2

         (Eq. 4) 252 

where Dmin and Dmax are the minimum and maximum limits of the D-range of interest (Table 1). For 253 

example, the normal distribution for Imin = [30, 60] cm was defined by the mean, μd = 45, with 254 

standard deviation, σd = 7.5. 255 

 256 

2.4. Plot data 257 

We compared the accuracy and precision of model simulations for estimating the biomass in a plot. 258 

Each allometric model developed on simulated data was applied to estimate the biomass in a 500 m2 259 

plot. The plot contained 21 trees for which biomass was predicted as a function of D using all 260 

simulated models. Because Imin = [30, 60] was the largest interval common to all the D-ranges tested, 261 

we selected a plot that contained only tree diameters that fell within this interval (Fig. 2). The purpose 262 

of this plot was therefore to provide a reference for prediction for all the simulated models in this 263 

study. In total, 0.96 million allometric models (5000 simulations × 2 RSE values × 3 sample sizes × 4 264 

types of distribution × 8 D-ranges) were simulated. Therefore, the value of AGB predicted from this 265 

plot is that it provides a baseline for comparing AGB results predicted by other model that use 266 

different sample characteristics. 267 

 268 
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Fig. 2. The size distribution of the 21 sample trees in the plot. Note: D is the diameter at breast height; 269 

the red curve represents the kernel density; the grey bars represent the density of each D-class (width 270 

of 5 cm). 271 

 272 

It is known that models have a poorer prediction performance at the extremes of the covariate range. 273 

For example, a biomass model developed on sample trees with a D-range of 0.1 to 90 cm would 274 

normally perform best when predicting biomass for trees at the centre of D-range (D = 45 cm) and 275 

progressively worse approaching the sample extremes of D = 0.1 cm or D = 90 cm. Therefore, one 276 

study objective was to investigate how models perform across the D-range. Consequently, another 277 

reason for working with a single plot with D-range restricted to Imin was to investigate the 278 

performance of models when only part of the D-range was used for prediction. A third reason for 279 

working with only one plot was to exclude other potentially confounding sources of uncertainty. In 280 

this study we aimed to describe only that uncertainty arising from model parameters and residuals, 281 

and intentionally avoided introducing potentially confounding effects of between site variations. 282 

 283 

2.5. Monte Carlo simulation 284 

 285 

A Monte Carlo analysis was used to assess the effects of sampling approaches on biomass prediction. 286 

We followed the next steps: 287 

1. For the kth simulation (K = 5000, is the total number of simulations), an allometric model was 288 

developed and then applied to predict biomass in the plot. The allometric model was developed 289 

based on simulated ln(AGB)-ln(D) data selected from the hypothetical population: 290 

1.1. defined a vector representing the errors of log-log linear model. The length of this vector was 291 

equal to the sample size (i.e. three values of sample size were used in this analysis, n =100, n 292 

= 150 and n = 1000, see section 2.3.1). The elements of the vector were randomly selected 293 

from a normal distribution with the mean zero and standard deviation either 0.2 or 0.3. Later 294 

in the simulation design, the standard deviation of this distribution will become the residual 295 
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standard error (RSE) of the allometric model. Two values of RSE were used, RSE = 0.2 and 296 

RSE = 0.3, see section 2.2. 297 

1.2. defined a vector containing sample ln(D) values, which were randomly selected from a 298 

specific distribution type (i.e. four types of distribution were used, see section 2.3.4) and a 299 

specific D-range (i.e. a total of eight ranges were used, Table 1). Because models were fitted 300 

in log-log scale for uniform and normal distributions of D-range (Fig. 1, a and b), we 301 

randomly selected the sample D values from a uniform and normal distribution on D-range 302 

and then log-transformed the sampled values (to obtain ln(D) values). For uniform and 303 

normal distributions on ln(D)-range, we sampled the ln(D) values directly in log-log scale, 304 

from a uniform and respectively normal distribution on ln(D)-range (Fig. 1, see c1 and d1). 305 

For each of the kth simulation, a distinct set of ln(D) values was generated, ln(D)(k). 306 

1.3. defined a vector (the length of the vector equals the sample size, see section 2.3.1) containing 307 

the sample ln(AGB) values. Using the ln(D)(k) values (obtained at step 1.2) and the error term 308 

(obtained at step 1.1) in Eq. 2, we generated the set of ln(AGB) values, which is also distinct 309 

for each of the kth simulation, ln(AGB)(k). 310 

1.4. fitted a linear model on the bivariate set of ln(AGB)(k) (obtained at step 1.3) and ln(D)(k) 311 

values (obtained from step 1.2): 312 

 ln(AGB)(k) = β0(k) + β1(k) ⋅ ln(D)(k) + ε(k)     (Eq. 5) 313 

1.5. We retained the standard errors of model parameters, SE(β0(k)) and SE(β1(k)), and the 314 

coefficient of determination for the kth simulation (R2
(k)): 315 

 R2(k) = 1 −
∑(ln(AGB)i(k)−ln(AGB)� i(k))2

∑(ln(AGB)i(k)−ln(AGB)������������(k))2
      (Eq. 6) 316 

Where ln(AGB)i(k) is the ith observed ln(AGB) in the kth simulation; ln(AGB)� i(k) is the ith 317 

predicted ln(AGB) in the kth simulation and ln(AGB)�����������(k) is the mean of all ln(AGB) values in 318 

the kth simulation. 319 

1.6. defined the variance-covariance matrix to account for the covariance between β0(k) and β1(k) 320 

in the following steps.  321 
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2. The allometric model developed within steps #1.1 to #1.6 (one model for each kth simulation) was 322 

used to estimate the plot biomass. To propagate the uncertainty from each allometric model (i.e. 323 

from model parameters and residual variance) to the plot level estimates, a loop of J = 5000 324 

repetitions was used, adapted from McRoberts et al. (2015, 2016). For the jth repetition: 325 

2.1. defined a vector containing two values (β0(j) and β1(j)) sampled at a time from a bivariate 326 

normal distribution (based on variance-covariance matrix of the allometric model developed 327 

at step 1.6, and on model parameters, β0(k) and β1(k), from step 1.4);  328 

2.2. defined a vector containing one error term (εj) sampled at a time (one for each jth repetition) 329 

from a normal distribution with the standard deviation equal to the residual standard error of 330 

the kth allometric model (Eq. 5). 331 

2.3. calculate the predicted biomass for each tree (AGB�i) in the plot based on the sampled 332 

parameters (from step 2.1) and error (from step 2.2): 333 

 AGB�i = exp(β0(j) + β1(j) ⋅ Di + εj)      (Eq. 7) 334 

2.4. calculate the predicted plot biomass (AGB�j) as the sum of individual tree predictions: 335 

 AGB�j = ∑ AGB�i
m
i=1         (Eq. 8) 336 

 Where m = 21, and m is the total number of trees in the plot. 337 

3. The mean plot biomass, standard error of the mean and the relative bias were calculated over all J 338 

repetitions: 339 

3.1. the mean predicted plot AGB over J repetitions: 340 

 AGBk�������� = 1
J
∑ AGB�j
J
j=1         (Eq. 9) 341 

3.2. standard error of the mean: 342 

 σ�k = � 1
J−1

∑ (AGB�j− AGB�������k)2J
j=1       (Eq. 10) 343 

3.3. relative bias: 344 

 Biask(%) =
�AGB�������k−μ�

μ
⋅ 100       (Eq. 11) 345 

where µ is the plot AGB, based on true population parameters (plot true AGB) and was calculated 346 

by applying the model based on true parameters (see Eq. 2) with a correction factor (Baskerville, 347 
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1972; Goldberger, 1968). The model was applied to all m = 21 trees in the plot and then the sum 348 

of individual tree biomasses was calculated. RSE is the residual standard error and can take one of 349 

two possible values, 0.2 and 0.3 (see section 2.2): 350 

 μ = ∑ (exp(2.11 + RSE2

2
) ⋅ Di

2.33)m
i=1       (Eq. 12) 351 

4. Measures of prediction accuracy and precision were calculated over all simulations (K = 5000 352 

simulations): 353 

4.1. The standard deviation of relative bias, reported as a measure of prediction accuracy (PA): 354 

 PA = � 1
K−1

∑ (Biask
K
k=1 − Bıas������)2      (Eq. 13) 355 

Where Bıas������ = 1
K
∑ (BiaskK
k=1 ) 356 

4.2. The mean coefficient of variation of predicted biomass, reported as a measure of prediction 357 

precision (PP): 358 

 PP = 1
K
∑ σ�k

AGBk���������
K
k=1 ⋅ 100        (Eq. 14) 359 

Where σ�k is the standard error of predicted biomass (Eq. 10); AGBk�������� is the mean predicted plot 360 

biomass (Eq. 9). 361 

 362 

2.6. Prediction accuracy and precision  363 

Prediction accuracy and precision are used to describe the performance of an estimator (Walther and 364 

Moore, 2005). This study adopts the definition that prediction accuracy is the difference between a 365 

predicted value and the true value (Walther and Moore, 2005). Because our simulation design 366 

calculated 5000 values (therefore 5000 ‘differences’ between predicted and true plot AGB, which are 367 

normally distributed with a mean of zero), accuracy was reported as the standard deviation for these 368 

5000 values (Standard deviation of relative bias, PA, Eq. 13). Furthermore, prediction precision is a 369 

measure of ‘the statistical variance of an estimation procedure’ (Walther and Moore, 2005) which is a 370 

form of uncertainty arising from random variation. In this study, the precision was reported as the 371 

mean coefficient of variation of predicted biomass at plot level (PP) in Eq. 14.  372 

 373 
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2.7. Data processing  374 

Simulation analyses were performed in R (R Core Team, 2017) with the RStudio interface (RStudio 375 

Team, 2016) and using the packages “MASS” (Venables and Ripley, 2002) and “rtruncnorm” 376 

(Mersmann et al., 2018). 377 

  378 
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3. Results 379 

 380 

3.1. The effects on standard errors of model parameters and on goodness of fit 381 

The simulation results demonstrate that with increasing D-range, the standard errors of model 382 

parameters (SE(β0) and SE(β1) in Eq. 5) decreased while the R2 values (Eq. 6) increased (Fig. 3 and 383 

Appendix 1). Greater standard errors denote a less precise estimation of model parameters, whereas 384 

larger R2 values indicate a better fit of the model to the data. The effects were stronger when the D-385 

range increased towards including small trees (Fig. 3, S1 – S3) compared to large diameter trees (Fig. 386 

3, B1 – B3). When increasing the extent of D-range, the largest reduction of SE(β0) and SE(β1) and the 387 

largest increase of R2 occurred for normal distribution on ln(D)-range (Fig. 3, d1-d3). Although in 388 

Fig. 3 only presents results for n = 100 and RSE = 0.3, similar patterns were obtained for other values 389 

of sample size and RSE (Appendix 1).  390 

 391 

Fig. 3. The standard errors of model parameters SE(β0) and SE(β1), and the model goodness of fit (R2) 392 

for a log-log transformed allometric biomass model (Eq. 5), different types of sample tree distribution 393 

and different D-ranges. For D-ranges S3 to Imax (x-axis), see Table 1. Note: Each column of graphs, 394 

referred to as (a) to (d), represents a different type of sample tree distribution (for more information 395 
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see section 2.3.4); SE(β0) is the standard error of the intercept in Eq. 5 and was calculated as the mean 396 

over all K=5000 simulations: SE(β0) = 1
K
∑ [SE(β0(k))]K
k=1 , where SE(β0(k)) is from step 1.5 in section 397 

2.5; SE(β1) is the standard error of the slope in Eq. 5, calculated as SE(β1) = 1
K
∑ [SE(β1(k))]K
k=1 , 398 

where SE(β1(k)) is from step 1.5 in section 2.5; R2 is the coefficient of determination, calculated as  399 

R2 = 1
K
∑ (R2(k))K
k=1 , where R2

(k) is from Eq. 6. This figure only presents data for models based on one 400 

value of sample size (n = 100) and one value of residual standard error (RSE = 0.3); the data for all 401 

values of sample size tested in this study (i.e. n = 100, n = 150 and n = 1000) and all values of RSE 402 

(i.e. RSE = 0.2 and RSE = 0.3) are presented in Appendix 1. 403 

 404 

The standard errors of model parameters were affected by both RSE and sample size. However, the 405 

model goodness of fit (R2) was affected mainly by the RSE with sample size only having a slight 406 

influence.  407 

When RSE was increased by 50% (from 0.2 to 0.3) the standard errors of model parameters 408 

(intercept and slope) increased by the same 50% rate (SD = 0.31%; calculated based on values 409 

presented in Table A1, and Table A2 in Appendix1) whereas the effect on R2 was dependent on the 410 

extent of the D-range and on the type of distribution (Fig. 3). For models based on smaller D-ranges 411 

and on trees sampled over a normal distribution (on either D or ln(D)), the effects of increasing RSE 412 

on R2 were stronger.  413 

When sample size was increased by 50% (from 100 to 150 trees), the standard errors of 414 

model parameters reduced, on average, by 18.7% (SD = 0.36%). When sample size was increased by 415 

1000% (from 100 to 1000) the standard errors decreased by 68.7% (SD = 0.33%). Nevertheless, 416 

increasing the sample size by 50% (from 100 to 150) and tenfold (from 100 to 1000) led to relatively 417 

small changes in mean values for R2 of only 0.07% and 0.18% respectively (see Appendix 1). 418 

 419 

3.2. The effects on biomass prediction accuracy 420 

 421 
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As expected, residual standard error (RSE) was an important driver for prediction accuracy (expressed 422 

as standard deviation of relative bias, PA, Eq. 13). A low PA value means that the difference between 423 

predicted AGB and true AGB is small, and therefore the model is more accurate. When RSE was 424 

increased from 0.2 to 0.3 (therefore, by 50%), PA increased by approximately the same ratio (i.e. by 425 

an average of 51.4%, SD = 2.3%; mean and SD were calculated from 96 PA values presented in Table 426 

A4, Appendix1, using all possible permutations for 8 D-ranges, 3 values of sample size and 4 types of 427 

distribution). The effect was stronger for models based on shorter D-ranges (Fig. 4 and Table A4 in 428 

Appendix 1). Sample size was also an important factor affecting biomass prediction accuracy, 429 

although its effect was weaker when compared to that of RSE. When sample size was increased by 430 

50% (from 100 to 150), PA decreased by an average of 18.4% (SD = 1.2%; calculated on 96 values in 431 

Table A4). Increasing the sample size by tenfold (from 100 to 1000) resulted in an average decrease 432 

of PA of 67% (SD = 0.8%; calculated on 96 values in Table A4). These effects were very similar to 433 

those found for standard errors of model parameters (when sample size increased by 50%, the 434 

standard errors decreased by 18.7%; when sample size increased tenfold, the standard errors 435 

decreased by 68.7%). 436 
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437 

Fig. 4. The standard deviation of relative bias, describing prediction accuracy (PA, Eq. 13, see section 438 

2.5) for different characteristics of the sample. For D-ranges S3 to Imax (x-axis), see Table 1. Note: 439 

Each column of graphs, referred to as (a) to (d), represents a different type of sample tree distribution 440 

(for more information see section 2.3.4); The rows 1-3 are for sample sizes (n) of 100, 150 and 1000 441 

trees respectively and RSE = 0.2. Rows 4-6 repeat the same sample sizes for RSE = 0.3.  442 

 443 
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The variation in PA values was lowest for uniform distribution on D-range (Fig. 4, a1-a6). This means 444 

that models constructed with trees selected along a uniform distribution of D-range produced more 445 

stable prediction accuracies across the D-range represented by models. In other words, sampling a 446 

constant number of trees for each D-class mitigates losses in allometric model accuracy when only 447 

limited D-range is available for prediction.  448 

However, models that were based on trees selected over uniform or normal distributions over 449 

transformed ln(D) range (Fig. 4, c1-c6 and d1-d6), produced larger PA values for S1 – S3 ranges 450 

compared to B1 – B3. The cause of these differences lies in how well the model was informed over the 451 

range of D = 30 to 60 cm. We mentioned above (section 2.3.4) that the uniform or normal distribution 452 

on ln(D) range (see Fig. 1, c1, c2, d1 and d2) assume that a greater number of smaller trees are 453 

selected than larger ones. Therefore, the models based on uniform and normal distribution on ln(D)-454 

range (Fig. 4, c1-c6 and d1-d6) are better informed towards the left (small tree) side of D-range 455 

distribution. However, the models based on S1 – S3 (in Fig. 4, c1-c6 and d1-d6) emphasise the right 456 

(larger tree) side of D-range for prediction (e.g. models based on S3 were developed for D = 0.1 to 60 457 

cm and were used to predict biomass of trees with D = 30 to 60 cm), which is less well informed. 458 

Therefore, the models based on B1 – B3 ranges produced more accurate predictions of AGB compared 459 

to models based on S1 – S3 ranges.  460 

Because the models based on S1 – S3 and B1 – B3 ranges used only part of the entire available 461 

D-range for prediction (e.g. the model based on S3 although being developed for D = 0.1 to 60 cm, 462 

was used to predict the biomass of trees with D = 30 to 60 cm), these were preferentially tuned to 463 

predict Imin with S1 – S3 or B1 – B3. Since prediction accuracy is poorer at the margins of D-range (for 464 

any given model) it is to be expected that PA values increase slightly (for models based on S1 – S3 and 465 

B1 – B3 in comparison to models based on Imin). However, both Imin and Imax based models used the 466 

central portion of D-range for prediction and therefore these two can be compared to assess how 467 

increasing the extent of D-range affects prediction accuracy. Increasing the range from Imin to Imax did 468 

not improve the prediction accuracy and had the opposite effect. This was especially notable for 469 

distributions on ln(D)-range (Fig. 4, c1-c6 and d1-d6) for which the PA value increased by up to 98%. 470 
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For models based on uniform and normal distribution on D-range (Fig. 4, a1-a6 and b1-b6) a much 471 

smaller increase, of up to 6.6%, was observed.  472 

We demonstrated the effects of increasing D-range from Imin to Imax when the number of 473 

observations remained constant. Therefore, although the models based on Imax exhibit greater R2 and 474 

smaller standard errors for model parameters (Fig. 3), their prediction accuracy was poorer compared 475 

to models based on Imin (Fig. 4, see Imin vs. Imax). This suggests that the absolute number or density of 476 

observations for each part of D-range (or for each diameter class) is important. For the specific D-477 

range of the plot data (i.e. D = 30 to 60 cm), the models based on Imax had a lower density of 478 

observations, compared to models based on Imin, since the same number of observations had to be 479 

distributed over a wider D-range (in the case of Imax based models). These results are important, 480 

because they demonstrate in comparison to model fitting and the standard errors of model parameters, 481 

that RSE (in log-log scale) and the absolute number of trees across the D-range are more important 482 

determinants of prediction accuracy. 483 

 484 

3.3. The effects on biomass prediction precision 485 

 486 

Although increasing the D-range the standard errors of model parameters decrease and the R2 487 

increases (Fig. 3), producing therefore improved models, this improvement was not reflected in the 488 

precision of biomass prediction (here, expressed as the mean coefficient of variation of predicted 489 

biomass, PP, in Eq. 14). The PP did not decrease with the increasing D-range and in some cases even 490 

increased slightly (Table 2).  491 

 492 

Table 2 493 

The mean coefficient of variation of predicted biomass (PP, Eq. 14), for uniform and normal 494 

distribution on D-range and ln(D) range, for sample sizes of n = 100, n = 150 and n = 1000, for 495 

residual standard error RSE = 0.2 and RSE = 0.3 and for D-ranges S3, S2, S1, Imin, B1, B2, B3 and Imax 496 

(for more information on D-ranges, see Table 1).  497 
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D-range Uniform distribution on D-
range 

Normal distribution on D-
range 

Uniform distribution on 
ln(D)-range 

Normal distribution on 
ln(D)-range 

n=100 n=150 n=1000 n=100 n=150 n=1000 n=100 n=150 n=1000 n=100 n=150 n=1000 
RSE = 0.2 

S3 20.32 20.29 20.22 20.35 20.30 20.22 20.53 20.41 20.23 20.78 20.54 20.26 
S2 20.31 20.24 20.21 20.32 20.32 20.20 20.44 20.33 20.22 20.54 20.38 20.22 
S1 20.30 20.26 20.20 20.30 20.30 20.22 20.39 20.29 20.20 20.44 20.34 20.22 
Imin 20.27 20.25 20.20 20.30 20.25 20.21 20.28 20.28 20.20 20.26 20.23 20.20 
B1 20.28 20.27 20.21 20.28 20.25 20.21 20.25 20.26 20.21 20.26 20.27 20.21 
B2 20.29 20.31 20.21 20.39 20.31 20.22 20.29 20.26 20.20 20.25 20.25 20.21 
B3 20.35 20.32 20.21 20.45 20.35 20.23 20.27 20.27 20.21 20.30 20.27 20.21 
Imax 20.28 20.25 20.21 20.31 20.27 20.21 20.49 20.36 20.20 20.64 20.49 20.25 

RSE = 0.3 
S3 30.94 30.82 30.72 31.07 30.82 30.73 31.30 31.02 30.74 31.68 31.36 30.78 
S2 30.91 30.82 30.71 30.96 30.88 30.70 31.18 30.98 30.73 31.28 31.01 30.75 
S1 30.85 30.81 30.72 30.90 30.88 30.71 30.98 30.89 30.72 31.08 30.94 30.72 
Imin 30.80 30.78 30.71 30.81 30.78 30.69 30.85 30.80 30.71 30.89 30.83 30.70 
B1 30.86 30.75 30.70 30.90 30.85 30.70 30.89 30.81 30.72 30.85 30.80 30.68 
B2 30.95 30.83 30.69 31.04 30.83 30.73 30.94 30.77 30.69 30.93 30.83 30.70 
B3 30.93 30.88 30.72 31.09 30.98 30.73 30.92 30.81 30.70 30.96 30.88 30.72 
Imax 30.82 30.78 30.71 30.79 30.76 30.70 31.22 30.99 30.73 31.44 31.14 30.76 

 498 

From Table 2 it can be seen that PP is highly related to residual standard error (RSE). Earlier it was 499 

mentioned (section 2.2) that RSE in log-log scale can be interpreted as a form of coefficient of 500 

variation for the original D-range scale. The slight increases in PP values over and above base levels 501 

of 20% and 30% (for RSE values of 0.2 and 0.3 respectively) are due to uncertainty in model 502 

parameters, since PP values contain errors propagated from both model parameters and residual 503 

variance. Therefore, RSE was the main driver of model prediction precision, with a very small 504 

proportion produced by uncertainty in model parameters (up to 5.3%). Increasing RSE by 50% (from 505 

0.2 to 0.3) resulted in an average increase in PP of 52.1% (SD = 0.2%; the mean and SD were 506 

calculated on the 96 PP values presented in Table 2, for each value of RSE), regardless of sample size, 507 

D-range and distribution type. However, sample size, although greatly influencing prediction 508 

accuracy, had little effect on prediction precision. Since increasing the sample size directly affected 509 

the standard errors of model parameters (producing a decrease in standard errors) and since the 510 

propagated errors from model parameters represent only a very small proportion of PP (up to 5.3%), it 511 

is to be expected that sample size will have little effect on prediction precision. Increasing the number 512 

of observations by 50% (from 100 to 150), had the effect of reducing PP by 0.33% (SD = 0.29%), and 513 

increasing observations tenfold (from 100 to 1000) led to a reduction in PP by 0.81% (SD = 0.56%). 514 
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However, both these effects were found not to be significantly different from zero change (p = 0.26 515 

and p = 0.16 respectively). 516 

  517 
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4. Discussion 518 

 519 

4.1. Factors influencing biomass prediction accuracy and precision 520 

The effects of tree sampling and data treatment approaches on biomass prediction accuracy and 521 

precision are subtle and can sometimes be counterintuitive. Findings here reveal certain 522 

characteristics of sampling strategies that are important for improving model prediction accuracy and 523 

precision. Of these it is the natural variability of the AGB-D relationship (expressed by RSE) that is 524 

the main driver for prediction accuracy and precision, thus an increase in RSE of 50% resulted in 525 

proportionally similar improvement in accuracy and precision. Increasing sample size was also found 526 

to be important for improving model accuracy but less so for improving precision. The finding that 527 

the effect of sample size on prediction accuracy depended on RSE and D-range, and was a function of 528 

1/√𝑛𝑛, where n is the sample size, was consistent with results published from earlier studies (Chave et 529 

al., 2004; Picard et al., 2012).  530 

Analyses demonstrate how a wider D-range improves model fit and the standard errors of 531 

model parameters (Fig. 3). This may also help to ensure that results from statistical tests are properly 532 

representative of allometric model performance, because the reduction of standard errors will increase 533 

the likelihood that null hypotheses (for no difference) are correctly rejected in analyses such as t- and 534 

F- tests (Dutcă et al., 2018b). However, we also showed that, although the model based on a wider D-535 

range had a better fit, the prediction accuracy was poorer (Fig. 4, see Imin vs. Imax). This result, which 536 

may be surprising, can be explained by the frequency of the observations across the D-range. If the 537 

number of observations remain constant, increasing the D-range inevitably reduces the density of 538 

observations with negative consequences on AGB (aboveground biomass) prediction accuracy. Often, 539 

increasing the range of D is achieved by merging datasets for different D-ranges. In this event, the 540 

density of observations across the D-range is not reduced and the resulting increase of sample size 541 

increases prediction accuracy. 542 

 Furthermore, Roxburgh et al. (2015) suggested that the optimal size distribution of sample 543 

trees to develop allometric models is the one that most closely matches the distribution of trees to 544 

which the model is applied. Although our plot data appears to be lognormally distributed (Fig. 2), the 545 
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greatest accuracy (lowest PA value) was obtained for models based on a uniform distribution of D-546 

range. This finding is in contradiction with results reported by Roxburgh et al. (2015). Because our 547 

plot D data only appeared to be lognormal, we further investigated this phenomenon by generating a 548 

new D dataset of 1000 observations lognormally distributed on Imax range. We investigated whether 549 

the model based on uniform distribution (developed for the same Imax range) produced lower PA and 550 

PP values (when predicting AGB of this new D dataset of 1000 observations) than the model based on 551 

lognormal distribution. The results confirmed that uniform distribution on D-range produced lower PA 552 

and PP values (model based on uniform distribution: PA = 3.2% and PP = 30.8%; model based on 553 

lognormal distribution: PA = 6.3% and PP = 31.4%). We repeated the comparison, for models based on 554 

uniform vs. normal distribution on D-range, when predicting AGB of 1000 trees normally distributed. 555 

Again, the model based on uniform distribution produced lower PA and PP values compared to model 556 

based on normally distributed sample trees (model based on uniform distribution: PA = 3.5% and PP 557 

=30.8%; model based on normal distribution: PA = 3.6% and PP = 30.9%). Therefore, our results 558 

indicate that models based on uniform distribution of the sample trees on D-range perform better 559 

(produce more accurate and precise predictions) regardless of distribution of the trees to which the 560 

model is applied.  561 

 562 

4.2. Small trees are more informative in allometric models  563 

We demonstrate that, for models based on similar number of observations and similar extent of D-564 

range (and similar residual standard errors in logarithmic scale), if models include smaller diameter 565 

trees, the standard errors of model parameters were reduced and R2 values were greater (e.g. see S3 vs. 566 

B3 in Fig. 3). Therefore, it is suggested that small trees are generally more informative in allometric 567 

models, compared to large trees. However, this seemingly anomalous finding can be explained by (or 568 

represents the indirect effect of) the heteroscedastic nature of the relationship between biomass and 569 

tree diameter. The variance in allometric models is not constant and increases with D (Zianis, 2008). 570 

As a result, to fit a nonlinear model the observations are usually weighted inversely to residual 571 

variance (the lower the residual variance, the larger the weight and vice-versa) (Dutcă et al., 2019). 572 

Logarithmic transformation on the other hand, performs a similar function: it re-scales data so that 573 
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units are stretched for small values of variables (D and AGB) and compressed for large ones. 574 

Therefore, log-log transformation more heavily weights the influence of small trees over large ones, 575 

to ensure that residuals are comparable residuals across predictor range (i.e. homoscedasticity).  576 

As the lowest residual variance usually occurs for the smallest D values (Zianis and 577 

Mencuccini, 2004), small trees are more heavily weighted and have a greater influence on regression 578 

models than larger trees. Therefore, small trees impart more information to models, and exert greater 579 

overall influence over the standard errors of model parameters and goodness of fit. Given the fact that 580 

small trees require less effort for biomass measurement, they are highly cost-effective to sample. 581 

Nevertheless, we have demonstrated that, although the models that included small trees produced 582 

smaller standard errors of model parameters and larger R2 values, they did not necessarily produce 583 

more accurate or precise predictions of AGB (Fig. 4 and Table 2). 584 

 585 

4.3. Selection criteria of allometric models 586 

Goodness of fit (R2 of linear model in log-log scale) is often reported with allometric biomass models, 587 

and is widely accepted as a criterion for model selection (Sanquetta et al., 2018). The assumption is 588 

that a model with the best fit will reasonably predict the biomass of other trees. Our results confirm 589 

that R2 was not affected by sample size (Sanquetta et al., 2018). However, we showed that R2 was a 590 

poor indicator of model prediction performance with respect to both accuracy and precision. Plotting 591 

the R2 against PA (Fig. 5, a) and PP (Fig. 5, b) we observed no clear relationship between R2 and 592 

model prediction accuracy or precision. 593 

Although not sensitive to changes in sample size, R2 was sensitive to variations in D-range 594 

(Fig. 3 and Appendix 1). Models yielded greater values of R2 for the maximum extents of D-range 595 

(i.e. Imax, see Fig. 3) and when distribution of sampled trees was uniform on ln(D)-range (R2 = 0.998, 596 

Fig. 3 and Table A3, Appendix 1). However, we showed that the extent of D-range did not affect 597 

prediction accuracy nor precision, and that actually the models based on trees sampled along a ln(D)-598 

range produced poorer prediction accuracies. These findings suggest that R2 may not be a reliable 599 

indicator of model prediction performance. 600 
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 601 

Fig. 5. The relationship between model goodness of fit (R2, Eq. 6) and prediction accuracy (PA, 602 

standard deviation of relative bias in %, Eq. 13) (a) and between R2 and prediction precision (PP, 603 

mean coefficient of variation of predicted biomass in %, Eq. 14) (b). Note: The plotted PA values are 604 

from Table A4 (Appendix 1); the PP values are from Table 2; the model R2 values are from Table A3 605 

(Appendix 1); larger PA values show lower prediction accuracy; larger PP values show lower 606 

prediction precision. 607 

 608 

4.4. Limitations of the study 609 

Our study has the following limitations. Firstly, the conclusions are only valid if the assumptions hold 610 

that heteroscedasticity is removed by logarithmic transformation and that errors are normally 611 

distributed in log-log scale. Secondly, because the study was limited to the relationship between AGB 612 

and D, the conclusions should not be extrapolated to other types of relationships. Thirdly, this study 613 

did not consider the uncertainty arising from between site variation. Fourthly and finally, we have 614 
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assumed that the diameters of trees in the inventory (plot) dataset were always within the D-range 615 

used to construct the model. We did not investigate the consequences of predicting AGB of trees 616 

outside the range of diameters used to construct the models. 617 

 618 

4.5. Recommendations 619 

Study findings suggest that the following guidelines will be useful in the preparation of reliable 620 

allometric models: 621 

(1) Select a constant number of trees for each D class (use a uniform distribution of sample 622 

trees). Results demonstrate that the models based on uniformly distributed sample trees over the 623 

D-range (D is the diameter at breast height) produced more accurate AGB predictions (AGB is 624 

the aboveground tree biomass), regardless of D-distribution of the inventory dataset. Also, 625 

variations in prediction accuracy across D-range were minimal. 626 

(2) Using R2 as criterion for model selection should be done with caution. Findings suggest that 627 

R2 (coefficient of determination) alone is not a strong indicator of model prediction performance. 628 

(3) Use strategies to avoid unnecessary large levels of RSE in allometric models. Because RSE 629 

(Residual Standard Error of the model in log-scale) is indicative of the intrinsic AGB variability 630 

for any given D, it cannot be naturally reduced. However, because RSE was a key driver of both 631 

prediction accuracy and precision, it is recommended that strategies are adopted to help reduce 632 

unnecessary AGB variability, such as: (i) avoiding using generic allometric models, where 633 

species effect is ignored and, therefore, to use species-specific allometric models wherever 634 

possible; (ii) test and include additional predictors in the models that may explain part of the 635 

residual variance, such as tree height, crown diameter and wood density.  636 
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5. Conclusions 637 

The key conclusions drawn from this study are as follow: (i) residual variance was the most important 638 

driver of model’s prediction accuracy and precision; (ii) increasing the sample size improved 639 

prediction accuracy (although its effect was weaker than that of residual standard error), but had 640 

negligible effect on prediction precision; (iii) increasing the extent of D-range, although improving 641 

both the goodness of fit and standard errors of model parameters, did not affect prediction accuracy 642 

nor precision; (iv) the size distribution of sample trees was important for prediction accuracy; we 643 

found that uniform distribution of D-range was optimal, regardless of the distribution of the inventory 644 

dataset; (v) small trees were more informative in allometric models, due to the effects of inherently 645 

heteroscedastic variance; (vi) R2 was not a good indicator of prediction performance of allometric 646 

models. 647 

 648 
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