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Abstract: Effective initiatives for forest-based mitigation of climate change rely on continuous efforts
to improve the estimation of forest biomass. Allometric biomass models, which are nonlinear models
that predict aboveground biomass (AGB) as a function of diameter at breast height (D) and tree
height (H), are typically used in forest biomass estimations. A combined variable D2H may be used
instead of two separate predictors. The Q-ratio (i.e., the ratio between the parameter estimates of
D and parameter estimates of H, in a separate variable model) was proposed recently as a measure
to guide the decision on whether D and H can be safely combined into D2H, being shown that the
two model forms are similar when Q = 2.0. Here, using five European beech (Fagus sylvatica L.)
biomass datasets (of different Q-ratios ranging from 1.50 to 5.05) and an inventory dataset for the
same species, we investigated the effects of combining the variables in allometric models on biomass
estimation over large forest areas. The results showed that using a combined variable model instead
of a separate variable model to predict biomass of European beech trees resulted in overestimation
of mean AGB per hectare for Q > 2.0 (i.e., by 6.3% for Q = 5.05), underestimation for Q < 2.0 (i.e.,
by –3.9% for Q = 1.50), whereas for Q = 2.03, the differences were minimum (0.1%). The standard
errors of mean AGB per hectare were similar for Q = 2.03 (differences up to 0.2%), and the differences
increased with the Q-ratio, by up to 10.2% for Q = 5.05. Therefore, we demonstrated for European
beech that combining the variables in allometric biomass models when Q 6= 2.0 resulted in biased
estimates of mean AGB per hectare and of uncertainty.

Keywords: forest biomass; allometric models; Fagus sylvatica; bias; forest carbon

1. Introduction

The policies on forest-based mitigation of climate change cannot be successfully
implemented without a rigorous quantification of the forest carbon stock and/or stock
change [1–5]. Usually, forest carbon is not estimated directly; the forest biomass is first
quantified and then a species-specific biomass-to-carbon ratio is used to transform biomass
to carbon [3]. Therefore, the real challenge is the estimation of forest biomass [6]. Forest
biomass estimation relies, in many cases, on the use of allometric biomass models [7],
which are nonlinear regression models predicting tree aboveground biomass (AGB) as a
function of diameter at breast height (D) and/or tree height (H) [8,9]. These models are
then applied to a sample of plots, which may involve remote sensing data, to obtain a
statistical parameter of mean biomass per unit of forest area [3,10].

The addition of H as a predictor variable in allometric biomass models was shown to
improve the biomass prediction [11,12] and reduce the dependence of allometric models
on sites [13]. However, the dependence on tree species was only marginally reduced when
including H [13], although ‘wood density’ as an additional predictor of D and H was shown
to significantly reduce dependence on species [14].
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Correlation of D and H, although strong, is never perfect; the relationship between D
and H is affected by genotype, age, tree competition, and environmental conditions [15,16].
If the correlation would be perfect (i.e., r = 1.0), the addition of H in allometric models
would be redundant. It is to be expected that for trees of similar D, the variability in H
will cause some variability in AGB. Therefore, the addition of H as a predictor of biomass
explains the variability in AGB produced by variability in H for trees of any given D.

The variables D and H are commonly used separately in allometric models to predict
AGB. Although weighting for heteroscedasticity of residuals in nonlinear models is easily
implemented in statistical software routines, a logarithmic transformation of all variables
is often used to stabilize the variance and to linearize the model:

ln(AGB) = β10 + β11 · ln(D) + β12 · ln(H) + ε1 (1)

Nevertheless, because variables D and H are correlated, there is inherently a degree
of collinearity in allometric biomass models when both D and H are used as individual
predictors of biomass [12]. Alternatively, to avoid the negative effects of collinearity [17],
the variables D and H can be combined into a single predictor variable D2H, being justified
by the proportionality between AGB and the cylinder of diameter, D, and height, H [14]:

ln(AGB) = β20 + β21 · ln
(

D2H
)
+ ε2 (2)

The combined variable model contains a lower number of parameters, and, therefore,
a lower number of variances and covariances to be estimated. Equation (2) can be fitted
with only a single parameter, assuming isometry between the predictor variable and the
predicted AGB (i.e., if β21 = 1) [14].

However, combining the variables D and H into D2H is not that harmless.
Dutcă et al. [18] showed that combining the variables into D2H can affect the accu-
racy of biomass prediction under certain conditions. They proposed a practical measure,
the Q-ratio:

Q =
β̂11

β̂12
(3)

where β̂11 and β̂12 are the parameter estimates from Equation (1), to guide the decision
as to whether D and H may be combined into D2H without the adverse effects of loss in
biomass prediction accuracy. The authors showed that there is no preference in using a log-
transformation or a weighted nonlinear approach to fit the allometric model (Equation (1))
in order to calculate the Q-ratio (Equation (3)), since the differences in estimated Q-ratio
were minor [18]. The combined variable model (Equation (2)) is the equivalent of the
separate variable model (Equation (1)), when Q = 2.0, and, therefore, the combined variable
model can be safely used instead of separate variable model when Q = 2.0. They demon-
strated that the combined variable model became less efficient in predicting AGB as the
Q-ratio deviated from 2.0 [18]. Since Dutcă et al. [18] investigated the effects at the level
of allometric models only, and it is essential to investigate the effects of using a combined
variable to predict biomass over large forest areas, when the Q-ratio deviates from 2.0.

Therefore, in this paper we investigated the effects of using a combined variable model
(Equation (2)) instead of a separate variable model (Equation (1)), under different levels of
Q-ratios, to predict biomass for large European beech forest areas.

2. Materials and Methods
2.1. Data
2.1.1. Calibration Datasets

The calibration data were used to fit the allometric biomass models to predict the
biomass of individual trees within the inventory dataset. Since the aim of our study was to
investigate the effects of different levels of Q-ratios [18] on using the combined variable
to predict the biomass over large forest areas, we derived five biomass datasets having
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different Q-ratios. We started from a large biomass dataset [19] and selected only European
beech (Fagus sylvatica L.) trees with D > 5.6 cm to match the starting D-range for the
inventory dataset. We obtained a ‘beech dataset’ containing 221 observations.

We further resampled from the ‘beech dataset’, without replacement, a constant
number of 100 trees. To each resampled dataset we fitted an allometric model taking
the form of Equation (1) and calculated the Q-ratio as in Equation (3). The resampling
continued until the Q-ratio was within the following intervals: 1.5 ± 0.05, 2 ± 0.05,
3 ± 0.05, 4 ± 0.05 and 5 ± 0.05. Therefore, we obtained five biomass (i.e., calibration)
datasets, each containing 100 trees, but having a different Q-ratio. The actual Q-ratios and
other characteristics for each calibration dataset used in this study are presented in Table 1.

Table 1. The characteristics of the calibration datasets.

Dataset Name Q-Ratio Sample Size D-Range (cm) H-Range (m) AGB-Range (kg)

Q1 1.50 100 5.6–60.1 7.91–35.80 8.3–3456.6
Q2 2.03 100 5.6–86.3 8.54–40.30 8.3–8447.1
Q3 3.03 100 6.1–86.3 8.20–40.30 10.1–8447.1
Q4 4.03 100 6.0–86.3 5.64–40.30 11.3–8447.1
Q5 5.05 100 6.2–86.3 9.39–40.30 11.4–8447.1

2.1.2. Inventory Dataset

The inventory dataset was selected from Romanian National Forest Inventory (NFI).
Out of 5036 sample plots within the NFI network, we selected all plots containing only
beech (Fagus sylvatica L.) trees. A total of 298 sample plots were identified and considered
for the study. The diameter at breast height (D) range was between 5.6 and 101.0 cm; the H
range was between 3.0 and 49.3 m.

European beech is the most important tree species in Romania, covering 2.11 million ha,
according to the National Forest Inventory. Because of the widespread distribution of Euro-
pean beech in Romania, it is the best-suited species [20,21].

The Romanian NFI uses a 4 by 4 km grid in the mountain area [21] where the beech
trees grow. Therefore, each plot is representative of a forest area of 16 km2, and the 298 plots
correspond to 476.8 thousand hectares of forest. Each sample plot consists of two sub-plots
in which trees of different sizes are measured for D (with a precision of 1 mm) and H (with a
precision of 1 cm). In a smaller circular sub-plot (200 m2) all trees with a diameter at breast
height (D) between 5.6 and 28.5 cm are measured. In a larger sub-plot (circular sub-plot of
500 m2, concentrical to the small sub-plot) all trees with D > 28.5 cm are measured [22].

2.2. Data Analysis
2.2.1. Fitting Allometric Models to Calibration Datasets

To each calibration dataset (i.e., Q1 to Q5, Table 1) we fitted two allometric models,
taking the form of:

(a) separate variable model (Equation (1));
(b) combined variable model (Equation (2)).

2.2.2. Prediction of Biomass

For every tree in every plot within the inventory dataset, the AGB was predicted using

(a) the separate variable model:

ˆAGBij
s = exp

(
β̂10
)
· Dij

β̂11 · Hij
β̂12 · exp

(
RSE1

2

2

)
(4)

where β̂10, β̂11, and β̂12 are the parameter estimates of Equation (1) fitted to Datasets
Q1–Q5; Dij is the diameter at breast height of the ith tree from the jth plot in the
inventory dataset; Hij is the height of the ith tree from the jth plot in the inventory
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dataset; RSE1 is the residual standard error of Equation (1) that was used to calculate
the back transformation correction factor [23].

(b) the combined variable model:

ˆAGBij
c = exp

(
β̂20
)
· (D2Hij)

β̂21 · exp
(

RSE2
2

2

)
(5)

where β̂20 and β̂21 are the parameter estimates of Equation (2); D2Hi is the combined
predictor variable for the ith tree in the jth plot in the inventory dataset (it was
calculated by multiplication of squared D with H); RSE2 is the residual standard error
of Equation (2); exp(RSE2

2/2) is the correction factor [23].

For each plot, the individual tree predictions were added and then extrapolated per
hectare. We used an expansion factor of 50 for the small subplot (i.e., of 200 m2, where the
trees with 5.6 ≤ D ≤ 28.5 cm were measured) and a factor of 20 for the large subplot (i.e.,
of 500 m2, where the trees with D > 28.5 cm were measured):

ˆAGBj
s = 50 ·

nj1

∑
i=1

ˆAGBi
s(small subplot) + 20 ·

nj2

∑
i=1

ˆAGBi
s(large subplot) (6)

ˆAGBj
c = 50 ·

nj1

∑
i=1

ˆAGBi
c(small subplot) + 20 ·

nj2

∑
i=1

ˆAGBi
c(large subplot) (7)

where ˆAGBi
s is the predicted AGB of the ith tree based on separate variable model

(Equation (4)) from either the small or the large subplot; ˆAGBi
c is the predicted AGB

of the ith tree based on combined variable model (Equation (5)) from either the small or the
large subplot; nj1 is the total number of measured trees in the small subplot; nj2 is the total
number of measured trees in the large subplot.

Assuming negligible uncertainty due to allometric model predictions [24,25] and an
equal probability sample, the population mean AGB per hectare (i.e., µ̂s based on the
separate variable model and µ̂c based on the combined variable model) and the standard
error of the mean (i.e., SE(µ̂s) and SE(µ̂c)) were estimated using a simple expansion
estimator [26,27]. Therefore, under simple expansion estimation, the uncertainty that
originated in allometric biomass models (e.g., variance-covariance matrix and residual
variance) was not included:

µ̂s =
1
n

n

∑
j=1

ˆAGBj
s (8)

µ̂c =
1
n

n

∑
j=1

ˆAGBj
c (9)

SE(µ̂s) =

√√√√ 1
n(n− 1)

n

∑
j=1

( ˆAGBj
s − µ̂s

)2 (10)

SE(µ̂c) =

√√√√ 1
n(n− 1)

n

∑
j=1

( ˆAGBj
c − µ̂c

)2 (11)

where ˆAGBj
s is the predicted AGB of the jth plot from Equation (6); ˆAGBj

c is the predicted
AGB of the jth plot from Equation (7); n is the total number of plots.

We further investigated the differences between the estimates based on separate
variable models (Equation (4)) and estimates from combined variable models (Equation (5))
at the level of (i) individual tree predictions and (ii) plot level estimates. Bland–Altman
plots [28,29] were developed to report the mean difference (or bias) (MD) and the limits of
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agreement (LoA) of estimates derived from the two model forms. At the level of individual
trees, the MDtree and LoAtree were calculated as:

MDtree =
1
N

N

∑
i=1

( ˆAGBi
c − ˆAGBi

s) (12)

LoAtree = 1.96 ·

√√√√ 1
N − 1

N

∑
i=1

[( ˆAGBi
c − ˆAGBi

s
)
−MDtree

]2 (13)

where ˆAGBi
s is the predicted AGB of the ith tree in the inventory dataset based on the

separate variable model (Equation (4)); ˆAGBi
c is the predicted AGB of the ith tree in the

inventory dataset based on the combined variable model (Equation (5)); N is the total
number of trees in the inventory dataset.

At the level of individual plots, the MDplot and LoAplot were calculated as:

MDplot =
1
n

n

∑
j=1

( ˆAGBj
c − ˆAGBj

s) (14)

LoAplot = 1.96 ·

√√√√ 1
n− 1

n

∑
j=1

[( ˆAGBj
c − ˆAGBj

s
)
−MDplot

]2
(15)

where ˆAGBj
c is the estimated AGB per hectare of the jth plot (Equation (7)), which used the

combined variable model to predict the AGB of individual trees; ˆAGBj
s is the estimated

AGB per hectare of the jth plot (Equation (6)), which used the separate variable model to
predict the AGB of individual trees; n is the total number of plots.

2.3. Data Processing

The processing and analysis of the data were performed in R [30] with the RStudio
interface [31].

3. Results
3.1. The Effects at the Level of Large Forest Area Estimates

The estimates of mean AGB per hectare and their standard errors are presented in
Table 2, for the two model forms (i.e., separate variables and combined variables). For
Dataset Q2 (Q = 2.03), the difference in mean AGB per hectare between estimates based on
combined vs. separate variable models (i.e., µ̂c vs. µ̂s) was the lowest, by approximately
0.1% (Table 2). However, this difference increased as the Q-ratio departed from 2.0. For
Q > 2.0, the estimates based on combined variable models were larger than those based
on separate variable models, the difference increasing gradually for Datasets Q3, Q4, and
Q5 because of the increasing Q-ratio. The largest difference in mean AGB per hectare
(i.e., 6.3%, Table 2) was observed for Dataset Q5 (Q = 5.05). For Q < 2.0, the differences
were negative. The estimates of mean AGB per hectare based on combined variables were
smaller compared to those based on the separate variable model, by 3.9% (Table 2) for
Dataset Q1. Therefore, the negative effects of using a combined variable model instead of
separate variables were minimal when Q = 2.0 and increased as the Q-ratio departed from
the threshold value of 2.0.
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Table 2. The estimates of mean AGB per hectare and of SE, in Mg·ha–1, by model form and dataset. µ̂s is the mean AGB per
hectare based on the separate variable model, Equation (8); µ̂c is the mean AGB per hectare based on the separate variable
model, Equation (9); SE(µ̂s) is the standard error of µ̂s, Equation (10); SE(µ̂c) is the standard error of µ̂c, Equation (11). The
relative difference was calculated as the ratio between the difference (i.e., the estimates of the combined variable model minus
the estimates of the separate variable model) and the estimates based on the separate variable model, multiplied by 100.

Dataset Q-Ratio

Mean AGB per Hectare (µ̂) SE of the Mean (SE(µ̂))

µ̂s

(Mg·ha−1)
µ̂c

(Mg·ha−1)

Relative
Difference

(%)

SE(µ̂s)
(Mg·ha−1)

SE(µ̂c)
(Mg·ha−1)

Relative
Difference

(%)

Q1 1.50 289.30 278.09 –3.9 10.54 9.91 –6.0
Q2 2.03 276.71 277.00 0.1 9.84 9.86 0.2
Q3 3.03 287.03 297.63 3.7 10.08 10.66 5.8
Q4 4.03 274.99 290.44 5.6 9.50 10.35 9.0
Q5 5.05 270.28 287.34 6.3 9.19 10.18 10.8

The Q-ratio also affected the estimates of uncertainty. The relative difference of SE
increased with the Q-ratio (Table 2). For Dataset Q5, the SE increased by more than 10%
when using a combined variable model instead of a separate variable model. The SE
relative to the mean AGB per hectare (i.e., the coefficient of variation) was between 3.4%
and 3.6%.

3.2. The Effects at the Level of Individual Tree Predictions

It was confirmed, at the level of individual tree predictions, that the smallest dif-
ferences between models based on separate variables and models based on combined
variables occurred for Dataset Q2 (Q = 2.03, Figure 1b). For Q 6= 2.0, the smallest differences
in absolute values occurred for the smallest trees whereas the largest differences occurred
for the largest trees (Figure 1a,c–e). The mean difference (MDtree), which is the average
difference of the predicted biomass per tree, was closest to zero (i.e., unbiased) for Q = 2.03
(i.e., 0.9 kg per tree). However, MDtree increased for Q > 2.0, up to 51.6 kg per tree for
Dataset Q5. Therefore, for Dataset Q5, the combined variable model estimated, on average,
a 51.6 kg heavier tree biomass compared with the separate variable model. This large
MDtree was driven by the large differences in large trees, which for Dataset Q5 reached
1357 kg for a tree that had ˆAGBs = 6.37 Mg and ˆAGBc = 7.73 Mg. As can be observed in
Figure 1, for small trees, the differences were relatively small and balanced. For Q < 2.0,
the MDtree decreased by up to 34.5 kg per tree (for Q = 1.50). Therefore, for Dataset Q1,
the combined variable model predicted, on average, 34.5 kg per tree less compared to the
separate variable model.

The limit of agreement (LoAtree) that indicates how well the two model forms agree
in their predictions was lowest for Dataset Q2 (i.e., 4.6 kg). The LoAtree increased for both
Q < 2.0 and Q > 2.0. For Q > 2.0, the LoAtree increased up to 233.0 kg (for Dataset Q5), while
for Q < 2.0, the LoAtree increased up to 132.5 kg (for Dataset Q1). Therefore, the agreement
between predictions of the two model forms was weaker as the Q-ratio departed from 2.0.
Although dealing with only a single dataset with Q < 2.0, we conjecture that the differences
between separate and combined predictor variables were more strongly affected by the
Q-ratio for Q < 2.0. A decrease of 0.5 units in the Q-ratio below the threshold value of
2.0 produced differences that were comparable to those of Q = 3.03 (therefore, one unit
above 2.0).
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Figure 1. The Bland–Altman plots, comparing the individual tree predictions, for trees in the
inventory dataset, as predicted by the separate variable models and the combined variable models,
based on Dataset Q1 (a), Dataset Q2 (b), Dataset Q3 (c), Dataset Q4 (d) and Dataset Q5 (e). Note: the
dashed grey line represents the mean difference (MDtree), and dotted grey lines show the limits of
agreement (LoAtree).

3.3. The Effects at the Level of Plot Estimates

The trends observed at the level of individual tree predictions were replicated at
the level of individual plot estimates. This was partly expected because the estimates of
plot biomass are based on individual tree predictions. However, within a plot, trees of
different sizes can be expected to occur, and therefore, the effects at the plot level represent
a combination of the effects for individual trees. Overall, the smallest differences between
separate and combined variable models occurred again for Dataset Q2 (Figure 2b). For
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Q 6= 2.0, the largest differences were observed for the largest plots (in terms of estimated
biomass). Compared to the separate variable models, the combined variable models
estimated, on average, 17.1 Mg·ha−1 more biomass, whereas for Dataset Q1, 11.2 Mg·ha–1

less biomass.
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Figure 2. The Bland–Altman plots, comparing the individual plot estimates, that resulted from individ-
ual tree predictions based on separate variable models and combined variable models, based on Dataset
Q1 (a), Dataset Q2 (b), Dataset Q3 (c), Dataset Q4 (d) and Dataset Q5 (e). Note: the dashed grey line
represents the mean difference (MDplot), and dotted grey lines show the limits of agreement (LoAplot).

4. Discussion

Combining the variables D and H in allometric biomass models to estimate forest
biomass over large forest areas produced large systematic errors when the Q-ratio was
different from 2.0. At the level of allometric models, it has been shown that Q-ratio is a good
indicator of whether a combined variable can be used instead of separate variable-based
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models [18]. In this study, we demonstrated that combining the variables in allometric
models had substantial negative consequences for the estimation of biomass over large
forest areas when the Q-ratio was different from 2.0, confirming the results of ref. [18].
Using five calibration datasets with Q-ratios of approximately 1.5, 2.0, 3.0, 4.0 and 5.0,
as well as an inventory dataset, we showed that the systematic errors increased with the
Q-ratio, for both Q > 2.0 and Q < 2.0.

As noted by Dutcă et al. [18], the combined variable model is equivalent to the separate
variable model only when Q = 2.0. Therefore, it was expected that both, the separate
variable model and the combined variable model, would produce similar estimates of
mean AGB per hectare when Q = 2.0 (differences in mean AGB per hectare for Q = 2.03
reached 0.1%). It was not known, however, how strong the effects at the level of large
forest area biomass estimates would be once the Q-ratio departed from 2.0. We found
that for the largest Q-ratio value tested in this study (i.e., Q = 5.05), the combined variable
model overestimated the mean AGB per hectare by 6.3%. However, for Q = 1.50, the
combined variable model produced an underestimation of mean AGB per hectare of
−3.9%. These differences were caused by the constraints of combined variable models
to produce parameter estimates with a ratio of 2.0 (parameter estimate of D divided by
parameter estimate of H), when the actual ratio, of that specific dataset, was different
from 2.0. The more different the Q-ratio, the larger the systematic error produced. For
Q > 2.0, the combined-variable model produced overestimation of mean AGB per hectare,
but underestimation for Q < 2.0.

An increase in the Q-ratio yields a decrease in the main effect of H relative to the main
effect of D (parameter of H, i.e., β2, decreased with the Q-ratios, Table A1). Therefore, for a
constant D, a 1% increase in H would result in lower predicted tree AGB when the Q-ratio
is large, and vice-versa. The main drivers of the main effect of H in allometric models
are the changes in tree taper or wood density with the increase in H under constant D.
Under a constant tree taper and constant wood density across tree sizes, the main effect of
H would be 1.0. However, for large Q-ratios, the main effect of H was much lower than 1.0
(Table A1). Since the main effect of H represents the relative increase in AGB produced by
a 1% increase in H under constant D, the increase in H under constant D may result in a
decrease in wood density. It is known that under stronger tree competition, trees invest
more in H growth. In a study on height-diameter scaling from the United States, the author
found that wood density was a significant predictor of H–D scaling [15]. Therefore, it is
likely that for trees of similar D, an increase in H may result in overall lower wood density
that would further affect the Q-ratio. This may also explain why the parameter of H in
many reported allometric models was considerably lower than 1.0, resulting in Q-ratios
larger than 2.0 [18].

Since the mean AGB per hectare was calculated based on plot estimates, it is important
to understand how the variation in plot AGB was affected by combining the variables
in allometric models. For Dataset Q5, the largest difference at the plot level between the
combined variable model and separate variable model was 153.9 Mg·ha–1. This difference
occurred for the largest estimated AGB per hectare: 1048.6 Mg·ha–1 for the combined
variable model and 894.7 Mg·ha−1 for the separate variable model. Therefore, the overesti-
mation caused by the combined variable model drove the differences in mean AGB per
hectare and the standard error of the mean (Table 2). This overestimation at the plot level
originated in overestimations that took place for tree-level predictions (Figure 1). To obtain
a large plot AGB, the trees within the plot should be large. Therefore, the overestimation
observed for large trees (Figure 1) was further propagated to plot-level estimates (Figure 2)
and then to mean AGB per hectare and to the standard error of the mean.

The goodness of fit offered little information on the potential danger the combined
variable may pose for the estimation of biomass at a large scale. Although differences in R2

(coefficient of determination, Table A1) between separate variable models and combined
variable models were relatively small, the systematic differences between estimates were
important, confirming previous findings [32]. It has previously been assumed that models
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with fewer parameters are more robust to bias [14], but we showed that combined variable
models, although having fewer parameters, produced biased estimates when Q 6= 2.0. In
addition, for Q > 2.0, the combined variable models produced greater uncertainty (Table 2).

Combining the variables in allometric biomass models used to be a common practice,
and it continues to be widely used. For example, in recent reviews of allometric biomass
models in China [33,34], the authors proposed models based on a combined variable
between D and H, rather than using D and H as separate variables. Further, some of
the most widely used allometric models for the tropical region are based on combined
variables [14,35]. This combined variable model structure may significantly affect the
accuracy of estimations over large forest areas; therefore, it should be used with due
care, checking first whether the Q-ratio is close enough to 2.0, so the subsequent bias
is insignificant.

The findings of this study can improve the awareness on the limitations of using a
combined variable model instead of a separate variable model when the Q-ratio differs from
2.0. Allometric models have been recognised as a major source of uncertainty in biomass
estimations, with model selection among the most important sources of uncertainty [36].
However, model selection often refers to selecting a model that was based on a certain
biomass dataset [36]. In our study, the models, although based on the exact same datasets,
produced very different estimates when the Q-ratio was very different from 2.0. Therefore,
it is not only the different datasets that affect the model but also the model form.

It is widely recognized that the greatest potential for climate change mitigation is
provided by tropical forests [1,4,37]. Mitigation of climate change can occur through conser-
vation and enhancement of the current forest carbon sink and by reducing emissions from
deforestation [4]. For programmes such as REDD+ (reduce emissions from deforestation
and forest degradation), uncertainty in carbon estimations is crucial [1,38]. Therefore,
our results bring important knowledge on how to avoid further uncertainties in biomass
estimations and to improve the relevance of such initiatives. Based on the results of our
study, we recommend checking the Q-ratio before combining the variables in allometric
models to avoid estimation bias. If the Q-ratio is different from 2.0, the variables should
not be combined into D2H.

5. Conclusions

Using a combination of European beech calibration datasets of different Q-ratios and
an inventory dataset for the same species, we demonstrated that combining the variables
D and H in allometric biomass models to estimate forest biomass over large forest areas
produced systematic errors that depended on the Q-ratio. For our European beech example,
combining the variables D and H into D2H in allometric models produced overestimation
of mean AGB per hectare and standard error of the mean for Q > 2.0 of up to 6.3% and 10.8%
(for Q = 5.05) and underestimation for Q < 2.0 of up to −3.9% and −6.0% (for Q = 1.50),
respectively. These differences were driven by overestimations and underestimations of
single tree-level predictions, which increased with tree size. Therefore, combining the
variables in allometric biomass or volume models should be done with due care, and
checking of the Q-ratio prior to combining the variables should always be performed.
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Appendix A

Table A1. The estimates of model parameters.

Dataset Q-Ratio
Separate Variable model (Equation (1)) Combined Variable Model (Equation (2))

β0(SE) β1(SE) β2(SE) RSE R2 β0(SE) β1(SE) RSE R2

Q1 1.50 −3.808
(0.287)

1.850
(0.083)

1.231
(0.169) 0.212 0.978 −3.437

(0.139)
0.982

(0.015) 0.214 0.977

Q2 2.03 −3.409
(0.257)

1.966
(0.077)

0.970
(0.149) 0.223 0.977 −3.425

(0.139)
0.980

(0.015) 0.222 0.978

Q3 3.03 −3.068
(0.179)

2.127
(0.059)

0.702
(0.106) 0.172 0.986 −3.452

(0.113)
0.990

(0.012) 0.177 0.986

Q4 4.03 −2.804
(0.207)

2.187
(0.068)

0.543
(0.126) 0.190 0.983 −3.394

(0.127)
0.982

(0.014) 0.200 0.981

Q5 5.05 −2.515
(0.186)

2.204
(0.057)

0.436
(0.107) 0.159 0.987 −3.282

(0.118)
0.971

(0.012) 0.174 0.984

References
1. Yanai, R.D.; Wayson, C.; Lee, D.; Espejo, A.B.; Campbell, J.L.; Green, M.B.; Zukswert, J.M.; Yoffe, S.B.; Aukema, J.E.; Lister, A.J.;

et al. Improving uncertainty in forest carbon accounting for REDD+ mitigation efforts. Environ. Res. Lett. 2020, 15, 124002.
[CrossRef]

2. Xu, L.; Saatchi, S.S.; Yang, Y.; Yu, Y.; Pongratz, J.; Bloom, A.A.; Bowman, K.; Worden, J.; Liu, J.; Yin, Y.; et al. Changes in global
terrestrial live biomass over the 21st century. Sci. Adv. 2021, 7, eabe9829. [CrossRef]

3. Brown, S. Measuring carbon in forests: Current status and future challenges. Environ. Pollut. 2002, 116, 363–372. [CrossRef]
4. Grassi, G.; House, J.; Dentener, F.; Federici, S.; den Elzen, M.; Penman, J. The key role of forests in meeting climate targets requires

science for credible mitigation. Nat. Clim. Chang. 2017, 7, 220–226. [CrossRef]
5. Nabuurs, G.-J.; Lindner, M.; Verkerk, P.J.; Gunia, K.; Deda, P.; Michalak, R.; Grassi, G. First signs of carbon sink saturation in

European forest biomass. Nat. Clim. Chang. 2013, 3, 792–796. [CrossRef]
6. Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon stocks: Making REDD a reality.

Environ. Res. Lett. 2007, 2, 045023. [CrossRef]
7. Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.;

et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 2014, 507, 90–93. [CrossRef] [PubMed]
8. Zianis, D.; Muukkonen, P.; Mäkipää, R.; Mencuccini, M. Biomass and Stem Volume Equations for Tree Species in Europe; Finnish

Society of Forest Science, Finnish Forest Research Institute: Helsinki, Finland, 2005.
9. Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. National-scale biomass estimators for United States tree species. For. Sci.

2003, 49, 12–35.
10. McRoberts, R.E.; Moser, P.; Zimermann Oliveira, L.; Vibrans, A.C. A general method for assessing the effects of uncertainty in

individual-tree volume model predictions on large-area volume estimates with a subtropical forest illustration. Can. J. For. Res.
2015, 45, 44–51. [CrossRef]

11. Rutishauser, E.; Noor’an, F.; Laumonier, Y.; Halperin, J.; Rufi’ie; Hergoualch, K.; Verchot, L. Generic allometric models including
height best estimate forest biomass and carbon stocks in Indonesia. For. Ecol. Manag. 2013, 307, 219–225. [CrossRef]

12. Dutcă, I.; Mather, R.; Blujdea, V.N.; Ioras, , F.; Olari, M.; Abrudan, I.V. Site-effects on biomass allometric models for early growth
plantations of Norway spruce (Picea abies (L.) Karst.). Biomass Bioenergy 2018, 116, 8–17. [CrossRef]

13. Dutcă, I. The Variation Driven by Differences between Species and between Sites in Allometric Biomass Models. Forests 2019,
10, 976. [CrossRef]

14. Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.C.; Duque, A.; Eid, T.; Fearnside, P.M.;
Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014,
20, 3177–3190. [CrossRef] [PubMed]

15. Ducey, M.J. Evergreenness and wood density predict height–diameter scaling in trees of the northeastern United States. For. Ecol.
Manag. 2012, 279, 21–26. [CrossRef]

16. Vizcaíno-Palomar, N.; Ibáñez, I.; Benito-Garzón, M.; González-Martínez, S.C.; Zavala, M.A.; Alía, R. Climate and population
origin shape pine tree height-diameter allometry. New For. 2017, 48, 363–379. [CrossRef]

17. Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al.
Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46.
[CrossRef]

18. Dutcă, I.; McRoberts, R.E.; Næsset, E.; Blujdea, V.N.B. A practical measure for determining if diameter (D) and height (H) should
be combined into D2H in allometric biomass models. For. Int. J. For. Res. 2019, 92, 627–634. [CrossRef]

http://doi.org/10.1088/1748-9326/abb96f
http://doi.org/10.1126/sciadv.abe9829
http://doi.org/10.1016/S0269-7491(01)00212-3
http://doi.org/10.1038/nclimate3227
http://doi.org/10.1038/nclimate1853
http://doi.org/10.1088/1748-9326/2/4/045023
http://doi.org/10.1038/nature12914
http://www.ncbi.nlm.nih.gov/pubmed/24429523
http://doi.org/10.1139/cjfr-2014-0266
http://doi.org/10.1016/j.foreco.2013.07.013
http://doi.org/10.1016/j.biombioe.2018.05.013
http://doi.org/10.3390/f10110976
http://doi.org/10.1111/gcb.12629
http://www.ncbi.nlm.nih.gov/pubmed/24817483
http://doi.org/10.1016/j.foreco.2012.04.034
http://doi.org/10.1007/s11056-016-9562-4
http://doi.org/10.1111/j.1600-0587.2012.07348.x
http://doi.org/10.1093/forestry/cpz041


Forests 2021, 12, 1428 12 of 12

19. Schepaschenko, D.; Shvidenko, A.; Usoltsev, V.; Lakyda, P.; Luo, Y.; Vasylyshyn, R.; Lakyda, I.; Myklush, Y.; See, L.; McCallum, I.;
et al. A dataset of forest biomass structure for Eurasia. Sci. Data 2017, 4, 170070. [CrossRef]

20. Bouriaud, O.; Don, A.; Janssens, I.A.; Marin, G.; Schulze, E.-D. Effects of forest management on biomass stocks in Romanian
beech forests. For. Ecosyst. 2019, 6, 19. [CrossRef]

21. Marin, G.; Strimbu, V.C.; Abrudan, I.V.; Strimbu, B.M. Regional variability of the Romanian main tree species growth using
national forest inventory increment cores. Forests 2020, 11, 409. [CrossRef]

22. Bouriaud, O.; Marin, G.; Hervé, J.-C.; Riedel, T.; Lanz, A. Estimation Methods in the Romanian National Forest Inventory; Nova
Science Publishers, Inc.: Haupauge, NY, USA, 2020.

23. Baskerville, G.L. Use of Logarithmic Regression in the Estimation of Plant Biomass. Can. J. For. Res. 1972, 2, 49–53. [CrossRef]
24. McRoberts, R.E.; Westfall, J.A. Effects of Uncertainty in Model Predictions of Individual Tree Volume on Large Area Volume

Estimates. For. Sci. 2014, 60, 34–42. [CrossRef]
25. McRoberts, R.E.; Chen, Q.; Domke, G.M.; Ståhl, G.; Saarela, S.; Westfall, J.A. Hybrid estimators for mean aboveground carbon per

unit area. For. Ecol. Manag. 2016, 378, 44–56. [CrossRef]
26. Cochran, W. Sampling Techniques, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1977.
27. Särndal, C.-E.; Swensson, B.; Wretman, J. Model Assisted Survey Sampling; Springer Series in Statistics: New York, NY, USA, 1992.
28. Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986,

327, 307–310. [CrossRef]
29. Wallenius, T.; Laamanen, R.; Peuhkurinen, J.; Mehtätalo, L.; Kangas, A. Analysing the agreement between an airborne laser

scanning based forest inventory and a control inventory-a case study in the state owned forests in Finland. Silva Fenn. 2012, 46,
111–129. [CrossRef]

30. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017.
31. RStudio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2016.
32. Dutcă, I.; Mather, R.; Ioras, , F. Sampling trees to develop allometric biomass models: How does tree selection affect model

prediction accuracy and precision? Ecol. Indic. 2020, 117, 106553. [CrossRef]
33. Luo, Y.; Wang, X.; Ouyang, Z.; Lu, F.; Feng, L.; Tao, J. A review of biomass equations for China’s tree species. Earth Syst. Sci. Data

2020, 12, 21–40. [CrossRef]
34. Wang, Y.; Xu, W.; Tang, Z.; Xie, Z. A biomass equation dataset for common shrub species in China. Earth Syst. Sci. Data 2020,

12, 21–40.
35. Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree

allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [CrossRef]
36. Picard, N.; Boyemba Bosela, F.; Rossi, V. Reducing the error in biomass estimates strongly depends on model selection. Ann. For.

Sci. 2015, 72, 811–823. [CrossRef]
37. Canadell, J.G.; Raupach, M.R. Managing forests for climate change mitigation. Science 2008, 320, 1456–1457. [CrossRef] [PubMed]
38. Ziegler, A.D.; Phelps, J.; Yuen, J.Q.; Webb, E.L.; Lawrence, D.; Fox, J.M.; Bruun, T.B.; Leisz, S.J.; Ryan, C.M.; Dressler, W.; et al.

Carbon outcomes of major land-cover transitions in SE Asia: Great uncertainties and REDD+ policy implications. Glob. Chang.
Biol. 2012, 18, 3087–3099. [CrossRef] [PubMed]

http://doi.org/10.1038/sdata.2017.70
http://doi.org/10.1186/s40663-019-0180-4
http://doi.org/10.3390/f11040409
http://doi.org/10.1139/x72-009
http://doi.org/10.5849/forsci.12-141
http://doi.org/10.1016/j.foreco.2016.07.007
http://doi.org/10.1016/S0140-6736(86)90837-8
http://doi.org/10.14214/sf.69
http://doi.org/10.1016/j.ecolind.2020.106553
http://doi.org/10.5194/essd-12-21-2020
http://doi.org/10.1007/s00442-005-0100-x
http://doi.org/10.1007/s13595-014-0434-9
http://doi.org/10.1126/science.1155458
http://www.ncbi.nlm.nih.gov/pubmed/18556550
http://doi.org/10.1111/j.1365-2486.2012.02747.x
http://www.ncbi.nlm.nih.gov/pubmed/28741819

	Header Repository.pdf
	Downloaded from
	Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)


	18454_Dutca_I.pdf
	Introduction 
	Materials and Methods 
	Data 
	Calibration Datasets 
	Inventory Dataset 

	Data Analysis 
	Fitting Allometric Models to Calibration Datasets 
	Prediction of Biomass 

	Data Processing 

	Results 
	The Effects at the Level of Large Forest Area Estimates 
	The Effects at the Level of Individual Tree Predictions 
	The Effects at the Level of Plot Estimates 

	Discussion 
	Conclusions 
	
	References




