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Abstract 13 

Allometric models are commonly used to predict forest biomass. These models typically take 14 

nonlinear power-law forms that predict individual tree aboveground biomass (AGB) as functions of 15 

diameter at breast height (D) and/or tree height (H). Because the residual variance is in most cases 16 

heteroscedastic, accommodating the heteroscedasticity (i.e., heterogeneity of variance) becomes 17 

necessary when estimating model parameters. We tested several weighting procedures and a 18 

logarithmic transformation for nonlinear allometric biomass models. We further evaluated the 19 

effectiveness of these procedures with emphasis on how they affected estimates of mean AGB per 20 

hectare and their standard errors for large forest areas. Our results revealed that some weighting 21 

procedures were more effective for accommodating heteroscedasticity than others and that 22 

effectiveness was greater for single predictor models but less for models based on both D and H. 23 

Failing to effectively accommodate heteroscedasticity produced small to moderate differences in the 24 

estimates of mean AGB per hectare and their standard errors. However, these differences were greater 25 

between model forms (models based on D and H versus models based on D only), regardless of the 26 

weighting approach. Similar consequences were observed with respect to whether model prediction 27 

uncertainty was or was not included when estimating mean AGB per hectare and standard errors. 28 

When including model prediction uncertainty, the standard errors of the estimated means increased 29 
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substantially, by 44-59%. Therefore, to avoid possible negative consequences on large-area biomass 30 

estimation, we recommend three steps: (i) testing the effectiveness of a weighting procedure when 31 

accommodating heteroscedasticity in allometric biomass models, (ii) incorporating model prediction 32 

uncertainty in the total uncertainty estimate and (iii) including H as an additional predictor variable in 33 

allometric biomass models. 34 

 35 

Keywords: aboveground biomass, allometric model, weighted regression, error propagation, 36 

homoscedasticity.  37 
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1. Introduction 38 

The accuracy and precision of forest biomass estimates play a critical role for the relevance of forests 39 

within the climate change mitigation framework (Bonan, 2008; Canadell and Raupach, 2008; Grassi 40 

et al., 2017; Pan et al., 2011). Large area forest biomass estimates typically rely on individual tree 41 

allometric models constructed using individual tree measurements of aboveground biomass (AGB, 42 

kg), diameter at breast height (D, cm) and tree height (H, m) for a sample of trees, hereafter 43 

designated the calibration sample.  Ideally, these trees should be selected from the same population as 44 

the population to which the models will be applied, but in practice they are often at least partially 45 

selected from outside the population of interest (McRoberts et al., 2016).  The models are applied 46 

using measurements of a set of individual tree D and H for all trees on a second sample of plots, 47 

hereafter designated the inventory sample.  48 

By combining the information from the calibration and the inventory samples, the aim is to 49 

develop an estimator of mean biomass per hectare for the population of interest which is then 50 

converted to carbon estimates using a biomass to carbon conversion factor. Often, the uncertainty 51 

associated with the allometric biomass model predictions is ignored with only the sampling variability 52 

(i.e., plot-to-plot variability) associated with the probability-based (design-based) estimator reported. 53 

In some circumstances, this practice is justified by the insignificant levels of uncertainty associated 54 

with the allometric model predictions relative to the sampling variability (McRoberts et al., 2016, 55 

2015; McRoberts and Westfall, 2014). To incorporate the allometric model prediction uncertainty 56 

and/or other sources of uncertainty, a “hybrid inference” approach can be used (Condés and 57 

McRoberts, 2017; Corona et al., 2014; McRoberts et al., 2019, 2016; Ståhl et al., 2016) to produce 58 

more accurate estimates of uncertainty.   59 

Allometric biomass models are often in the form of nonlinear regression models with the 60 

power model being particularly popular: 61 

𝐴𝐺𝐵𝑖 = 𝛽0 ⋅ 𝑋𝑖
𝛽1 + 𝜀𝑖    (1) 62 

where AGBi is aboveground biomass of the ith tree, Xi is a biomass predictor and εi is a random 63 

residual term. Diameter at breast height (D) is commonly used as predictor of tree AGB, being used 64 
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frequently as the sole predictor (Chave et al., 2005; Forrester et al., 2017; Luo et al., 2020; Picard et 65 

al., 2012; Zianis et al., 2005; Zianis and Mencuccini, 2004), or in combination with tree height (H) 66 

(Picard et al., 2015, 2012; Zianis et al., 2005). To explain the effects of interspecific variability, wood 67 

density may be added as a third predictor variable, especially for the tropical forests (Chave et al., 68 

2014, 2005; Vieilledent et al., 2012). Compared to simple allometric biomass models that use only D 69 

as predictor of AGB, including H has improved the fit of the models (Dutcă, 2019; Rutishauser et al., 70 

2013). Although H can be included in the form of D2H, Dutcă et al. (2019) suggested that using D and 71 

H as distinct predictor variables should be preferred. 72 

To ascertain the biological meaning of the scaling exponent β1 in Eq. (1), Huxley (1932), 73 

introduced logarithmic transformations of both response and predictor variables as a way to express 74 

the model. Because the residuals associated with allometric biomass model predictions often exhibit 75 

heteroscedasticity (i.e. heterogeneity of variance, showing an increase in residual variances with 76 

increases in predicted values), logarithmic transformations have been promoted as a way to stabilize 77 

the variance, a technique that is widely used nowadays as the default method for fitting allometric 78 

models (Asrat et al., 2020; Dutcă et al., 2020, 2018; Luo et al., 2020). With logarithmic 79 

transformation, the objective is to obtain a model that has homoscedastic (or relatively 80 

homoscedastic) residuals. An advantageous by-product of the transformation is that the model is often 81 

linearized which facilitates fitting the model using simpler linear regression rather than nonlinear 82 

regression methods. Yet, achieving homoscedasticity and an accurate linear model on the transformed 83 

scale is not guaranteed by a ln-ln transformation, thereby leading to an intense debate as to whether 84 

logarithmic transformations should or should not be used as the default fitting method (Kerkhoff and 85 

Enquist, 2009; Packard, 2014; Packard and Boardman, 2008; Xiao et al., 2011). Nevertheless, the 86 

increase in computational power and the widespread availability of nonlinear regression routines in 87 

statistical software packages in the last decades has greatly facilitated fitting the models directly in 88 

their original untransformed nonlinear forms, thereby avoiding back-transformation correction factors 89 

(Baskerville, 1972; Goldberger, 1968; Sprugel, 1983). On the original untransformed scale, a method 90 

for accommodating the commonly encountered heteroscedasticity (Cunia, 1964) should be used. In a 91 

recent analysis, using both weighted nonlinear regression and logarithmic transformation, Dutcă et al. 92 
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(2019) showed that the differences between parameter estimates for the two methods were minor 93 

when appropriate weighting for heteroscedasticity was used. However, they concluded that the 94 

weighted nonlinear approach is generally more versatile, being able to more easily address different 95 

patterns of heteroscedasticity compared to logarithmic transformations which are limited in that sense.  96 

Although ordinary least squares is assumed to be an unbiased estimator for regression model 97 

parameters in the presence of heteroscedasticity, it may be a biased and inconsistent estimator of the 98 

parameter variance-covariance matrix (Hayes and Cai, 2007; Parresol, 1993; White, 1980). However, 99 

Mascaro et al. (2011) showed that the ignoring the heteroscedasticity in allometric biomass models 100 

may cause systematic errors in predictions for small trees, because the small variance of small trees 101 

means low leverage, if unweighted for heteroscedasticity. It was also shown that ignoring the 102 

heteroscedasticity may result in erroneous confidence intervals of estimates (Saint-André et al., 2005), 103 

which may further affect the uncertainty of biomass estimates. Nevertheless, it is not well known how 104 

ignoring residual heteroscedasticity associated with allometric model may impact the estimates of 105 

biomass over large forest areas. 106 

For models with heteroscedastic residual variance such as the allometric biomass models 107 

described in Eq. (1), the variance of εi is not constant (i.e., 𝑣𝑎𝑟(𝜀𝑖) ≠ 𝜎2). Therefore, with weighted 108 

least squares 𝑣𝑎𝑟(𝜀𝑖|𝑋𝑖) = 𝜎2𝑤𝑖, where 𝑤𝑖 ∝ 𝜎𝑖
−2 is a function that describes the weight for the ith 109 

observation. The weighting function should produce an estimate of the inverse of the variance for the 110 

ith observation (𝑤𝑖 = 𝜎̂𝑖
−2

) and should always be positive. Therefore, weighted nonlinear least squares 111 

regression allows residuals to have different variances but requires a function to describe the 112 

heteroscedastic residual variance.  113 

Multiple weighting functions have been proposed in the literature for allometric models. For 114 

example, Cunia (1964) proposed a generic weighting function where the inverse of the predictor 115 

variable to the power of 4, 𝑤𝑖 = 𝐷𝑖
−4 or 𝑤𝑖 = (𝐷𝑖

2𝐻𝑖)−2 = 𝐷𝑖
−4𝐻𝑖

−2 was used to compensate for 116 

heteroscedasticity associated with tree volume model residuals. Other authors suggested 𝑤𝑖 = 𝐷𝑖
−1 or 117 

𝑤𝑖 = 𝐷𝑖
−2 as weighting functions for use with AGB or belowground allometric biomass models 118 

(Kralicek et al., 2017). However, these functions with fixed parameters were shown to be 119 
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insufficiently flexible to describe the heteroscedasticity for any specific situation (Meng and Tsai, 120 

1986; Williams and Gregoire, 1993). As a result, Meng and Tsai (1986) proposed a method to 121 

specifically adjust the weights for each dataset, 𝑤𝑖 = (𝐷𝑖
𝜆)−2 or 𝑤𝑖 = (𝐷𝑖

𝜆𝐻𝑖)−2, where  is 122 

estimated using maximum likelihood techniques. Williams and Gregoire (1993) recommended a more 123 

general function 𝑤𝑖 = (𝐷𝑖
𝜆2𝐻𝑖

𝜆3)−𝜆1 which suggests that a function of predicted biomass, 124 

𝑤𝑖 = (𝐴𝐺𝐵̂𝑖)−𝜆1, can work as well, because the predicted AGB is itself a function of predictor 125 

variables D and H. A version of a weighting function based on D, 𝑤𝑖 = (𝐷𝑖)−𝑘, is widely used 126 

(Balboa-Murias et al., 2006; Huff et al., 2018; Huy et al., 2019; Vonderach et al., 2018) where the 127 

parameter k can be estimated in many different ways. One way is to estimate the slope of a linear 128 

model on the ln-ln scale, predicting ln() where  are the residuals from an unweighted model, as a 129 

function of ln(Di), where k is the estimated slope (Harvey, 1976; Park, 1966). Another way is to 130 

divide the Di observations into several classes (or groups, Dg) and then estimate the variance of AGB 131 

observations within each class (g
2); the parameter k is the slope of a linear model that predicts ln(g

2) 132 

as a function of ln(Dg) (Picard et al., 2012). Dutcă et al. (2019) used a similar approach but based on 133 

predicted AGB instead of D and on variances of residuals within groups from an unweighted model 134 

instead of variance of AGB. 135 

In the light of this wide range of choices, selecting a weighting approach can become a rather 136 

difficult decision. In this paper we review multiple weighting approaches for nonlinear allometric 137 

biomass models and assess their effectiveness for accommodating heteroscedasticity for multiple 138 

biomass datasets. Furthermore, using a calibration dataset consisting of measurements of AGB, D and 139 

H, coupled with an inventory dataset consisting of measurements of D and H for all trees on plots, we 140 

assess the sensitivity of large area biomass estimates to the effects of the following analytical factors: 141 

(i) ignoring or dealing with heteroscedasticity, (ii) ignoring or accommodating allometric model 142 

prediction uncertainty, and (iii) use of D versus D and H as model predictor variables. 143 

 144 
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2. Material and methods 145 

2.1. Data 146 

For testing the effectiveness of the weighting approaches, we used six biomass datasets, whereas for 147 

assessing the sensitivity of large area biomass estimates to the effects of the weighting approaches we 148 

used a biomass calibration dataset to calibrate the models and an inventory dataset to assess the 149 

effects on large area estimates. 150 

 151 

2.1.1. Biomass datasets for testing the efficiency of weighting approaches 152 

The five biomass datasets used in this study are from different regions of the world (Fig. 1). Dataset 6 153 

consists of the merger of Datasets 1, 3, 4 and 5. Dataset 2 was not included in the merged dataset 154 

because it used a different definition for D. For each dataset we fit allometric biomass models that 155 

incorporated weighting to accommodate heteroscedasticity, and then tested the effectiveness of the 156 

weighting approaches for accommodating heteroscedasticity. Information such as the sample size and 157 

the range of D, H, AGB and latitude for the datasets are presented in Table 1.  158 

 159 

 160 

Fig. 1. The distribution of sampling sites by dataset 161 

 162 

Table 1 163 

The biomass datasets. 164 

Dataset Species 

Latitude 

range 
(Deg.) 

Sample 

size 

D range 

(cm) 

H range 

(m) 

AGB range 

(kg) 
References 
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Dataset 1 Multiple −24.9, 25.0 4004 5.0−212.0 1.2−70.7 1.2−76063.5 (Chave et al., 2014) 

Dataset 2 
Norway 

spruce 
45.4, 47.6 240 0.6−10.0* 0.5−5.5 0.1−15.5 (Dutcă, 2018) 

Dataset 3 Multiple −51.6, 62.3 3489 5.0−139.6 1.5−46.5 0.4−16418.4 (Falster et al., 2015) 

Dataset 4 Multiple 31.5, 69.9 5144 5.0−72.9 2.3−42.8 0.6−4291.3 (Schepaschenko et al., 2017) 

Dataset 5 Multiple 43.9, 64.0 8659 5.0−74.3 2.5−52.2 2.2−2951.4 (Ung et al., 2017) 

Dataset 6 Multiple −51.6, 64.0 21296 5.0−212.0 1.2−70.7 0.4−76 063.5 Datasets 1, 2, 4 and 5 

*Dataset 2 (Dutcă, 2018) uses diameter at collar height instead of diameter at breast height. 165 

 166 

2.1.2. Data for assessing the sensitivity of large area biomass estimates to the effects of the 167 

weighting approaches 168 

To investigate the sensitivity of large area biomass estimates to the effects of methods for 169 

accommodating heteroscedasticity, we used a calibration sample to fit the weighted allometric model 170 

and then used the resulting model to predict individual tree biomass for trees in the inventory sample. 171 

 172 

i) The calibration sample 173 

The calibration sample is a subset of Dataset 4 (Table 1, Schepaschenko et al. 2017), containing data 174 

for only Norway spruce trees. The calibration dataset includes measurements of D ranging from 5.0 to 175 

67.6 cm, measurements of H ranging from 4.0 to 42.8 m and measurements of AGB ranging from 4.9 176 

to 3364.2 kg for 503 Norway spruce trees from several European countries.  177 

 178 

ii) The inventory sample  179 

The inventory sample consists of measurements of D and H for trees on 243 sample plots from 180 

Romania. The inventory dataset was used with the calibration dataset to assess the effects of 181 

weighting approaches on large area biomass estimates. The 243 sample plots were selected from the 182 

Romanian National Forest Inventory (NFI) and included only Norway spruce trees. Norway spruce is 183 

an important species for Romania, often found in pure stands but also in mixtures, covering 184 

approximately 1.3 million ha (19% of Romanian forests). Because the Romanian NFI uses a 4 km by 185 

4 km grid-based sampling design in the mountain area where pure Norway spruce grows (Marin et al., 186 

2020), the 243 plots represent 388.8 thousand hectares of forest. The circular sample plots are located 187 

at the intersections of the grid lines and have a radius of 12.62 m with an area of 500 m2. For each 188 
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plot, D and H were measured for all trees with D > 28.5 cm. For a smaller, concentric circular subplot 189 

of radius 7.98 m and area of 200 m2, D and H were also measured for trees with 5.6  D  28.5 cm. 190 

Relationships for datasets with different H-D ratios (H, in m, divided by D, in cm) may 191 

require different model forms. Therefore, to ensure a model developed for the calibration dataset is 192 

applicable to the inventory data, H-D ratios for the two datasets were compared. Figure 2 shows good 193 

agreement between the histogram (i.e., the calibration sample) and the density curve (i.e., the 194 

inventory sample). 195 

 196 

 197 

Fig. 2. The distribution of H-D ratio for the calibration sample (histogram) and the inventory sample (density line) 198 

 199 

The H-D ratio (in m cm–1) ranged between 0.36 and 2.56 for the calibration sample and 200 

between 0.42 and 2.11 for the inventory sample. The ranges of D and H for the inventory and 201 

calibration samples were also similar (Table 1 and section 2.1.2), varying between 5.6 to 72.2 cm for 202 

D and between 3.1 and 47.5 m for H. 203 

 204 

2.2. Statistical analysis  205 

2.2.1. Modelling AGB and heteroscedasticity 206 

We modelled AGB using two allometric biomass model forms: 207 

(a) Using D as the single predictor variable (Asrat et al., 2020): 208 

   𝐴𝐺𝐵 = 𝛽01 · 𝐷𝛽11 + 𝜀1   (2) 209 
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(b) Using both D and H as predictor variables (Dutcă et al., 2019): 210 

   𝐴𝐺𝐵 = 𝛽02 · 𝐷𝛽12 · 𝐻𝛽22 + 𝜀2  (3) 211 

where AGB, D, and H are as previously defined; the s are the model parameters to be estimated; and 212 

1 and 2 are random residual terms. Initially, we fit these models without accommodation for 213 

heteroscedasticity. However, because the residuals for Eq. (2) and Eq. (3) usually exhibit 214 

heteroscedasticity, multiple weighting procedures were considered (Table 2). 215 

 216 

Table 2 217 

The weighting procedures tested. 218 

Weighting 

procedure 
Weighting variable Computation details 

For Eqs. (2) and (3) 

1 
𝑤𝑖 =

1

𝐷𝑖
 

The weight of the ith observation (wi) was calculated as the inverse of diameter 

(Di) (Kralicek et al., 2017). 

2 
𝑤𝑖 =

1

𝐷𝑖
2 

The inverse of Di
2 (Kralicek et al., 2017; Meng and Tsai, 1986). 

3 
𝑤𝑖 =

1

𝐷𝑖
4 

The inverse of Di
4 (Cunia, 1964). 

4 
𝑤𝑖 =

1

𝐷𝑖
𝜆
 

Prediction of heteroscedastic variance as a function of D. This approach was 

proposed by (Harvey, 1976; Park, 1966), and consists of multiple steps:  

(i) fit a nonlinear unweighted model and calculate the squared residual for the 

ith tree (êi
2
);  

(ii) ln-ln transform the êi
2
 and Di values; 

(iii) fit a linear model: ln(𝑒̂𝑖
2) = 𝛼 + 𝜆 ⋅ ln(𝐷𝑖) + 𝜀;  

(iv) using the slope  and Di to calculate the weight of ith tree. 

 

5 
𝑤𝑖 =

1

𝐷𝑖
𝜆
 

Prediction of heteroscedastic variance as a function of D, using a grouping 

approach (Picard et al., 2012):  

(i) divide the D observations into u classes (u = 5), centred on Du;  

(ii) calculate the variance of AGB for each class (σu
2);  

(iii) ln-ln transform the σu
2 and Du values; 

(iv) fit a linear model: ln(𝜎𝑢
2) = 𝛼 + 𝜆 ⋅ ln(𝐷𝑢) + 𝜀;  

(v) use the slope  and Di to calculate the weight of ith tree. 

 

6 
𝑤𝑖 =

1

𝐷𝑖
𝜆
 

Prediction of heteroscedastic variance as a function of D, using a grouping 

method (McRoberts and Westfall, 2014):  

(i) fitting an unweighted nonlinear model to data and calculate the 

heteroscedastic residuals (êi);  

(ii) sort the pairs Di and êi in ascending order with respect to Di;  

(iii) group the pairs Di and êi in u groups of size 25;  

(iv) for each group, calculate the mean of Di (Du
̅̅̅̅ ) and the variance of êi (σu

2);  

(v) ln-ln transform the σu
2 and Du

̅̅̅̅  values; 

(vi) fit a linear model: ln(𝜎𝑢
2) = 𝛼 + 𝜆 ⋅ ln(𝐷𝑢

̅̅̅̅ ) + 𝜀;  

(vii) use the parameter  and Di to compute the weight of ith tree. 

 

7 
𝑤𝑖 =

1

𝐷𝑖
𝜆
 

Prediction of heteroscedastic variance as a function of D, in two stages, and using 

a grouping method:  

(i) fit a weighted nonlinear model (using the weights from procedure #6) and 

calculate the heteroscedastic residuals (êi);  

(ii) sort the pairs Di and êi in ascending order with respect to Di;  
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(iii) group the pairs Di and êi in u groups of size 25;  

(iv) for each group, calculate the mean of Di (Du
̅̅̅̅ ) and the variance of êi (σu

2);  

(v) ln-ln transform the σu
2 and Du

̅̅̅̅  values; 

(vi) fit a linear model: ln(𝜎𝑢
2) = 𝛼 + 𝜆 ⋅ ln(𝐷𝑢

̅̅̅̅ ) + 𝜀;  

(vii) use the parameter  and Di to compute the weight of ith tree. 

 

8 
𝑤𝑖 =

1

𝐴𝐺𝐵̂𝑖
𝜆
 

Prediction of heteroscedastic variance as a function of predicted AGB (Dutcă et 

al., 2019; McRoberts and Westfall, 2014). This is similar to procedure #6, 

however, predicted AGB is used instead of D as predictor of variance:  

(i) fitting an unweighted nonlinear model to data and calculate the predicted 

AGB (AGB̂i) and the heteroscedastic residuals (êi);  

(ii) sort the pairs AGB̂i and êi in ascending order with respect to AGB̂i;  

(iii) group the pairs AGB̂i and êi in u groups of size 25;  

(iv) for each group, calculate the mean of AGB̂i (AGB̂u
̅̅ ̅̅ ̅̅ ̅) and the variance of êi 

(σu
2);  

(v) ln-ln transform the σu
2 and AGB̂u

̅̅ ̅̅ ̅̅ ̅ values; 

(vi) fit a linear model: ln(𝜎𝑢
2) = 𝛼 + 𝜆 ⋅ ln(𝐴𝐺𝐵̂𝑢

̅̅ ̅̅ ̅̅ ̅) + 𝜀;  

(vii) use the parameter  and AGB̂i (from first step) to compute the weight of ith 

tree. 

 

9 
𝑤𝑖 =

1

𝐴𝐺𝐵̂𝑖
𝜆
 

Prediction of heteroscedastic variance as a function of predicted AGB, in two 

stages, and using a grouping method:   

(i) fitting a weighted nonlinear model (using the weights from procedure #8) 

and calculate the predicted AGB (AGB̂i) and the heteroscedastic residuals 

(êi);  

(ii) sort the pairs AGB̂i and êi in ascending order with respect to AGB̂i;  

(iii) group the pairs AGB̂i and êi in u groups of size 25;  

(iv) for each group, calculate the mean of AGB̂i (AGB̂u
̅̅ ̅̅ ̅̅ ̅) and the variance of êi 

(σu
2); 

(v) ln-ln transform the σu
2 and AGB̂u

̅̅ ̅̅ ̅̅ ̅ values; 

(vi) fit a linear model: ln(𝜎𝑢
2) = 𝛼 + 𝜆 ⋅ ln(𝐴𝐺𝐵̂𝑢

̅̅ ̅̅ ̅̅ ̅) + 𝜀;  

(vii) use the parameter  and AGB̂i (from first step) to compute the weight of ith 

tree.  

 

10 𝑤𝑖

=
1

[exp(ln(𝐴𝐺𝐵)̂
𝑖)]2

 

Using the predicted AGB (from a ln-ln transformed model) as a predictor of 

heteroscedastic variance:  

(i) fit a linear model on ln-ln transformed data (Eq. 4 or Eq. 5);  

(ii) calculate the predicted ln(AGB) of ith tree (i.e. ln(AGB)̂
i);  

(iii) calculate the weight of ith tree as the inverse of squared back-transformed 

AGB. Including the back transformation correction factor (Baskerville, 

1972; Goldberger, 1968; Sprugel, 1983) is not necessary since the 

correction factor is a constant and, therefore, would have a redundant 

effect. 

 

Only for Eq. (3) 

11 
𝑤𝑖 =

1

𝐷𝑖
4𝐻𝑖

2 
The inverse of squared D2H (Cunia, 1964; Jacobs and Monteith, 1981). 

 

 

12 
𝑤𝑖 =

1

(𝐷𝑖
2𝐻𝑖)𝜆

 
Prediction of heteroscedastic variance as a function of D2H, using a grouping 

method:  

(i) fitting an unweighted nonlinear model, AGB = f(D2H), to data and calculate 

the heteroscedastic residuals (êi);  

(ii) sort the pairs D2Hi and êi in ascending order with respect to D2Hi;  

(iii) group the pairs D2Hi and êi in u groups of size 25;  

(iv) for each group, calculate the mean of D2Hi (D2Hu
̅̅ ̅̅ ̅̅ ̅) and the variance of êi 

(σu
2);  

(v) fit a nonlinear model: ln (𝜎𝑢
2) = 𝛼 + 𝜆 ⋅ 𝐷2𝐻𝑢

̅̅ ̅̅ ̅̅ ̅ + 𝜀;  

(vi) use the parameter estimate  to compute the weight of ith tree. 

 

13 
𝑤𝑖 =

1

𝐷𝑖
𝜆1𝐻𝑖

𝜆2
 

Prediction of heteroscedastic variance as a function of D and H, adapted after 

(Harvey, 1976; Park, 1966):  

(i) fitting an unweighted nonlinear model as in Eq. (3), and calculate the 

heteroscedastic residuals (êi);  

(ii) ln-ln transform êi, D and H;  
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(iii) fit a linear model: ln(𝑒̂𝑖
2) = 𝛼 + 𝜆1 ⋅ ln(𝐷) + 𝜆2 ⋅ ln(𝐻) + 𝜀;  

(iv) use the slopes estimates 1 and 2 to compute the weight of ith tree. 

 

14 
𝑤𝑖 =

1

𝐷𝑖
𝜆1𝐻𝑖

𝜆2
 

Prediction of heteroscedastic variance as a function of D and H, using a grouping 

approach:  

(i) fit a linear model to predict ln(AGB) as a function of ln(D) and ln(H);  

(ii) calculate the back transformed predicted AGB using a correction factor: 

𝐴𝐺𝐵̂ = exp(ln(𝐴𝐺𝐵)̂ ) ⋅ exp(0.5 ⋅ 𝑅𝑆𝐸2), where RSE is the residual 

standard error of the model in ln-ln scale;  

(iii) calculate the heteroscedastic residuals (êi) as difference between observed 

AGB and predicted AGB;  

(iv) sort the triple Di, Hi and êi in ascending order with respect to Di;  

(v) group the triple Di, Hi and êi in u groups of size 25;  

(vi) for each group, calculate the mean of Di (Du
̅̅̅̅ ), mean of Hi (Hu

̅̅̅̅ ) and the 

variance of êi (σu
2);  

(vii) ln-ln transform the Du
̅̅̅̅ , Hu

̅̅̅̅  and σu
2 values;  

(viii) fit a linear model: ln(𝜎𝑢
2) = 𝛼 + 𝜆1 ⋅ ln(𝐷𝑢

̅̅̅̅ ) + 𝜆2 ⋅ ln(𝐻𝑢
̅̅ ̅̅ ) + 𝜀;  

(ix) use the slopes 1 and 2 to compute the weight of ith tree. 

 

 219 

In addition to these nonlinear weighting procedures, we also tested the ln-ln transformation as a way 220 

to accommodate heteroscedasticity. The ln-ln transformed models corresponding to Eq. (2) and (3) 221 

were: 222 

  ln(𝐴𝐺𝐵) = 𝑏01 + 𝑏11 ⋅ ln(𝐷) + 𝜀1    (4) 223 

  ln(𝐴𝐺𝐵) = 𝑏02 + 𝑏12 ⋅ ln(𝐷) + 𝑏22 ⋅ ln(𝐻) + 𝜀2  (5) 224 

where ε1 and ε2 are random, normally distributed residuals but not the same residuals as for Eq. (2) 225 

and Eq. (3).  When back-transforming Eqs. (4) and (5), the distribution of residuals becomes 226 

lognormal. Further, back-transforming induces systematic error into predictions on the original scale 227 

with the result that a correction factor is required. We adopted the correction factor 𝐶𝐹 = exp(0.5 ⋅228 

𝑅𝑆𝐸2), where RSE is the residual standard error on the ln-ln scale (Baskerville, 1972; Goldberger, 229 

1968). 230 

 231 

2.2.3. Testing the effectiveness of weighting procedures 232 

The Breusch-Pagan test is widely used to test for heteroscedasticity in linear models (Breusch and 233 

Pagan, 1979). We adapted the Breusch-Pagan test for nonlinear weighted models using the following 234 

steps:  235 

(i) calculate the weighted residuals, (eŵi), resulting from the nonlinear model predictions: 236 

𝑒𝑤̂𝑖 = (𝐴𝐺𝐵𝑖 − 𝐴𝐺𝐵̂𝑖) ⋅ √𝑤𝑖  (6) 237 
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where AGBi is the observed AGB for the ith tree; AGB̂i is the predicted AGB for the ith tree; wi 238 

is the same weight for the ith tree as was used to fit the nonlinear model. For the unweighted 239 

model, √𝑤𝑖 = 1. 240 

(ii) define the auxiliary linear models that predict squared weighted residuals as a function of the 241 

predictor variable(s): 242 

𝑒𝑤̂𝑖
2 = 𝑎1 + 𝑏1𝐷 + 𝜀   (7) 243 

𝑒𝑤̂𝑖
2 = 𝑎2 + 𝑏2𝐷 + 𝑐2𝐻 + 𝜀  (8) 244 

(iii) retain the R2 values for these linear models and use them to calculate  245 

𝜒2 = 𝑛𝑏 ⋅ 𝑅2    (9) 246 

where, nb is the sample size of biomass datasets. 247 

(iv) calculate the p-value of the  statistic, using the right tail of a  distribution with df = 1 for 248 

Eq. 7 and df = 2 for Eq. 8, degrees of freedom. The null hypothesis of homoscedasticity is 249 

rejected if p < 0.05. 250 

 251 

2.3. Assessing the sensitivity of large area biomass estimates to the effects of the weighting 252 

procedures 253 

To assess the sensitivity of large area biomass estimates to the effects of the weighting procedures we 254 

used a probability sample (i.e., the inventory sample) together with a calibration sample (see section 255 

2.1.2). However, because the simple expansion estimator (Cochran, 1977, p.157; Särndal et al., 1992, 256 

p.104) is unbiased under the assumption of at most negligible uncertainty in the plot-level AGB 257 

values, and because this assumption may or may not be appropriate, depending on the level of 258 

uncertainty in the allometric model parameter estimates and residuals, we considered two options 259 

when estimating the uncertainty of large area biomass estimates: (i) model prediction uncertainty is 260 

ignored (excluded) and (ii) model prediction uncertainty is included. 261 

 262 

2.3.1. Ignoring model prediction uncertainty 263 
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When the model prediction uncertainty was not included, the AGB of every tree in every plot was 264 

predicted based on the parameter estimates of Eq. (2) and Eq. (3), that either included or excluded 265 

weighting for heteroscedasticity (Table 2). For the ln-ln transformation approach we used the back 266 

transformed prediction from Eq. (4) and Eq. (5). Assuming an equal probability sample, the 267 

population mean AGB per hectare (μ̂) and the standard error of the mean (SE(μ̂)) were estimated 268 

using a simple expansion estimator: 269 

𝜇̂ =
1

𝑛
∑ 𝐴𝐺𝐵̂𝑗

𝑛
𝑗=1       (10) 270 

𝑆𝐸(𝜇̂) = √
1

𝑛(𝑛−1)
∑ (𝐴𝐺𝐵̂𝑗 − 𝜇̂)

2𝑛
𝑗=1     (11) 271 

where AGB̂j is the predicted AGB of the jth plot (j is the plot index); n is the total number of plots. 272 

 273 

2.3.2. Assessing the effects of allometric model prediction uncertainty 274 

The simple expansion estimators (Eq. 10 and Eq. 11) were used under the assumption of, at most, 275 

negligible uncertainty in the plot-level AGB values. However, because the plot-level AGB values 276 

were obtained by summation of within plot individual tree predictions, this assumption may not be 277 

reasonable. Therefore, we used a form of “hybrid inference” (Condés and McRoberts, 2017; 278 

McRoberts et al., 2019, 2016, 2015; Ståhl et al., 2016) to incorporate both model prediction 279 

uncertainty and sampling variability. Because the inventory sample consisted of sample plots for 280 

which individual tree biomass was not measured, we used the calibration sample to predict the 281 

biomass of the trees inside the plots to obtain plot biomass predictions. However, because the plot 282 

biomass was not measured but predicted, we used a Monte-Carlo procedure to propagate uncertainty 283 

from model parameter estimates and residuals to large area biomass estimates and their standard 284 

errors. Because the variance-covariance matrix for the model parameter estimates is usually based on 285 

linear approximations using Taylor series, which may be biased for nonlinear models (McRoberts and 286 

Westfall, 2014), we used a bootstrap approach within the Monte Carlo procedure instead of the more 287 

commonly used estimated variance-covariance matrix. The following steps describe the Monte-Carlo 288 

error propagation procedure: 289 
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Step (1) Select a simple random bootstrap resample (using “bootstrap residuals” approach) of trees 290 

with replacement from the calibration sample and fit the model using weighted least 291 

squares. For the “bootstrap residuals” procedure, we calculated the weighted residuals as in 292 

Eq. (6). The vector of weighted residuals was resampled with replacement, to obtain the 293 

resampled weighted residuals. The resampled residuals were added to the predicted AGB 294 

(obtained from the weighted nonlinear model fitted to the original calibration dataset), to 295 

obtain the resampled AGB. The vector of resampled AGB was further merged with the 296 

vectors of the two predictor variables, D and H, to form the resampled AGB dataset. A 297 

weighted nonlinear model was further fitted to the resampled AGB dataset. For ln-ln 298 

transformation (Eqs. 4 and 5), since the transformation is assumed to produce 299 

homoscedastic residuals, we resampled the ln-ln transformed dataset and fitted an allometric 300 

model (in ln-ln scale) to the resampled dataset. 301 

Step (2) Select a simple random bootstrap resample of plots with replacement from the inventory 302 

sample; 303 

Step (3) For every tree on every plot in the inventory sample from step (2): 304 

(3.a) predict the individual tree biomass using the parameters estimated from step (1); 305 

(3.b) add a random heteroscedastic residual. A value was randomly selected from a normal 306 

distribution N(0, 1), which was truncated to the interval [-3, 3]. The selected random value 307 

was further multiplied by the predicted heteroscedastic residual standard deviation. To 308 

model the standard deviation of heteroscedastic residuals we used a similar approach to 309 

modelling heteroscedasticity (see Table 2). 310 

Step (4) Add the tree-level predictions to obtain plot-level biomass predictions for all plots selected 311 

in step (2) and scale the plot-level biomass prediction to a per unit area basis. 312 

Step (5) For the repth repetition, estimate mean AGB per hectare (μ̂rep) and the variance of the mean 313 

(var̂(μ̂rep)) from the plot-level scaled biomass predictions from step (5): 314 

𝜇̂𝑟𝑒𝑝 =
1

𝑛
∑ 𝐴𝐺𝐵̂𝑗

𝑟𝑒𝑝𝑛
𝑗=1        (12) 315 
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 where rep is the repetition index, n is the total number of plots (i.e., n = 243), AGB̂j
rep

 is the 316 

predicted AGB of the jth plot scaled to hectare, for repth repetition. The variance of the mean 317 

AGB per hectare (i.e., the within simulation variance) was estimated as: 318 

  𝑣𝑎𝑟̂(𝜇̂𝑟𝑒𝑝) =
1

𝑛(𝑛−1)
∑ (𝐴𝐺𝐵̂𝑗

𝑟𝑒𝑝
− 𝜇̂𝑟𝑒𝑝)2𝑛

𝑗=1     (13) 319 

Step (6) Repeat steps (1)-(5) many times (nrep = 5000). The population mean AGB per hectare (μ̂), 320 

the mean of within simulation variance (var̂(μ̂rep)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ), the between simulation variance 321 

(var̂(μ̂)) were calculated as: 322 

𝜇̂ =
1

𝑛𝑟𝑒𝑝
∑ 𝜇̂𝑟𝑒𝑝𝑛𝑟𝑒𝑝

𝑟𝑒𝑝=1        (14) 323 

𝑣𝑎𝑟̂(𝜇̂𝑟𝑒𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
1

𝑛𝑟𝑒𝑝
∑ 𝑣𝑎𝑟̂(𝜇̂𝑟𝑒𝑝)

𝑛𝑟𝑒𝑝

𝑟𝑒𝑝=1      (15) 324 

𝑣𝑎𝑟̂(𝜇̂) = (1 +
1

𝑛𝑟𝑒𝑝
) ⋅

1

𝑛𝑟𝑒𝑝−1
∑ (𝜇̂𝑟𝑒𝑝 − 𝜇̂)2𝑛𝑟𝑒𝑝

𝑟𝑒𝑝=1    (16) 325 

Step (7) Replicate steps (1)-(6) until the estimate of mean AGB per hectare (Eq. 14) and the 326 

variances presented in Eq. (15) and Eq. (16) stabilize. For each additional replication we 327 

calculated the mean of μ̂, mean of var̂(μ̂rep)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and mean of var̂(μ̂) over the executed 328 

replications. The replications continued until the largest difference between any two values 329 

of means of μ̂ , means of var̂(μ̂rep)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and respectively means of var̂(μ̂), for the last 30% of 330 

replications, were less than 5%, however, executing not less than 500 replications. We 331 

further reported the mean of μ̂ over the stabilization replications (i.e., the stabilized mean) 332 

and the standard error of the mean, calculated based on stabilized variances (Eq. 15 and Eq. 333 

16): 334 

𝑆𝐸(𝜇̂) = √𝑣𝑎𝑟̂(𝜇̂𝑟𝑒𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑣𝑎𝑟̂(𝜇̂)     (17) 335 

Statistical analysis was performed in R (R Core Team, 2017) with the RStudio interface (RStudio 336 

Team, 2016) and using the package ‘MASS’ (Venables et al., 2002).  337 
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3. Results 338 

3.1. Testing weighting procedures 339 

The results of the Breusch-Pagan test for heteroscedasticity are presented in Table 3. When p < 0.05 340 

the null hypothesis of homoscedasticity was rejected, and the residuals were assumed to exhibit 341 

heteroscedasticity, whereas when p > 0.05 we assumed homoscedastic residuals. The models that 342 

ignored heteroscedasticity (weighting procedure 0, Table 3) produced statistically significant 343 

Breusch-Pagan test results for all datasets (and model forms), thereby justifying accommodation for 344 

heteroscedasticity.  345 

 346 

Table 3 347 

The Breusch-Pagan test results (p-values of the test), by dataset, model form and weighting procedure. 348 

Model form 
Weighting 

procedure 

Weighting 

variable 

Dataset 

1 

Dataset 

2  

Dataset 

3 

Dataset 

4 

Dataset 

5 

Dataset 

6 

𝐴𝐺𝐵

= 𝛽0 ⋅ 𝐷𝛽1 + 𝜀 

0a N.A. <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

1 D−1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

2 D−2 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

3 D−4 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

4 D−λ <0.001 <0.001 <0.001 0.192 <0.001 <0.001 

5 D−λ <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

6 D−λ 0.151 0.293 <0.001 0.023 0.602 0.282 

7 D−λ 0.093 0.412 0.202 0.623 0.519 0.288 

8 AGB̂−λ 0.265 0.434 0.720 0.477 0.951 <0.001 

9 AGB̂−λ 0.202 0.649 0.321 0.389 0.970 0.584 

10 [exp(ln(AGB)̂ )]−2 0.014 0.492 0.011 0.029 0.007 <0.001 

15b N.A. <0.001 0.726 <0.001 <0.001 <0.001 0.681 

𝐴𝐺𝐵

= 𝛽0 ⋅ 𝐷𝛽1 ⋅ 𝐻𝛽2

+ 𝜀 

0a N.A. <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

1 D−1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

2 D−2 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

3 D−4 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

4 D−λ <0.001 0.006 <0.001 <0.001 <0.001 <0.001 

5 D−λ <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

6 D−λ <0.001 0.010 0.021 0.003 <0.001 <0.001 

7 D−λ <0.001 0.126 0.026 0.104 <0.001 <0.001 

8 AGB̂−λ <0.001 <0.001 0.034 0.001 <0.001 <0.001 

9 AGB̂−λ 0.156 0.013 0.001 <0.001 <0.001 <0.001 

10 [exp(ln(AGB)̂ )]−2 <0.001 0.010 <0.001 <0.001 <0.001 <0.001 

11 D−4H−2 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

12 (D2H)−λ <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

13 D−λ1H−λ2 <0.001 0.002 <0.001 <0.001 <0.001 <0.001 

14 D−λ1H−λ2 0.376 0.084 0.158 0.141 <0.001 <0.001 

15b N.A. <0.001 0.047 <0.001 <0.001 <0.001 <0.001 
a No weighting; b Ln-ln transformation. 349 

 350 
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The large number of p-values greater than 0.05 for models based on single predictors (Eq. 2, 351 

models based on D only) suggests that the tested weighting procedures are more effective for single 352 

predictor models. For the single predictor models, the two weighting procedures that predicted the 353 

variance in two stages (procedures 7 and 9), successfully accommodated heteroscedasticity for all 354 

datasets. However, for models based on two predictors (Eq. 3), weighting procedure 7 accommodated 355 

heteroscedasticity for only three of seven datasets (if including here the calibration dataset, Fig. 3), 356 

procedure 9 was effective for only two of seven datasets, whereas procedure 14 that predicts 357 

heteroscedastic variance as a function of both D and H was the most effective, accommodating 358 

heteroscedasticity for five of seven datasets (Table 3 and Fig. 3).  359 

Logarithmic transformation was not very effective in accommodating heteroscedasticity. For 360 

models based on D (Eq. 2), the heteroscedasticity was satisfactorily accommodated for three of seven 361 

datasets, whereas for Eq. (3) the ln-ln transformation resulted in statistically significant 362 

heteroscedasticity for all datasets (Table 3 and Fig. 3). 363 

For the calibration dataset, the results of the Breusch-Pagan test are presented in Fig. 3, along 364 

with the weighted residuals. The residuals were relatively homoscedastic when the p-value was larger 365 

than 0.05. It can also be observed that the unweighted residuals (weighting procedure 0, Fig. 3) were 366 

heavily heteroscedastic (p < 0.001), with the variance increasing as tree size increased. Moreover, for 367 

single predictor models slight systematic lack of fit can be observed but was mostly eliminated by 368 

addition of H as a model predictor variable. Logarithmic transformation (i.e., procedure 15, Fig. 3) 369 

produced relatively homoscedastic residuals for both model forms, although for models based on both 370 

D and H (Eq. 3) the p-value was just below the significance level (p = 0.018) which suggests 371 

heteroscedasticity. 372 

 373 
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 374 

Fig. 3. The weighted residuals (expressed in kg) by index of observation for the calibration sample, shown for each model 375 

form and each weighting procedure (see Table 2). Note: The labels on y-axis not shown because the range differs by 376 

graph. 377 
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 378 

3.2. The effects of weighting procedures on large area biomass estimates 379 

The large-area biomass estimates were affected by the weighting approach to a moderate degree. For 380 

the models of Eq. (2) and Eq. (3), the weighting procedures and the sources of uncertainty considered, 381 

the estimates of mean AGB per hectare varied between 177.45 Mg ha–1 and 188.47 Mg ha–1 (Table 4), 382 

i.e., with a range of 11.02 Mg ha–1 (i.e., 6.2%). However, this range is less than the 95% confidence 383 

interval width estimated using the smallest SE (Table 4) which suggests that these differences are due 384 

to random effects rather than any bias in the estimation procedure. 385 

 386 

Table 4 387 

Estimates of mean AGB per hectare (μ̂) and the standard error of the estimate of mean (SE(μ̂)), in Mg ha–1, by weighting 388 

procedure, excluding, and including model prediction uncertainty, for models based on Eq. (2) and Eq. (3). 389 

Weighting 

procedure 

Predictor variable: D (Eq. 2) Predictor variables: D and H (Eq. 3) 

Excluding model 

prediction uncertainty 

Including model 

prediction uncertainty 

Excluding model 

prediction uncertainty 

Including model 

prediction uncertainty 

μ̂ SE(μ̂) μ̂ SE(μ̂) μ̂ SE(μ̂) μ̂ SE(μ̂) 

0a 182.13 7.75 183.32 11.23 179.35 8.39 181.50 12.05 

1 183.66 7.76 183.70 11.09 181.17 8.36 183.01 11.93 

2 183.85 7.76 183.33 11.05 182.36 8.28 183.62 11.79 

3 185.38 7.92 185.21 14.99 181.96 8.04 182.24 15.09 

4 187.25 8.04 187.05 11.61 182.41 8.11 182.90 11.58 

5 187.33 8.04 187.11 11.68 180.99 7.94 181.09 11.51 

6 187.64 8.06 187.64 11.69 181.18 7.96 181.29 11.43 

7 187.59 8.06 187.59 11.68 180.88 7.93 180.98 11.41 

8 187.63 8.06 187.63 11.70 180.65 7.90 180.67 11.32 

9 187.60 8.06 187.60 11.69 180.49 7.90 180.52 11.33 

10 188.46 8.11 188.47 12.88 179.76 7.84 179.76 12.25 

11 N.A. N.A. N.A. N.A. 177.45 7.69 177.77 289.32 

12 N.A. N.A. N.A. N.A. 180.39 7.88 180.41 11.31 

13 N.A. N.A. N.A. N.A. 182.41 8.15 183.08 11.66 

14 N.A. N.A. N.A. N.A. 180.21 7.87 180.22 11.31 

15b 188.82 8.13 188.73 11.83 180.08 7.86 179.86 11.28 
a no weighting, b ln-ln transformation 390 

 391 

Ignoring heteroscedasticity resulted in estimates of mean AGB per hectare that were slightly 392 

different compared to estimates obtained from models calibrated with effective weighting of 393 

observations (Table 4). The differences were larger for Eq. (2) (models based on D), as great as 3.7%; 394 

therefore, when including H as a predictor variable, the negative effect of ignoring heteroscedasticity 395 

on mean AGB per hectare was reduced (differences less than 2.2%). Nevertheless, differences in 396 

estimates of mean AGB per hectare between model forms were greater than between weighting 397 
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procedures. Models based on D only, regardless of the weighting procedure, produced greater 398 

estimates of mean AGB per hectare than did models based on both D and H (Table 4).  399 

 The weighting procedures that were effective in accommodating heteroscedasticity (p-values 400 

larger than 0.05, Fig. 3) produced more consistent large-area estimates (mean AGB per hectare and 401 

SE, Table 4). For example, for models based on D and H to predict AGB, although the largest 402 

difference in mean AGB per hectare between any two weighting procedures was 5.6 Mg ha–1 (i.e., 403 

weighting procedures 11 and 13, Table 4), the largest difference between any two effective weighting 404 

procedures (p > 0.05, see Fig. 3) was 1.1 Mg ha–1 (i.e., procedures 6 and 14, Table 4). Similar results 405 

were observed for models based on D only (Table 4). 406 

The estimates of uncertainty were also affected by the weighting procedure. For models based 407 

on D only, ignoring heteroscedasticity resulted in a slight underestimation of SEs (compared to 408 

uncertainty estimates from models that used weighting procedures effective in accommodating 409 

heteroscedasticity), whereas for models based on both D and H, we observed an opposite effect, a 410 

slight overestimation of uncertainty (Table 4). There were two weighting procedures (procedures 3 411 

and 11, Table 2) that produced substantially overestimated uncertainty, suggesting that due care is 412 

necessary when using fixed-parameter functions to model the standard deviation of heteroscedastic 413 

residuals within the Monte Carlo error propagation procedure (see step 3b, section 2.3.2). 414 

 415 

3.3. The effects of allometric biomass model prediction uncertainty 416 

We compared the estimates of mean biomass per hectare and of uncertainty when both 417 

including and excluding model prediction uncertainty for purposes of assessing the effects of this 418 

source of uncertainty. As expected, the estimates of mean AGB per hectare were similar, especially 419 

for weighting procedures that were effective in accommodating heteroscedasticity. Differences as 420 

great as 1.2% were observed for models ignoring heteroscedasticity or using an ineffective weighting 421 

procedure, and as great as 0.1% for models that used effective weighting procedures (Table 4).  422 

 423 

Relative to the uncertainty that was due to sampling variability alone (SE, Eq. 11), 424 

incorporating the model prediction uncertainty (SE, Eq. 17) resulted in substantial increase of SEs. 425 
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For the most effective weighting procedures (p > 0.05, see Fig. 3), when model prediction uncertainty 426 

was included, the SE increased by 44.4% to 58.7% for models based on D-only and by 43.6% to 427 

44.9% for models based on both D and H (Table 4). Therefore, the effects of allometric model 428 

prediction uncertainty were less when both D and H were used to predict the AGB, because addition 429 

of H as predictor variable resulted in a reduction of residual standard error of the model. Nevertheless, 430 

for weighting procedures 3 and 11, the differences were substantial (as great as 3661%), given the 431 

large overestimation of uncertainty shown earlier.432 
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4. Discussion 433 

We examined weighting approaches for power-law nonlinear allometric biomass models whose 434 

prediction residuals exhibit heteroscedasticity. The results showed that some weighting procedures 435 

were more effective in accommodating heteroscedasticity than others. In general, the weighting 436 

procedures based on fixed parameter functions such as D−1, D−2, D−4 or (D2H)−2 were less effective 437 

compared to specifically tailored functions (e.g., D−λ, AGB̂−λ). In fact, these fixed parameter 438 

functions did not produce any p-value larger than 0.05 which, under the Breusch-Pagan test, means 439 

effective compensation for heteroscedasticity (see Table 3) for any of the datasets. In addition, some 440 

of the fixed parameter functions (e.g., D−4 and (D2H)−2) produced serious overestimation of 441 

uncertainty. Therefore, we recommend avoiding using fixed parameter functions for weighting the 442 

observations in allometric biomass models. 443 

Because heteroscedasticity is evaluated against all predictor variables used in the model, it 444 

was expected that for single predictor models the heteroscedasticity will be accommodated more 445 

easily compared to models that have two or more predictor variables. For example, in our analysis, 446 

given the number of datasets and number of weighting procedures, for models based on D only, 447 

heteroscedasticity was adequately accommodated for 33 of 77 cases (Table 3 and Fig. 3), which 448 

represents a ratio of 43%. By comparison, for models based on D and H, the heteroscedasticity was 449 

adequately accommodated for only 12 out of 105 cases (Table 3 and Fig. 3), which indicates a much 450 

smaller rate of just 11%. Modelling heteroscedasticity is challenging because variance can hardly be 451 

approximated at the level of individual observations directly, without a grouping of the residuals first. 452 

The data are recommended to be first ordered with respect to the model predictor variable in case of a 453 

model with only a single predictor variable (which often was D or AGB̂). The procedure is more 454 

complex when two predictor variables are used concomitantly to predict the heteroscedastic variance. 455 

We used, however, four procedures that involved both D and H to predict the heteroscedastic 456 

variance, of which only one approach was effective. Weighting procedure 14 was effective in five of 457 

seven datasets, which is substantial, given the more complex nature of heteroscedasticity in models 458 

with two predictors. Nevertheless, because using two or more predictor variables increases the 459 
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complexity of the heteroscedasticity models, using just the most significant predictor variable (e.g., D 460 

or AGB̂ as predictors of heteroscedasticity) should be preferred.   461 

Both D and AGB̂ can be used as predictors of heteroscedastic variance. Weighting procedures 462 

6 and 8 are similar to procedures 7 and 9, respectively, except procedures 6 and 7 use D to predict 463 

heteroscedastic variance, whereas procedures 8 and 9 use AGB̂. Comparable effectiveness of 464 

weighting functions based on D and AGB̂ in compensating for heteroscedasticity was observed with 465 

the functions based on D being effective in 16 of 28 cases and functions based on AGB̂ in 15 of 28 466 

cases (Table 3 and Fig. 3). Therefore, either D or AGB̂ can be used as predictor of heteroscedastic 467 

variance with good results. 468 

Modelling heteroscedasticity in two stages (modelling the heteroscedasticity resulted from a 469 

weighted nonlinear model, as in procedures 7 and 9) produced weights that were more effective in 470 

compensating for heteroscedasticity. Procedures 7 and 9 that used two modelling stages were 100% 471 

effective for single predictor models (Table 3). The reason two stage modelling was more effective 472 

was because the residuals that are modelled should be as similar as possible to those of the weighted 473 

model. The residuals resulting from an unweighted nonlinear model can be sometimes slightly 474 

different than those resulted from a weighted nonlinear model and, therefore, the group variance is 475 

affected, thereby further affecting the parameter estimates for the heteroscedasticity model. Therefore, 476 

we recommend using two modelling stages of heteroscedasticity, whenever a single stage modelling 477 

is ineffective. Furthermore, it has been shown that weighted power-law nonlinear regression and 478 

logarithmic transformation produce similar estimates of model parameters (Dutcă et al., 2019). As a 479 

result, logarithmic transformation can be used as a first stage approximation, as it was used in 480 

procedure 14, which had the greatest effectiveness (i.e., accommodating heteroscedasticity for five of 481 

seven datasets, see Table 3 and Fig. 3) among models based on Eq. (3). 482 

Logarithmic transformation has long been promoted as the standard way to fit allometric 483 

models (Chave et al., 2014; Huxley, 1932; Kerkhoff and Enquist, 2009). Ln-ln transformation, 484 

besides linearization of the power-law nonlinear model can also possibly serve as a way to 485 

accommodate heteroscedasticity. In our application, the residuals became homoscedastic for three of 486 
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seven datasets in the case of single predictor models, whereas none of the models based on D and H 487 

showed homoscedastic residuals as a result of transformation. However, the logarithmic 488 

transformation, although failing to effectively accommodate heteroscedasticity (Fig. 3, procedure 15), 489 

produced AGB estimates and SEs that were very similar to those resulting from weighting procedures 490 

that satisfactorily accommodated heteroscedasticity (Table 4). As a result, ln-ln transformation can be 491 

preferred to other ineffective weighting procedures (Table 3). Nevertheless, we recommend testing 492 

the heteroscedasticity of residuals on ln-ln scale before selecting the ln-ln transformation as the 493 

method to fit the models. 494 

For weighting procedures that used grouping, the size of the groups when modelling the 495 

heteroscedastic variance was an important parameter. We set up the group size to 25, because it was a 496 

good compromise: it was large enough so that the group variances can be calculated in good 497 

conditions, and small enough to catch most irregularities within the pattern of heteroscedastic 498 

variance across the predictor range. However, the group size can be modified by the user to find an 499 

accurate pattern of heteroscedasticity for each biomass model. Another important point is that when 500 

sample size is small the grouping approach becomes challenging, to the point that if the group sample 501 

size is very small, the grouping approach becomes irrelevant. In these conditions logarithmic 502 

transformation remains a good compromise that can be used to fit the models. 503 

The model form used to predict the heteroscedastic variance is also important. Our results 504 

confirmed that, in general, heteroscedastic variance was well approximated by a power function of the 505 

predictor variable (e.g., D or AGB̂). For some of the weighting procedures we employed the ln-ln 506 

transformation instead of nonlinear fitting (see step (vi) of procedures 6 – 9, Table 2) for two reasons: 507 

first, the user can easily check the linear fit by graphing the variables, and second, ln-ln 508 

transformation may deal with potential presence of heteroscedasticity within the heteroscedasticity 509 

model. Nevertheless, for weighting procedures 6 – 9 (Table 2) we performed a parallel analysis, using 510 

nonlinear models instead of ln-ln transformation approach. When using ln-ln transformation, the mean 511 

AGB per hectare varied between 180.49 Mg ha–1 and 181.29 Mg ha–1 (for weighting procedures 6 – 9, 512 

Table 4). Using the nonlinear approach instead of ln-ln transformation, the estimates of mean AGB 513 

per hectare were between 175.38 Mg ha–1 and 181.71 Mg ha–1. The estimates of uncertainty were less 514 
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affected. Therefore, using ln-ln transformation to model heteroscedasticity gives more consistent 515 

estimates, this being the reason we recommend using the ln-ln transformation approach. 516 

This general pattern of heteroscedasticity that is often described by a power function explains 517 

why logarithmic transformation sometimes produces homoscedastic residuals in allometric models. 518 

However, for weighting procedures that used two predictor variables to predict the heteroscedastic 519 

variance (e.g., procedure 14) we observed for some datasets a nonlinear relationship on ln-ln scale, 520 

between H and the group variance. Consequently, the relationship between heteroscedastic variance 521 

and the predictor variables D and H was not well described by a power function. This was observed 522 

for Datasets 6 and 7, for which procedure 14 was not effective in accommodating heteroscedasticity. 523 

In such cases, more complex functions for predicting heteroscedastic variance may be investigated. 524 

Our results showed a larger difference in estimates of mean AGB per hectare between model 525 

forms (Eq. 2 vs. Eq. 3) than between weighting approaches within each model form. This difference 526 

could be attributed to two different causes: (i) the effect of including H in allometric models, being 527 

shown that addition of H in allometric models would improve the accuracy of AGB prediction, 528 

compared to models based on D only (Dutcă, 2019; Dutcă et al., 2020) and (ii) model 529 

misspecification as shown in Fig. (3). The models based on D only showed a nonlinear trend in the 530 

weighted residuals that disappeared once H was added as predictor variable. This nonlinear trend in 531 

the weighted residuals for models based on D only was likely caused by the relationship between D 532 

and H, which is reflected by the H-D ratio. Small trees, usually growing in denser stands, with 533 

stronger tree competition, exhibit a larger H-D ratio, compared to large trees (Vospernik et al., 2010). 534 

However, some of the small trees (i.e., small D) within our calibration dataset showed a comparable 535 

H-D ratio to that of large trees (Fig. 4, a). Moreover, it is to be expected that for trees of similar D, a 536 

smaller H-D ratio will result in a smaller observed AGB. Therefore, the nonlinear trend in the 537 

residuals of models based on D (Fig. 3) was likely caused by a smaller-than-expected H for small 538 

trees, reflected in the nonlinear trend of relationship between D and H-D ratio (presented in ln-ln 539 

scale, see Fig. 4, a). A similar nonlinear trend was observed for the inventory dataset (Fig. 4, b), 540 

confirming the good agreement between the calibration dataset and inventory dataset. 541 
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 542 

Fig. 4. The relationship between D and H-D ratio, in ln-ln scale, for the calibration dataset (a) and the inventory dataset (b). 543 

 544 

The differences in estimates of mean AGB per hectare between different weighting 545 

approaches were generally small to moderate. For example, using both D and H to predict tree AGB 546 

(Eq. 3), the estimates of mean AGB per hectare were 181.50 Mg ha–1 when ignoring 547 

heteroscedasticity (approach 0, Table 4) and 181.29 Mg ha–1 for weighting approach 6 which, 548 

according to the p-value presented in Fig. 3, can be considered the most effective weighting approach 549 

when using Eq. 3. These results suggest a confirmation that ordinary least squares estimators of model 550 

parameters are unbiased in the presence of heteroscedasticity (Hayes and Cai, 2007; White, 1980). 551 

However, Mascaro et al. (2011) showed that ignoring heteroscedasticity may result in systematic 552 

errors in AGB predictions for small trees and, consequently, for plots containing small trees. To 553 

investigate this premise, for every tree in the inventory sample (section 2.1.2) we calculated the 554 

individual tree prediction differences between the unweighted nonlinear model and model using the 555 

weighting approach 6. These differences were then divided by the means of individual tree 556 

predictions (two predictions for each tree), to obtain the relative differences of individual tree 557 

predictions, as in Bland-Altman plots (Bland and Altman, 1986). In Fig. 5 can be observed that, for 558 

small trees, ignoring the heteroscedasticity resulted in underestimation of individual tree predictions 559 

as great as 71%, confirming the results of Mascaro et al. (2011). Nevertheless, despite these large 560 

relative differences for small trees, the estimates of mean AGB per hectare were barely different (i.e., 561 

181.50 vs. 181.29 Mg ha–1). We suspect that was because the differences in small trees, although 562 
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important when judged as relative differences, are negligible in terms of absolute values when 563 

compared to estimates of the large trees.  564 

 565 

Fig. 5. The relative differences in individual tree predictions when ignoring heteroscedasticity. Note: The relative differences 566 

were calculated for each individual tree in the inventory dataset as: (𝐴𝐺𝐵0̂𝑖 − 𝐴𝐺𝐵1̂𝑖)/(
𝐴𝐺𝐵0̂𝑖+𝐴𝐺𝐵1̂𝑖

2
) ⋅ 100, where 𝐴𝐺𝐵0̂𝑖 is 567 

the predicted AGB of ith tree in the inventory dataset based on unweighted nonlinear model (Eq. 3); 𝐴𝐺𝐵1̂𝑖 is the predicted 568 

AGB of ith tree in the inventory dataset, based on Eq. (3) with the weighting approach 6. 569 

 570 

For models based on D and H, the coefficient of variation (i.e., SE relative to estimated mean 571 

AGB per hectare) was approximately 6.3% when including model prediction uncertainty and 572 

approximately 4.4% when ignoring model prediction uncertainty for models that used an effective 573 

weighting procedure. Smaller ratios, of approximately 2.6% and 1.9% were reported by McRoberts 574 

and Westfall (2014) and McRoberts et al. (2015), but involving a much larger number of plots 575 

compared to our study (1074 and respectively 2178 plots, compared to 243 plots used in this study). A 576 

comparable ratio of 5.0% was reported by Duncanson et al. (2017) based on 179 sample plots. The 577 

uncertainty due to allometric model prediction was not negligible, as has been reported for some 578 

studies (Breidenbach et al., 2014; McRoberts et al., 2016, 2015). For this study, this component of 579 

uncertainty contributed to an approximate 45% increase in SEs and, therefore, we recommend that it 580 

should at least be considered whenever using allometric biomass models.581 
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5. Conclusions 582 

The conclusions of this study can be summarized as follows: 583 

(i) We tested several procedures for weighting of observations to accommodate 584 

heteroscedasticity in allometric biomass models. Some weighting procedures were more 585 

effective than others in accommodating heteroscedasticity. For single predictor models, 586 

heteroscedasticity was more effectively accommodated than for models based on D and H. 587 

For models based on D only, weighting procedures 7 and 9 were 100% effective in 588 

accommodating heteroscedasticity; for models based on D and H, procedure 14 was the most 589 

effective. 590 

(ii) Failing to effectively accommodate heteroscedasticity resulted in small-to-moderate 591 

differences of estimates of mean AGB per hectare and of standard errors.  592 

(iii) Including H as predictor variable in allometric biomass models greatly improved the AGB 593 

prediction. The estimates of mean AGB per hectare and of standard errors were more 594 

seriously affected by omitting H as a predictor of AGB (models based on D and H versus 595 

models based on D only), than by the weighting approach. Therefore, we highly recommend 596 

including H as predictor variable in allometric biomass models. 597 

(iv) The standard errors of the estimated mean AGB per hectare increased by 44-59% when model 598 

prediction uncertainty was included, therefore, we recommend incorporating model 599 

prediction uncertainty in the total uncertainty estimate. 600 

(v) We highly recommend testing the efficiency of the weighting procedure by using the adapted 601 

Breusch-Pagan test proposed here. 602 
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