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On the Sequential Composition of the
Moore-Penrose Matrix Inverse

Benjamin Aziz

School of Creative and Digital Industries
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1 Some Preliminary Results

Definition 1 (The Correction Function). Define the correction function as
the following lambda abstraction:

/\x,y,ul,uQ,vl,vg.((xT us up), (V2 vy yT))
From now on, we refer to this function as:
8(z,y) = My, ug, v1, va. (2" ug u1), (va vy yh))
Based on this correction function, we define an abstraction triple as follows:

Definition 2 (An Abstraction Triple). Given a Moore-Penrose abstraction
pair, (o, ), an abstraction triple is defined as the triple, (o, at,§(a,a)).

Now, define the corrected sequential composition of two correction abstraction
triples as follows.

Definition 3 (Corrected Sequential Composition). Given two corrected
abstraction triples, (o, af, (o, @) and (B, 81, 6(83, B)), then the corrected sequen-
tial composition, +, is defined as follows:

(a,af,6(a,0)) + (8,67,6(8,8)) = (B, fTa’, é(, )
Such that the following conditions apply,

1- (aB)(0(a, B)(Btalptatl)) = Tgtat and,
2- (BTah)(3(a, B)(aBaB)) = map

In fact, it is straightforward to demonstrate that
(,al,6(a, ) + (I, IT,6(1,1)) = (al, ITa’, §(a, 1))

has the property,
S, H(ITa'ITat) = af



and symmetrically,
a,(alal) =«

This promotes the philosophy that an abstraction triple is a more general concept
compared to the Moore-Penrose pair. This is specially shown by defining the set
of sequentially-composed abstraction triples:

S = {(w,v",6(v,v)) + (', 0T, 6", 0")) | v,0" € V}

where V is the set of all abstractions including the identity abstraction, I, and
0(x,y) is the correction function. Then, it is possible to use S as the domain
of meaning for Moore-Penrose pairs. This is done by first defining a translation
function, T, as follows:

T((e,a")) = (a0l 8(ev, ) + (1,17,6(1,1)) (1)
T((eB,8fah)) = (a,al,6(c, ) + (8,57,6(8,5)) (2)

And then working over the new set, S. Note now that the smallest abstraction
unit in S is the corrected sequential composition of at least two abstraction
triples.

For example, let us consider the composition of the translation of two Moore-
Penrose pairs, T ((ca, o)) + T ((8,8")]), in the set of S. First we have that:

(o, af, 6(a, ) :
(al,ITat,§(a, 1)) +
(
(

, )()6,@,5(6,,8)) F(I,TT,6(1,1) =
alBITTBTITal, 6(al, 1)) = B
)
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T((aB, BTal))

Furthermore, it is possible to demonstrate that:

((aB,Blal, (e, B) + (¢, 171, 6(7,0) =
(B¢, ¢TyiBTal, 6(aB, Q)

This promotes compositionality!
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