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Colon cancer is a prevalent malignancy, substantially it prevented most effectively from killing 
patients through early endoscopic detection. With the rapid development of artificial intelligence 
technology, the early diagnosis rate of colonic polyps achieves greater clinical efficacy for colon cancer 
by applying target detection algorithms to colonoscopy images. This paper presents two outcomes 
achieved through the application of the improved YOLOv5s algorithm with annotated microscopy 
images of clinical cases and publicly available polyp image data: (1) enhancement of the C3(Cross Stage 
Partial Networks) module with multiple layers to C3SE(Cross Stage Partial Networks with Squeeze-
and-Excitation) via the attention mechanism SE (squeeze-and-excitation) and (2) fusion of higher-
level features utilizing BiFPN (the weighted bi-directional feature pyramid network). Experimental 
comparisons are performed based on a new image dataset of colonic polyps among more than 6 
target detection algorithms to validate the better detection capability. The tests indicate that the 
YOLOv5s + BiFPN and YOLOv5s-1st-2nd-C3SE models exhibit enhancements of detection capability 
compared to the YOLOv5 algorithm according to the main indicators of the mAP, accuracy, and recall. 
The YOLOv5s + SEBiFPN model demonstrate a substantial improvement over the YOLOv5s algorithm, 
and establishing a benchmark technology for advancing computer-assisted diagnostic systems is 
feasible.
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It has been reported that China has a high incidence of cancer, particularly colorectal cancer, which ranks among 
the highest in the world. Symptoms include indigestion, abdominal pain, nausea, vomiting, loss of appetite, 
weight loss, and bloody stools. In 2020 alone, colorectal cancer ranked third in incidence and second in mortality 
worldwide. That same year, colorectal cancer was the third most common cancer in China, with approximately 
555,000 new cases, representing a 7.4% increase compared to the previous year1. Colorectal cancer generally 
progresses through four stages, from early to advanced. In the first stage, known as early colorectal cancer, 
patients have a survival rate of over 90% with timely treatment. The second and third stages are considered 
intermediate colorectal cancer, with survival rates ranging from 50 to 70%. By the fourth stage, or advanced 
colorectal cancer, the survival rate drops to just 10–20%. Therefore, early screening for colorectal cancer is 
extremely important2.

Some common gastrointestinal diseases, as shown in Fig.  1, can undergo malignant transformation to 
varying degrees, eventually leading to colorectal cancer. Colitis is an inflammatory bowel disease3 characterized 
by inflammation of the colon mucosa and intestinal wall. It can be classified into two types based on symptoms: 
ulcerative colitis and Crohn’s disease. Ulcerative colitis is an autoimmune disease that typically begins in the 
rectal area of the colon, with inflammation confined to the mucosal layer of the intestine and gradually spreading 
to the muscular layer. Clinical manifestations include diarrhea, abdominal pain, bloody stools, and discomfort 
during defecation. Ulcerative colitis may also be associated with other conditions such as anal fistulas and 
perianal abscesses. Figure 1e shows an actual image of colitis.
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A polyp is an abnormal growth on the surface of body tissues. Based on its pathology, it can be classified 
into adenomatous polyps and non-adenomatous polyps4–7. Most colorectal polyps resemble mushrooms or 
cauliflower, featuring short stalks or stems that connect to the normal mucosal lining of the intestines. Other 
polyps have a flatter shape (flat polyps) or appear like carpets (sessile polyps). Figure  1a–d show different 
shapes of polyps in colonoscopy images. Polyps are a type of benign tumor, but over time, some polyps have 
the tendency to become malignant. If left untreated, they may develop into colorectal cancer. Early diagnosis of 
colorectal cancer primarily relies on colonoscopy, an effective method that allows direct observation of lesions 
and pathological analysis. However, its diagnostic accuracy heavily depends on the physician’s expertise and 
operational skills, with fatigue or inexperience potentially leading to missed or incorrect diagnoses. Computer 
vision-based assisted diagnostic technologies leverage deep learning algorithms to analyze colonoscopy images 
in real time, enhancing the sensitivity and accuracy of lesion detection, precisely localizing affected areas, 
reducing the workload of physicians, and significantly improving the detection of small or flat polyps. Compared 
to traditional methods, these technologies provide an efficient and reliable solution for early colorectal cancer 
screening, paving the way for the intelligent development of medical diagnostics.

To address these challenges, Angermann et al.8 proposed a real-time polyp detection method that uses active 
learning algorithms to improve detection accuracy and efficiency. This method employs frame-based features to 
identify polyps in videos and utilizes an active learning framework based on classifiers to progressively enhance 
the classifier’s performance, allowing for more accurate identification and localization of polyps. However, the 
sensitivity and detection accuracy of this method are relatively low. Misawa et al. utilized CNNs to identify 
lesions in colonoscopy images9. The dataset comprised videos from 73 patients, including 73 colonoscopy video 
segments. However, the experimental results were less than ideal. Although the sensitivity reached 90.0%, the 
specificity and accuracy were relatively low, at 63.3% and 76.5%, respectively. In reference10, Peter Klare from 
Germany researched a novel computer-assisted polyp detection system. The study recruited 30 participants from 
a hospital in Germany and collected 280 colonoscopy images of polyp detection events to evaluate the system’s 
performance and accuracy. The experimental results indicated that the automated polyp detection system 
demonstrated high accuracy and robustness in clinical applications, with strong performance in detecting 
small polyps. However, the system’s detection performance still needs improvement in complex scenarios to 
meet more challenging and practical medical needs. Liu et al.11 utilized SSD (Single Shot MultiBox Detector) 
for the localization of polyp images. SSD is an algorithm known for its high precision and speed, but it has 
limited capability in recognizing small-sized objects. Nisha et al.12 designed a Dual-Path Convolutional Neural 
Network (DP-CNN) to classify polyps and normal bowel tissues in colonoscopy images. After training and 
testing on the CVC-ColonDB dataset (which contains 380 images), the system achieved an accuracy of 99.6% 
and a recall rate of 99.2%, although the dataset size was relatively small. Nogueira-Rodríguez et al.13 designed a 

Fig. 1.  Real images of common digestive diseases. (a) Arti polyps. (b) Non-tipped polyps. (c) Tipped polyps. 
(d) Multiple polyps. (e) Colitis.
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deep learning model for real-time polyp detection, based on the YOLOv3 (You Only Look Once) architecture 
and supplemented it with a post-processing step using object tracking algorithms. The model demonstrated high 
prediction performance for sessile and pedunculated polyps, but it showed lower performance for flat polyps.

The primary aim of this work is to enhance the detection capability of colonic polyps using an improved 
YOLOv5s algorithm, thereby advancing early colorectal cancer diagnosis and providing a benchmark for 
computer-assisted diagnostic systems. The novelty lies in the integration of the SE (Squeeze-and-Excitation) 
attention mechanism to enhance the C3(Cross Stage Partial Networks) module C3SE(Cross Stage Partial 
Networks with Squeeze-and-Excitation) and the use of BiFPN (Bi-directional Feature Pyramid Network) to 
optimize multi-scale feature fusion. Motivated by the need to address challenges like missed detection of small 
targets and poor performance in complex scenarios, the study validates its improvements on a newly constructed 
colonic polyp image dataset. Experimental results demonstrate significant gains in mAP, accuracy, and recall, 
highlighting the feasibility of this approach for advancing intelligent medical diagnostics.

The improved YOLOv5s algorithms
YOLOv5s network structure and algorithm principle
As is well known, the YOLO family of algorithms has been widely applied to numerous target detection tasks 
in medical imaging14. YOLOv515 is one algorithm in the YOLO family, with various target detection network 
models for different image input sizes and datasets16.

The network architecture of YOLOv5 is depicted in Fig. 2, which provides insight into its four fundamental 
components: input, backbone, neck, and head17.

At the input stage, Mosaic data augmentation combines four input images into one to enhance dataset 
diversity, while adaptive image scaling adjusts input dimensions for improved small and large object detection. 
Anchor box dimensions are optimized using k-means clustering, enhancing detection accuracy, as shown in 
Fig. 2. The backbone network, based on CSPDarknet53 (Fig. 3), employs CSP modules and the Focus structure to 
optimize feature extraction, reduce computation, and retain semantic information. The neck network integrates 
Feature Pyramid Network (FPN) and Path Aggregation Network (PAN) architectures, enabling multi-scale 
object detection by fusing features across different layers. Finally, the head network processes feature maps from 
the neck to produce multi-scale predictions for small, medium, and large objects using C3 modules at various 
levels (Fig. 2), supporting applications like lesion detection in medical imaging.

SE attention mechanism module
The attention mechanism is a weighted summation process that calculates the final output by aggregating the 
weights assigned to various input components. This mechanism allows a model to enhance its performance by 
focusing more on critical components during the input data processing. As a result, attention mechanisms have 
become essential in neural network design18.

For example, in target detection tasks, the attention mechanism helps the model concentrate on the most 
relevant regions for detection while automatically ignoring irrelevant ones.

The SE (Squeeze-and-Excitation) attention mechanism19 is a popular lightweight approach widely used in 
convolutional neural networks. Its core procedure involves compression and excitation operations to determine 
the importance of each channel, thereby enabling the network to capture more refined features20, as shown in 
Fig. 4.

The two phases that comprise the SE attention mechanism’s concrete implementation are as follows.

Fig. 2.  YOLOv5 network structure diagram.
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Squeeze
The compression mechanism pools the global average of the feature maps for each channel, generating a 
1 × 1 × C  scalar that represents the global features of all channels through convolutional compression of the 

feature maps. This process is mathematically expressed in Eq. 1.

	 Zc = Fsq (uc) = 1
H× W

∑
H
i=1

∑
w
j=1uc (i, j) � (1)

Excitation
The excitation operation enables the model to learn the weights of each feature channel. It consists of two 
fully connected layers: the first layer has C × SERatio neurons, while the second layer contains C neurons. 
Given an input with dimensions 1 × 1 × C , the output remains 1 × 1 × C  after passing through both fully 
connected layers. Here, SERatio represents the ratio of the output feature vector size in the Squeeze layer to the 
number of channels in the input feature map. This design effectively simplifies the mathematical expression in 
the second Eq. 

	 s = Fex (z, W ) = σ (g (z, W )) = σ (W2δ (W1z)) � (2)

It is possible to apply the SE attention mechanism to either the residual block or the convolutional layer. 
Implementing the SE attention mechanism allows the model to dynamically prioritize the importance of 
individual channels, thereby improving its generalization capability. Additionally, due to its limited number of 
parameters, the SE attention mechanism can be easily integrated into existing convolutional neural networks.

Multi-scale feature fusion network
The multiscale feature fusion network is a neural network architecture designed to improve performance in 
computer vision tasks by integrating feature information across different scales. A multiscale feature fusion 
network typically uses layers of varying depths to extract features at distinct scales. These extracted features 
are then combined through a fusion operation. The specific fusion method, which may include addition, 
multiplication, concatenation, etc., depends on the task requirements and desired performance. To further boost 

Fig. 4.  Compression, excitation blocks.

 

Fig. 3.  CSPDarknet53 structure diagram.
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the network’s performance, multiscale feature fusion networks often incorporate additional modules, such as 
attention mechanisms and aggregation operations.

Multi-scale feature fusion networks have the advantage of fully utilizing feature information at various scales, 
enhancing the model’s receptive field and expressive capability, which leads to improved performance across 
different computer vision applications. Figure 5 illustrates three standard design patterns for multiscale feature 
fusion networks: (a) the FPN (Feature Pyramid Network)21, (b) the PANet (Path Aggregation Network)22, 
and (c) the BiFPN (Bidirectional Feature Pyramid Network)23. FPN and PANet are used in the Neck network 
of the YOLOv5 algorithm, as discussed in the previous section. In 2020, Tan et al.23 proposed the Weighted 
Bidirectional Feature Pyramid Network (BiFPN) for the EfficientDet network, as shown in Fig.  5c. BiFPN 
and PANet differ in the following ways: (1) Network Structure: BiFPN builds upon the FPN and introduces 
multiple bidirectional connections to achieve multi-level feature map fusion. In contrast, PANet performs path 
aggregation of feature maps at various scales to achieve multi-scale feature map fusion. (2) Feature Fusion: 
BiFPN establishes bidirectional connections between different layers, allowing information to flow freely and 
adaptively optimizing feature fusion across levels by learning connection weights. PANet, however, aggregates 
feature information across scales using path aggregation of feature maps. (3) Training Method: BiFPN requires 
training of connection weights to enhance the network’s adaptability to target detection tasks. In contrast, PANet 
does not require additional training and instead aggregates feature maps of varying scales directly.

Improvements based on the attention mechanism (SENet-yolov5s network design)
Figure 6 illustrates the structure and parameters of the backbone network as defined in the YOLOv5s.yaml file. 
To mitigate the impact of background noise and other interfering factors, the attention mechanism module has 
been introduced, with the layers of the C3 module upgraded to C3SE. A key consideration in developing a fusion 
network is selecting the appropriate layer for integrating the attention mechanism module to optimize detection 
performance.

The backbone structure of YOLOv5s contains four C3 layers. To assess the impact of integrating attention 
mechanisms at different locations, a comparative experiment was conducted by modifying various C3 layers into 
C3SE. The performance of the modified network was then compared with the original to determine whether the 
attention mechanism fusion at different C3 layers consistently enhances detection performance and to identify 
the configuration that yields the best results.

BiFPN-based model improvement
Although top-down and bottom-up feature fusion is performed in the Neck of the YOLOv5 network, the 
fusion methods described above do not consider the relative importance of different input features. BiFPN 

Fig. 6.  Backbone network structure.

 

Fig. 5.  Different forms of multi-scale feature fusion networks.
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not only introduces a better feature aggregation technique but also addresses the issue of input features having 
varying resolutions and contributing differently to the final feature fusion. To resolve this, BiFPN incorporates 
a weighting network based on an attention mechanism that adaptively learns the weights of each input feature 
layer and adjusts the aggregation process to enhance detection performance. This weighted network takes each 
input feature layer as input and outputs the corresponding importance weights of the feature layers. These 
weights are then fused with the features through quick normalization, with the fusion formula as follows:

	
O =

∑
i

ω i

ϵ +
∑

j
ω j

· Ii � (3)

In this formula, O represents the fused feature map, d ω enotes the learnable weights, I  is the original feature 
map, and ϵ  is a very small value (0.0001) added to avoid numerical instability. The concept of BiFPN is applied 
to enhance the neck region of YOLOv5, focusing primarily on the following two aspects:

(1) For feature weight fusion, this work introduces a new module, BiFPN_Concat, to replace the previous 
Concat operation. The detailed structure of the BiFPN_Concat module is shown in Fig. 7. This module defines a 
trainable weight parameter ω for each feature layer to be fused, and the weight parameters are then normalized 
to obtain the corresponding normalized weights for each feature map across different layers. Each feature layer 
is then multiplied by its corresponding normalized weight, and the results are summed to generate the new 
fused feature layer output. This completes the feature fusion process. By learning the weight parameters of each 
feature layer, the contribution of each layer can be adaptively adjusted to enhance the algorithm’s ability to detect 
colorectal polyps.

(2) Network connection: Since YOLO has three detection layers, a BiFPN with three nodes is introduced into 
the algorithm and used only once. At this stage, the outputs from the three detection heads, P 3, P 4, and P 5
, are:

	
P out

3 = Conv
(

ω 1· P in
3 +ω 2· Resize(P td

4 )
ω 1+ω 2+ϵ

)
� (4)

	
P out

4 = Conv
(

ω 3· P in
4 +ω 4· P td

4 +ω 5· Resize(P out
3 )

ω 3+ω 4+ω 5+ϵ

)
� (5)

	
P out

5 = Conv
(

ω 6· P in
5 +ω 7· Resize(P out

4 )
ω 6+ω 7+ϵ

)
� (6)

where P td
4  is calculated by the formula:

	
P td

4 = Conν
(

ω 8· P in
4 +ω 9· Resize(P in

5 )
ω 8+ω 9+ϵ

)
� (7)

Here, ω  represents the trainable weight parameter, Resize denotes the up-sampling or down-sampling 
operation, and Conv refers to the convolution process. P td

3 , P td
4 , and P td

5  are the third, fourth, and fifth feature 
maps of the image, respectively, following the bottom-up pathway. P out

3 , P out
4 , and P out

5  are the output feature 
maps of P 3, P 4, and P 5.

The neck structure of the YOLOv5 P3 detection head is now connected to the feature map of layer 4. The P4 
detection head is linked to the feature maps of layers 18, 6, and 13, while the P5 detection head is connected to 
the feature map of layer 9. Through additional layers of feature aggregation, the model can concentrate on critical 
feature levels by assigning different training weights to various feature map levels, resulting in more accurate 
feature representations.

Experimental design
Experimental data sets
The images used in our study are sourced from publicly available databases and are randomly extracted from these 
datasets, including[Kvasir-SEG] ​h​t​t​p​s​:​​/​/​d​a​t​a​​s​e​t​s​.​s​​i​m​u​l​a​.​​n​o​/​d​o​​w​n​l​o​a​d​​s​/​k​v​a​s​​i​r​-​s​e​s​​s​i​l​e​.​z​i​p, [CVC-ClinicDB] ​h​t​t​p​s​
:​​/​/​d​a​t​a​​s​e​t​s​.​s​​i​m​u​l​a​.​​n​o​/​d​o​​w​n​l​o​a​d​​s​/​k​v​a​s​​i​r​-​s​e​s​​s​i​l​e​.​z​i​p, [CVC-ClinicDB] ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​d​r​o​p​b​o​​x​.​c​​o​​m​​/​s​/​p​​5​q​e​9​e​o​​t​e​t​j​n​​
b​​m​q​/​​C​V​​C​-​C​l​i​n​​i​c​D​B​​.​r​​a​r​?​d​l​=​0, and [LDPolypVideo] https://github.com/dashishi/LDPolypVideo-Benchmark, 

Fig. 7.  Introduction to the BiFPN_Concat module.
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all of which are freely accessible for research purposes. The datasets were carefully selected and consist of real 
image frames extracted from thousands of digestive endoscopy videos. Figure 8(a) depicts the image screen of 
the actual gastric acquired image. However, owing to the varying pixel resolutions of the acquired images and 
the left side containing undesirable information and a black border, the image is cropped and scaled to 640 × 640 
resolution, as seen in Fig. 8b.

This image dataset utilized for modeling the intestinal illnesses, LabelImg software can be used for annotating 
these images, as shown in Fig. 9. Figure 10 illustrates how the < size > tag specifies the image’s width and height.

The image dataset is made up of 609 photographs of diseased intestines and 2000 photographs of normal 
intestines. The total 2609 images are separated into training and validation sets in an 8:2 ratio. The remainder, 
195 photographs from the collected colonoscopy videos are set as the test set, including 175 images of diseased 
intestines and 20 images of healthy intestines respectively. As shown in Fig. 11, according to the distribution of 
X and Y of the Ground Truth Box (real labelled box), it is obvious that the GT Box is mainly concentrated in the 
middle of the image. According to the distribution of width and height of GT Box, it can be seen that the targets 
of colonic polyps in the dataset are of different sizes, with extremely large detection targets as well as tiny targets. 
It is obvious that to build a high-precision detection model is very difficult.

Indicators for model evaluation
The built models are assessed by using the evaluation metrics listed below, which are commonly used in most 
medical image models.

Confusion matrix
The confusion matrix is a standard method for evaluating classification performance. It is an N × N matrix, with 
‘N’ denoting the number of categorization categories. For a binary classification problem, the confusion matrix 
is shown in Table 1, where true positive (TP) is the number of positive cases that the model correctly predicts as 
positive, false negative (FN) is the number of positive cases that the model incorrectly predicts as negative, false 

Fig. 9.  Image annotation.

 

Fig. 8.  Images of the actual stomach and intestine.
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Fig. 11.  Dataset distribution and bounding box characteristics for colonic polyp detection.

 

Fig. 10.  XML file content.
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positive (FP) is the number of negative cases that the model incorrectly predicts as positive, and true negative 
(TN) is the number of negative cases that the model correctly predicts as negative. The indicators of accuracy, 
recall, and precision can be calculated through the confusion matrix.

Accuracy is defined as the proportion of correctly predicted samples out of the total samples. In general, 
higher precision generally leads to better model performance. It is defined as:

	 A = T P +T N
T P +T N+F P +F N � (8)

Recall is defined as the ratio of correctly predicted positive cases to the total number of positive cases. It is also 
known as sensitivity. It is defined as:

	 R = T P
T P +F N � (9)

Precision is defined as the number of negative cases properly predicted as negative ones by the model di-vided 
by the total number of negative cases. Defined as:

	 T = T P
T P +F P � (10)

mAP (mean average precision)
This paper uses the mean Average Precision (mAP), giga floating-point operations per second (GFLOPs), and 
frames per second (FPS) to evaluate the model’s performance. mAP is used to assess the accuracy of the model, 
and its calculation formula is as follows:

	 mAp =
∑ PA

/
N � (11)

where PA represents the area under the curve formed by precision on the x-axis and recall on the y-axis, and 
N denotes the total number of detection classes. mAP@0.5 indicates the average precision (AP) for each class 
calculated at an IoU threshold of 0.5, followed by averaging the AP values across all classes. mAP@0.5:0.95 refers 
to the computation of mAP for IoU thresholds ranging from 0.5 to 0.95 in increments of 0.05, with the final mAP 
being the average of these values.

Experimental results and analysis
Because the original YOLOv5s has four C3 layers in its backbone structure, a comparison experiment is designed 
to reveal the performance improvement when different C3 layers are upgraded to C3SE and the original network. 
Additionally, the experiment includes fusing the attention mechanisms of the C3 layers at different locations.

It is shown from the result list in Table 2 that the model has the highest indexes when the first and second C3 
layers are upgraded to C3SE; specifically, the mAP.5 is 1% higher, precision is 2.39% higher, and recall is 0.34% 
higher than that of the original YOLOv5s model. Furthermore, the detection performance of the YOLOv5s-
1st-2nd-C3SE model exceeds the others. Therefore, the introduction of the SE module can increase the model’s 
feature extraction ability to some extent, thereby improving the model’s ability to detect polyps.

The next step, in addition to the YOLOv5s-1st-2nd-C3SE model, i.e., the YOLOv5s with the first and second 
C3 layers upgraded to C3SE, is to build a new model by integrating BiFPN into YOLOv5s as described in 
the BiFPN-based model improvement subsection. Furthermore, the YOLOv5s-SEBiFPN model is created by 
coupling the YOLOv5s-1st-2nd-C3SE model with this improvement. Finally, the test experiment is executed 

Methods Map (%) Precision (%) Recall (%) FPS (Hz)

YOLOv5s 95.8 93.55 94.11 26

YOLOv5s-1th-2th-C3SE 96.8 95.94 94.45 26

YOLOv5s-1th-3th-C3SE 95.3 92.25 92.71 25

YOLOv5s-1th-4th-C3SE 95.8 95.82 92.09 26

YOLOv5s-2th-3th-C3SE 96.2 94.49 94.39 26

YOLOv5s-2th-4th-C3SE 96.1 95.02 94.89 25

YOLOv5s-3th-4th-C3SE 96.1 95.67 92.63 24

Table 2.  Comparative experimental data.

 

Confusion matrix

Genuine category

Positive sample Negative sample

Type of projection
Positive sample TP FP

Negative sample FN TN

Table 1.  Confusion matrix.
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in the same way as above, including the Faster R-CNN, SSD, and original YOLOv5s models. The performance 
indicators’ findings are displayed in Table 3.

Since the training conditions of the seven models are consistent, the indicators result listed in Table 3 reveals 
that the improved YOLOv5s model outperforms the original YOLOv5s model in terms of mAP, accuracy, and 
recall values, with 0.7%, 0.5%, and 1.1% increments, respectively. Comparatively, the coupled improvement 
model, YOLOv5s-SEBiFPN, increases the performance indicators more, with mAP, accuracy, and recall 
increasing by at least 1.6%, 1.3%, and 1.5%, respectively.

Another experiment is performed by using the means of k-fold cross-validation to identify differences 
in the models’ random performance. As is shown in Table  4, YOLOv5s + SEBifpn demonstrates exceptional 
stability, particularly in mAP, with a variation of only 0.4%, and in precision, with a variation of merely 0.5%, 
reflecting its consistency in accuracy and recall. Compared with other models, YOLOv5s + SEBifpn exhibits 
the highest stability in mAP, showcasing superior precision and robust recall capabilities, making it well-suited 
for high-accuracy and stability-demanding tasks such as intestinal detection. Although its FPS is slightly lower 
(ranging from 24.9 Hz to 26.0 Hz), its outstanding accuracy is reliable performance in practical applications. 
YOLOv5s + SEBifpn offers significant advantages in terms of both high precision and stability, making it 
particularly suitable for scenarios requiring rigorous accuracy and robustness.

Figure 12 is collected from the results of YOLOv5s and YOLOv5s-SEBiFPN models on the test set to depict 
the visualization of detection targets, with a red border representing the confidence of the prediction box’s 
category, as indicated in Eq. (12).

	 Pr (classi?objet) ∗ Pr (object) · IoU = Pr (classi) ∗ IoU � (12)

where Pr (classi?objet) is the probability of being a specific class if there is an object, and Pr (object) · IoU  
is Pr (object) multiplied by IoU (Intersection over Union).

In Fig.  12a–d are typical results from the original YOLOv5s model, and images (e), (f), (g), and (h) are 
corresponding results from the YOLOv5s + SEBiFPN model. The sub-images (c) and (g), (d) and (h) show 
that the confidence level of the YOLOv5s-SEBiFPN model increases. The sub-images (a) and (e) show that the 
YOLOv5s-SEBiFPN model not only improves in confidence level but also enhances the detection capabilities for 
tiny and medium-sized polyps. However, it can also be seen that the polyp obscured by the intestinal wall in (b) 
is undetected due to a failure in detecting polyps in complex and diverse scenes.

Figure 13 shows YOLOv5s-1s-2nd-C3SE algorithm is employed to identify the (a) and (b) images on the 
upper side. The improved YOLOv5s + SEBifpn algorithm is utilized to identify the (d) and (e) images on the 
lower side. It is observed that the YOLOv5s-1s-2nd-C3SE algorithm cannot precisely identify certain flat-shaped 
polyps. This phenomenon can occur since certain flat-shaped objects may exhibit varying dimensions or angles 
within the image, which may prove difficult for the attention mechanism to accurately detect. In contrast, the 
YOLOv5s-1th-2nd-C3SE algorithm exhibits superior performance over YOLOv5s + Bifpn. For instance, Fig. 13c 
remains undetected in YOLOv5s + Bifpn, whereas, Fig.  13(f) is detected in YOLOv5s-1th-2nd-C3SE. This 
discrepancy indicates that the YOLOv5s-1th-2nd-C3SE algorithm is superior to the YOLOv5s + Bifpn algorithm 
when dealing with flat polyps.

Methods

Map (%) Precision (%) Recall (%) FPS (Hz)

Mean Max Min Mean Max Min Mean Max Min Mean Max Min

YOLOv5s 95.7 96.1 95.4 93.4 94.2 92.8 94.0 94.5 93.5 26.1 27.0 25.0

YOLOv8n 96.2 96.5 95.8 94.0 94.3 93.7 95.1 95.5 94.6 43.9 44.5 43.0

YOLOv5s + Bifpn 96.4 96.7 96.0 94.1 94.3 93.9 95.3 95.3 94.6 27.0 28.0 26.5

YOLOv5s-1th-2th-C3SE 96.7 97.0 96.5 95.9 96.2 95.5 94.5 95.0 94.0 26.2 27.5 25.8

YOLOv5s + SEBifpn 97.3 97.6 97.2 94.8 95.2 94.7 95.6 94.9 95.7 24.9 26.0 23.5

FasterRCNN 0.94 0.945 0.935 0.92 0.925 0.915 0.90 0.910 0.890 6.0 6.5 5.5

SSD 0.951 0.955 0.947 0.916 0.92 0.912 0.943 0.946 0.938 39.8 40.5 39.0

Table 4.  Comparison of performance indicators after 5-fold cross-validation for each model.

 

Methods Map (%) Precision (%) Recall (%) FPS (Hz)

YOLOv5s 95.8 93.55 94.11 26

YOLOv8n 96.1 93.96 95.02 44

YOLOv5s + Bifpn 96.5 94.05 95.21 27

YOLOv5s-1th-2th-C3SE 96.8 95.94 94.45 26

YOLOv5s + SEBifpn 97.4 94.85 95.61 25

FasterRCNN 0.941 0.9296 0.9005 6

SSD 0.952 0.9162 0.9425 40

Table 3.  Comparison of the results of the performance indicators of each model.
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Figure 13 is exhibited to reveal the performance of SE, BiFPN, and SE + BiFPN modified YOLOv5s models, 
respectively, selected from the undetected results of the three models. The sub-images (a) and (b) represent 
the weak performance of the YOLOv5s-1st-2nd-C3SE model. The sub-images (d) and (e) correspond to the 
YOLOv5s + SEBiFPN model. The sub-image (c) is from the undetected set of the YOLOv5s + BiFPN model, with 
the same undetected result as in sub-images (a) and (b). The sub-image (f) is from the YOLOv5s + SEBiFPN 
model. This discrepancy indicates that the YOLOv5s + SEBiFPN algorithm may be slightly superior to the 
YOLOv5s + BiFPN model when dealing with flat polyps. Perhaps some flat-shaped targets exhibit varying 
dimensions or angles in the images, making it difficult for the attention mechanism to detect them accurately.

Finally, Fig. 14 illustrates typical recognition images from the YOLOv5s + SEBiFPN model. In each sub-image 
of Fig. 14, prediction boxes, confidence scores, and classes are tagged, except for the normal intestinal images. 
Specifically, Fig. 15 displays the number of images with similar confidence scores in the test set (195 images). For 
instance, the number of images with a confidence score of 0.9 that tested positive for intestinal polyps is about 
118, which is 60.8% of the total, while the ratio for images with confidence scores between 0.7 and 0.8 is 25.3%.

Fig. 13.  YOLOv5s + SEBifpn, YOLOv5s-1st-2nd-C3SE, YOLOv5s + Bifpn visualisation comparison.

 

Fig. 12.  YOLOv5s + SEBifpn algorithm vs. YOLOv5s algorithm visualisations.
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Fig. 15.  Distribution of confidence levels comparison.

 

Fig. 14.  YOLOv5s + SEBifpn algorithm detection visualisation.
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It becomes evident that the enhanced YOLOv5s + SEBiFPN algorithm exhibits greater stability in the 
decline of the loss function after 200 epochs during training, as shown in Figs.  16 and 17. Additionally, it 
displays a smoother and less pronounced ascent in the mAP and recall curves. The increased stability of the 
YOLOv5s + SEBiFPN algorithm is clear.

Conclusion
The primary aim of this study is to investigate a high-performance algorithm for identifying polyp lesions in 
endoscopic images. A new image dataset containing polyps is gathered for training the proposed algorithm 
model. The proposed algorithm is an enhanced YOLOv5s, designed to improve the recognition rate of small 
and medium-sized polyps. Specifically: (1) Implement the attention module in the C3 layer at various positions 
along the backbone network, thereby directing the network’s attention towards the target area for detection via 
weighting, to acquire more comprehensive information; (2) Enhance the model’s pyramid connection method 
by leveraging bidirectional weighted feature fusion (BiFPN). Empirical evidence based on the dataset supports 
the efficacy of these improvements through comparative experiments.

Fig. 17.  Training results of YOLOv5s algorithm.

 

Fig. 16.  Training results of YOLOv5s + SEBifpn algorithm.
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In contrast to its predecessor, the enhanced YOLOv5s + SEBiFPN model exhibits superior detection 
capabilities while maintaining notably low computational complexity. Moreover, it surpasses other exceptional 
detection algorithms of a similar nature.

However, several limitations persist. The model’s performance may degrade in highly challenging scenarios 
such as extreme lighting conditions, very small or blurred polyps, or when facing certain types of occlusion. 
Future research should focus on further enhancing the model’s robustness against such challenges. Additionally, 
applying the proposed method to other medical imaging fields, such as lung or skin lesion detection, could 
explore its broader applicability. For instance, leveraging advancements like the hybrid attention strategy 
employed in HADCNet for lung infection segmentation24 or the projective parameter transfer-based sparse 
learning framework in neuroimaging25 could offer valuable insights for improving the generalization and 
performance of models in other medical imaging domains. Addressing these limitations, including improving 
generalization across diverse datasets, remains a key direction for future work. Furthermore, combining this 
model with advanced segmentation techniques and incorporating additional contextual information could 
further improve its accuracy and reliability.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.
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