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Abstract: In critical and robust systems, requirements modeling and analysis is an essential step, called requirements en-
gineering, in the process of system development, which stems from the non-ambiguous identification of end-
users and stakeholders needs and goals. Despite the wide application of requirements engineering methodolo-
gies, such as KAOS, i⋆/Tropos, often this step is marred by either the lack of robustness or the lack of usability
on part of the analysts. In this paper, we present a 3-dimensional model of requirements, called the Require-
ments Cube, that is clear, usable and can be manipulated using general matrix algebra. Our model stands
on the three main components of requirements; goals, resources and infrastructure, and does not present any
complex concepts that may render it unusable. We consider the semantics of the Cube in three different value
domains: 2- and 3-valued logic values and probabilistic values. Finally, we demonstrate how this model can
be applied to healthcare monitoring scenarios.

1 INTRODUCTION

Despite the widespread use and adoption of require-
ments engineering methodologies and techniques for
the gathering and analysis of stakeholder and end-
user requirements, there is still a notable gap in the
use of mathematical modeling of such requirements
(Yang et al., 2014), except with discrete mathematics-
based and logic-based methods (better known as for-
mal modeling). Even so, such formal modeling is not
so popular in real-world projects, due to the complex-
ity and the steep learning curve associated with for-
mal methods-based approaches (Bruel et al., 2021).
We believe that addressing this integration barrier is
essential for advancing the field of requirements en-
gineering and enhancing the quality of software sys-
tems and services, in general.

In some critical fields, e.g. healthcare monitoring
and care at home for the vulnerable, the application
of requirements engineering, gathering and analysis
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is pivotal for developing effective and user-centered
solutions. This process ensures that healthcare tech-
nologies are tailored to meet the specific needs of
vulnerable (e.g. elderly, disabled) users, thereby en-
hancing the safety, well-being and overall quality of
life for such users (McGee-Lennon, 2008). More-
over, involving end-users in the requirements gath-
ering phase ensures that the developed solutions are
user-friendly and address actual challenges to those
users. For example, recent research (Tajudeen et al.,
2022) has demonstrated that understanding require-
ments from users’ perspective is crucial for creating
senior-friendly mobile health applications that have
increased engagement and lead to better health.

In this paper, we introduce a new mathematical
approach, which we term the Requirements Cube, for
the capturing and modeling of stakeholder require-
ments1 and user needs, which is based on matrix the-
ory. We consider that the three most fundamental

1We shall use the terms “goal” and “requirement” in-
terchangeably, even though in requirements engineering lit-
erature (Van Lamsweerde and Letier, 2002), there is often
a distinction between the two, in that a requirement is re-
garded as a refinement of a (high-level) goal.



components that underlie the ability to express re-
quirements in any scenario are goals (requirements),
resources and infrastructure. Without any of these
three components, ones is unable to express fully the
requirements of a scenario and how those require-
ments can be met. Therefore, we introduce a 3-
dimensional model that captures these components.
We demonstrate how the model can be used to ex-
press requirements in a case of a healthcare monitor-
ing scenario inspired from a real-world project, called
ADA (ADA Project, 2025). ADA (which stands for
“Remote Healthcare Monitoring powered by Network
Intelligence and Automation”), focuses on the digi-
tal transformation of healthcare using 5G and AI, de-
risking the adoption of remote healthcare monitoring,
with special focus on respiratory condition diagnosis,
physiotherapy, and complex care management.

The paper is organised as follows. In Section 2,
we discuss some related works. In Section 3, we de-
fine the concept of scenarios and their use to extract
end-user goals. In Section 4, we present our model,
the Requirements Cube, and discuss the concept of
a requirements cube, as a three-dimensional matrix
that captures end-user goals, required resources and
required infrastructure to fulfill those goals. We also
consider three cases of how the values of the matrix
cells are defined and calculated. In Section 5, we
show how a requirements cube can be validated, and
whether a specific validation satisfies a predefined fit-
ness function. In Section 6, we discuss the cube’s us-
ability. Finally, in Section 7, we conclude the paper
and discuss directions for future work.

2 RELATED WORK

Requirements engineering is a crucial phase in the
software development process that focuses on iden-
tifying, analysing, documenting and maintaining sys-
tem requirements (Pohl, 2010; Sommerville, 2011).
Various approaches to the gathering and analysis of
requirements have been developed to address the
challenges of capturing stakeholders’ needs and en-
suring system functionality aligns with business ob-
jectives. These include scenario-based requirements
engineering, goal-oriented requirements engineering,
viewpoint-based requirements engineering, model-
driven requirements engineering and others.

Scenario-based approaches use real-world scenar-
ios to capture and analyse requirements (Rolland
et al., 1998). Such scenarios would provide concrete
descriptions of system interactions in order to un-
derstand user needs, system behavior and edge cases
(Potts et al., 1994). Notable scenario-based method-

ologies include use case modeling in UML-based
software engineering (Cockburn, 2001), as well as
event-driven scenario analysis, which aids in defining
system responses to external stimuli (Sutcliffe, 2003).

On the other hand, the goal-oriented approach to
requirements engineering emphasises more the cap-
turing of stakeholders’ objectives and refining these to
operational system requirements (Van Lamsweerde,
2001) . The framework provides a structured method-
ology for decomposing high-level goals into sub-
goals and constraints, ensuring alignment between
stakeholder needs and system capabilities (Dardenne
et al., 1993). Popular goal-oriented methodologies in-
clude KAOS (Dardenne et al., 1993), i⋆ (Yu, 1997)
and Tropos (Giorgini et al., 2005).

Viewpoint-based requirements engineering ac-
knowledges the diverse perspectives of stakeholders
involved in systems development (Kotonya and Som-
merville, 1998). This approach structures require-
ments based on different viewpoints, allowing con-
flicting interests to be identified and resolved system-
atically. The VORD (Viewpoint-Oriented Require-
ments Definition) method (Sommerville et al., 1998)
is a well-known viewpoint-based approach that cat-
egorises viewpoints into direct users, indirect users,
and regulatory authorities. By integrating multiple
perspectives, this approach enhances completeness
and reduces inconsistencies in requirements.

Formal methods have also been adopted in the
area of requirements engineering, giving rise to
what is as model-driven requirements engineering
(Schmidt, 2006). This approach is closely related
to model-driven development in general, where re-
quirements models are transformed into design and
implementation artefacts. The use of domain-specific
languages and formal verification techniques ensures
consistency and correctness in the development life-
cycle (France and Rumpe, 2007). Techniques such
as SysML (Systems Modeling Language) and UML-
based modeling have also been widely applied in this
domain (Weilkiens, 2007). Examples of formal lan-
guage applications in model-driven requirements en-
gineering include Alloy for constraint specification
(Jackson, 2012), B-method for rigorous system mod-
eling (Abrial, 1996), and Event-B for formal refine-
ment for action systems (Butler and Yadav, 2012).

In more recent years, the use of AI-driven tech-
niques has been deployed to many of the require-
ments engineering activities both in industry and in-
novation. For example, the authors in (Nadeem et al.,
2022) used AI techniques to compare requirements
gathering and requirement management tools for IoT-
Enabled Sustainable Cities. The research compared
various techniques for requirements gathering like,



context diagrams, functional decomposition, AS-IS
activity models, TO-BE activity models, user stories
and mind maps. Their conclusion was that no single
tool is universally optimal as each has its strengths
and weaknesses depending on the projects needs.

Other approaches include requirements prioritisa-
tion like MoSCoW (Must-have, Should-have, Could-
have, Won’t-have) (Clegg and Barker, 1994) and
Quality Function Deployment (QFD), which help
stakeholders make informed decisions about require-
ments importance (Akao, 2024). Finally, the agile re-
quirements engineering, an emerging field, integrates
RE into iterative and incremental software develop-
ment methodologies, ensuring adaptability and re-
sponsiveness to changes (Paetsch et al., 2003).

Within the healthcare sector, requirements engi-
neering and analysis has also been suggested as a ma-
jor phase when developing new systems. For exam-
ple, the authors in (McGregor et al., 2008) introduce
a structured approach to gathering requirements in
health information systems using the patient journey
modeling approach, or PaJMa models. Using a case
study for a local mental health centre, they showed
that the PaJMa model improved on requirements de-
tail of traditional methods by including details like
non functional requirements and enhanced staff en-
gagement. This approach, increased interest, accep-
tance of changes and an improved hospital informa-
tion system. In (Avelino et al., 2014), the authors
emphasise the critical role of requirements gathering
in customising health information systems for small-
scale healthcare facilities. Using a university health
service as their case study, they showed that through a
detailed understanding of the facility’s processes and
user needs, the system can be tailored to match the
existing manual workflows, ensuring high usability.

Finally, in (Doyle et al., 2011), the authors explore
how healthcare information collected through embed-
ded sensors in smart homes can be effectively deliv-
ered to the resident older adults. Their study reveals
that while residents express strong interest in manag-
ing their own health, receiving health-related data re-
sults in concerns regarding privacy, data interpretation
and usability of technology. Despite these concerns,
participants see long-term benefits in self-monitoring,
particularly in preventing cognitive decline. The
study highlights the need for user-friendly technol-
ogy, educational support and privacy safeguards to
ensure that older adults can confidently engage with
health monitoring systems. All of these are candi-
dates to be represented as requirements in any new
system set-up.

3 SCENARIOS AND USER
STORIES

In this section, we discuss the concepts of a scenario
and a user story, and give an example user story of
healthcare at home to motivate our work in the fol-
lowing sections.

A scenario is a detailed description of what hap-
pens in reality in regards to the problem at hand. In
our case, a scenario will describe the health care pro-
cess, environment and context. For example, this
would be the description of the process of caring for
an elderly person living at home or in an assisted-
living environment or a patient who is currently re-
covering in a hospital ward, along with the context
of that environment in terms of the various resources
available to help the person, as well as the actions the
carers, nurses, doctors or any other personnel might
perform to help the person being considered. Scenar-
ios are usually described using free-style natural lan-
guages and will likely contain technical or specialised
terminology. Scenarios can be regarded as first-level
descriptions of stakeholders’ and end-users’ needs.

One of the current popular forms of scenarios
are user stories, which are essentially user-centric
scenarios usually of short lengths. User stories are
concise, narrative descriptions of how users interact
with a system, focusing on their needs and goals.
Written from the perspective of the end user, these
stories help ensure that development efforts are
aligned with user expectations and requirements.
They typically follow a simple format:

“As a [type of user], I want [some goal/requirement]
for [some reason].”

This approach promotes user-centric design and facil-
itates iterative development, allowing teams to deliver
value incrementally and address real-world problems
effectively (Kannan et al., 2019; Turner et al., 2013).

Figure 1 below describes the story of a hypotheti-
cal elderly person (user), named Jane, with healthcare
requirements described as a story. In this case, we
have followed a free-text approach to the story, rather
than structured (controlled) text.

From a visual analysis of the story’s text, one can
derive two sample goals for Jane:

G1: Jane needs help if she falls

G2: Jane’s environment temperature must be
maintained at 20◦C

For the case of G1, the resource required is a wear-
able device, which detects movement (or lack of) and
also has a big red panic button to summon help. At



Jane is an old lady who
is suffering from arthri-
tis, and rather frail. As
an elderly person, Jane
wants to receive imme-
diate assistance if she
falls down so that she
can feel safe and secure
at home (including care
homes). In addition to
that, Jane requires that
her environment temper-
ature be maintained at
20◦C. In order to ful-
fill the first goal, a spe-
cial wearable device is
needed that alerts carers
or family members when
a fall is detected. For
the second goal, a heat-
ing device, e.g. a contin-
uously functioning boiler
or electric heater, is re-
quired at her home.

Table 1: A free-text example of a user story.

the same time, the infrastructure needed to support
this resource is a radio communication network (e.g.
WiFi, 5G, 4G, 3G etc.) and a source of electricity
supply to work the radio network and recharge the
device’s battery. On the other hand, for G2, we find
that the resource needed is a central heating system
(consisting of a boiler, radiators, thermostat etc.) or
some electric heating device (e.g. underfloor heat-
ing, electric radiators, heat pumps etc.). At the same
time, the infrastructure needed to support this is either
a gas/electricity supply2 or an electricity-only supply.

A scenario or user story produces as a minimum
a set of goals, G1, G2, etc. that underlie that a user
story (scenario), as shown in Figure 1.

Once the set of goals underlying a user story or
scenario has been defined and formulated, we can
then define another set, which is the “set of resources”
that will provision those goals and enable them to be
achieved or maintained. For example, for the goal
of maintaining a constant room temperature for the
person requiring healthcare, it is necessary to have
a temperature-monitoring sensor and some kind of a
temperature control unit. These last two are defined

2Strictly speaking, a gas-based central heating sys-
tem also requires an electricity supply, in order to oper-
ate the pumps, thermostats etc. We shall refer to this set-
up as “gas/electricity” supply, to differentiate it from an
electricity-only heating system.

Figure 1: User stories (scenarios) to goals.

as resources that enable our temperature goal. This
process is demonstrated in Figure 2.

Figure 2: User story goals to resources.

Finally, such resources are deployed on top of “in-
frastructure”, for example, network technologies such
as 5G, WiFi etc., as shown in Figure 3.

Figure 3: Resources deployment on infrastructure.

It may be worth noting that a resource is within
the gift of the user (or whoever is representing their
needs) to specify, obtain and deal with. On the other
hand, infrastructure elements are provided by ‘others’
(e.g. energy providers), and therefore are beyond the
control of the users.

A typical UML activity diagram for the case of G2
might look something like the diagram of Figure 4.

We next give a formulation of the approach we
outlined above in terms of a mathematical model
based on matrix theory.



Figure 4: An activity diagram for goal G2 in Jane’s story.

4 The Theoretical Model

We start our model by identifying three non-
intersecting universal sets:

• G = {g1,g2, . . .}: the set of all possible goals de-
rived from a scenario, as we discussed in the pre-
vious section

• R = {r1,r2, . . .}: the set of all possible resources,
for example any hardware such as various sensors,
wearable devices etc., which play a role in the en-
abling of the goals derived from some scenario

• I = {i1, i2, . . .}: the set of all possible infras-
tructure elements, for example energy and com-
munication infrastructure such as gas, electricity,
5G/4G/WiFi etc., which in turn, enable the func-
tioning of the resources required by the goals

We next define the concept of a requirements cube
more formally.

4.1 Requirements Cube

A requirements cube is the following mathematical
structure, which expresses the relationship between
goals, resources and infrastructures.

Definition 1 (Requirements Cube). Define a require-
ments cube, A, as a 3-dimensional matrix structure,
A : G×R× I, with elements (g,r, i) ∈ A such that a
resource r ∈ R and an infrastructure element i ∈ I en-
able the fulfillment of a goal g ∈ G.

In other words, there is an association among el-
ements g, r and i in each cell of a requirements cube.
As we explain later in the following sections, the
value of the cell will determine the nature of this as-
sociation. As a matter of analogy, we can imagine the
requirements cube above as a loaf of Battenberg cake
(as in Figure 5), where each slice of the loaf represents
a 2-dimensional matrix corresponding to the specific
goal, g, at which the slice was taken. This analogy
brings us to the definition of a requirements slice.

Figure 5: The Battenberg Cake of Requirements.

Definition 2 (Requirements Slice). For a specific
goal, g, define a requirements slice, Ag, as a 2-
dimensional matrix, Ag : R× I, with elements (r, i) ∈
Ag such that a resource r ∈ R and an infrastructure
element i ∈ I enable the fulfillment of the specific goal
g ∈ G, at which the slice is taken.

Therefore, a requirements cube is the stacking of
several requirements slices together, such that the re-
sulting cube represents the total number of require-
ments (goals) identified in the context of a specific
scenario. In this 2-dimensional matrix (i.e. slice), the
values of cells at the intersection of each row and col-
umn are calculated based on the specific values of the
intersecting rows and columns. We shall next expand
on cell values and what that means.

Figure 6 illustrates a generic k-size requirements
cube, which stacks together k number of require-
ments, each requirement slice is defined as an m× n
matrix, with m number of infrastructure elements, and
n number of resources. We assume that a cube repre-
sents the requirements of a single stakeholder or end-
user in whatever scenario is being considered.



Ag1 r11 . . . r1n

i11

...

i1m

Agk rk1 . . . rkn

ik1

...

ikm

k Requirements

Figure 6: A generic k-size requirements cube.

4.2 2-Valued Logic

In our first case, we assume a model based on 2-
valued (i.e. Boolean) logic, the value of a cell in a
2-dimensional slice matrix (i.e. the intersection of a
row representing a resource and a column represent-
ing some infrastructure) denotes the availability re-
quirement of the resource and infrastructure elements.

We assume that the availability value for a
resource or an infrastructure element is defined using
the following operation:

ν : (R∪ I)→ B

Informally, when ν(r) = T or ν(i) = T for some re-
source r and infrastructure i, then that means that r
and i are required to be available, in whatever goal
slice they fall within. This is different from the actual
availability at the environment itself, e.g that there is
currently a telephone device available in the patient’s
apartment (we discuss this difference later in Section
5). On the other hand, if ν(r) = F or ν(i) = F, then
this means that either of these two elements is not re-
quired to be available, for the current goal to succeed.

The value of a cell in a slice belonging to some
goal g, is then calculated as the logical conjunction
of the values of ν(r) and ν(i). More formally,

Ag(r, i) = ν(r)∧ν(i)

Mathematically, this would become a cell in the ac-
tual cube by attaching to it the name of a specific goal:

A(g,r, i) = (g,ν(r)∧ν(i))

Informally, when Ag(r, i) =T, then this means that the
goal for which this slice of the loaf belongs requires
both the resource r and the infrastructure element i to
be available in order for the goal to be fulfilled. On

the other hand, if Ag(r, i) = F, then the goal does not
depend on the combination of the specific resource
and infrastructure.

Example 1. for the goal g2 (from Section 3) that
states that “Room temperature must be main-
tained at 20◦C”, and that r = Central Heating,
i1 = Gas/Electricity and i2 = WiFi, where ν(r) = T,
ν(i1) = T and ν(i2) = F, then we have the following
matrix:

Ag2 =


Central Heating . . . Falls Alarm

Gas/ T F
Elect.

...
WiFi F F


Since ν(r)∧ ν(i1) = T but ν(r)∧ ν(i2) = F. Infor-
mally, to maintain room temperature at 20◦C, we
need the combination of a central heating system (re-
source) and a gas/electricity (infrastructure) to be
both available. But the combination of a central heat-
ing system and WiFi (different infrastructure) would
not be useful for such goal regardless of their avail-
ability. Similarly, the combination of a falls alarm
device and either infrastructure element is false since
this device is not required for this specific goal, i.e.
ν(Falls Alarm) = F.

On the other hand, consider the goal g1, which
states that “the person must be wearing a WiFi-
connected falls alarm device”, then the matrix for
this goal is the following:

Ag1 =


Central Heating . . . Falls Alarm

Gas/ F F
Elect.

...
WiFi F T


where the falls alarm device now is required, in ad-
dition to the requirement for a WiFi connectivity el-



ement (e.g. an enabled access point). However, for
this goal, neither the central heating resource nor the
gas/electricity system are required. The full cube for
the above two matrices is as shown in Figure 7.

4.3 3-Valued Logic

In the second model, we assume a 3-valued logic,
where the possible values are {T,F,⊥}, and which
include the two Boolean values and an undefined el-
ement, ⊥. The latter expresses situations where the
availability requirement on a resource or an infras-
tructure is simply undefined or unknown. In other
words, we do not know if the resource of infrastruc-
ture are required for a specific goal. Such 3-valued
logic is useful in expressing incomplete requirements,
where certain values are left undefined in the case of
intermediate versions of the requirements cube, but
that later become fully defined in the final version.

We adopt the following truth values for the
undefined case:

T∧⊥=⊥
F∧⊥= F

For example, if at the stage of specifying the require-
ments, we are unable to determine the type of the falls
alarm’s connectivity (i.e. whether it operates over 5G,
4G, WiFi etc.), then it becomes unknown whether
WiFi is really required. Hence, ν(WiFi) =⊥, and the
2-dimensional matrix for g1 becomes as follows:

Ag2 =


Central Heating . . . Falls Alarm

Gas/ F F
Elect.

...
WiFi F ⊥


This means that we are unable to confirm whether a
WiFi access point will be required or not at the pa-
tient’s or vulnerable person’s premise, therefore, this
requirement remains incomplete at this stage, until
further clarification is made on the type of the alarm.

4.4 Probabilistic Availabilities

The third model we consider here is that of proba-
bilistic availability values instead of binary ones. For
this we assume a new definition of the ν operation,
which we call νP:

νP : (R× I)→ [0,1]

Unlike ν, νP returns a value between 0 and 1, where 0
denotes the case where the requirement states that the

probability of a resource or infrastructure element, x,
being available need only be 0% (i.e. that the ele-
ment is not required to be available. This is similar to
saying ν(x) = F). On the other hand, a value of 1 de-
notes that the probability is 100%, or in other words,
that the element must be available as a requirement
(or that ν(x) = T).

Informally, νP represents the minimum probabilis-
tic expectation of the availability of some resource
or infrastructure at the environment being considered.
For example, we may state that the WiFi coverage is
expected to be at least 0.8, which means that 80% of
time the WiFi signal must be available in some loca-
tion, or that the WiFi signal may be available in at
least 8 out of 10 locations at any point in time (the se-
mantics of this percentage maybe further refined con-
sidering various different scenarios). Similarly, it is
not uncommon for energy providers to advertise en-
ergy supply availability ratios usually the 6 9s golden
standard, i.e. 99.9999%, which allows only 31.5 sec-
onds of downtime per year. Again, this would express
the availability requirement (as a probability) needed
by various devices perhaps stemming from the nature
of equipment in those devices or the criticality of their
role in the business context.

Based on this probabilistic model, the value of a
cell can now be defined as follows:

Ag(r, i) = νP(r).νP(i)

and this again can be transformed into a cube cell
value by including the name of the goal:

A(g,r, i) = (g,νP(r).νP(i))

Example 2. Let’s consider the same scenario
as discussed in Example 1, except this time, we
assign probabilistic values to the availability ex-
pectation for all the resources and infrastructure
elements. For example, νP(Central Heating) = 0.85
and νP(Gas) = 0.999999 for goal Ag2 , whereas
νP(Falls Alarm) = 0.7 and νP(WiFi) = 0.9 for the
goal Ag1 . As a result, we obtain the following two
requirement slices:

Ag2 =


Central Heating . . . Falls Alarm

Gas/ 0.84999915 0
Elect.

...
WiFi 0 0





Ag2 Central Heating . . . Falls Alarm

Gas/Electricity T F

...

WiFi F F

Ag1 Central Heating . . . Falls Alarm

Gas/Electricity F F

...

WiFi F T

Figure 7: Example of a requirements cube.

Ag1 =


Central Heating . . . Falls Alarm

Gas/ 0 0
Elect.

...
WiFi 0 0.63



5 REQUIREMENTS CUBE
VALIDATION

A requirements cube, specified using some scenario,
can be validated in terms of the actual real-time avail-
ability values for the resources and infrastructure ele-
ments in some environment. This validation step will
clarify whether the requirement (slice) is being me or
not, and therefore, if we need to take further mitiga-
tion steps to remedy the situation.

Define the following operation, which returns
the actual availability value for some resource or
infrastructure, at a certain point in time:

η : (R∪ I)→ B

Note that η is different from ν in that the latter ex-
presses the availability requirement whereas the for-
mer expresses the actual availability value.

Based on the above, we define a 2-valued fitness
function as one that compares the specified avail-
ability to the actual availability values, within the
2-valued logic we discussed in Section 4.2:

f : B×B→ N

We define f as follows:

f (x,y) =
{

0 if x = T and y = F
1 otherwise

where ∀e ∈ (R × I) : x = ν(e) is the expected (re-

quired) availability value for some resource or infras-
tructure element, e. On the other hand, ∀e ∈ (R× I) :
y = η(e) is the actual availability value for that el-
ement e. The fitness function will return 0 only in
the case where the expected (required) value was true
(i.e. requiring an available element), whilst the actual
value was false (i.e. element was not available). A
0 value represents an unfit requirement, whereas a 1
value represents a fit requirement.

To simplify the visual representation of the fitness
function, We adopt the following colouring scheme:

A fit requirement

An unfit requirement

For example, in our scenario, if the the WiFi
connectivity is found, on a certain day/time, to
be completely down at Jane’s home, whereas the
gas/electricity supply is running as normal and both
the falls alarm and the central heating resources are
functional, then her validated requirements cube be-
comes as in Figure 8, due to the fact that the fitness
of Ag1 is 0 (unfit). We took the liberty to also colour
the specific cell, which is causing the fitness of the re-
quirement slice to be 0. In an actual situation, such
a visual scheme will indicate to the care provider that
a certain requirement is not being met at the patient’s
premise or environment.

6 THE CUBE’S USABILITY

So far, our discussion has focused on a single user
only, Jane. The real expressive power of the require-
ments cube technique comes when we consider more
end-users (Mike, Stacey etc.), and other stakeholders,
e.g. carers (Susan, Steve etc.) who are part of the
same environment or in an environment connected or
related to the current one.



Ag2
Central Heating . . . Falls Alarm

Gas/Electricity T F

...

WiFi F F

Ag1
Central Heating . . . Falls Alarm

Gas/Electricity F F

...

WiFi F F

Figure 8: An example of a validated requirements cube.

It is possible to model a single healthcare ecosys-
tem (or environment) as one huge cube, which is the
composition of the individual users’ cubes. If we as-
sume that Jane’s requirements cube is called AJane :
GJane×RJane×IJane and her carer’s requirements cube
is ASusan : GSusan ×RSusan × ISusan, then we can model
the full set of requirements as a composite cube, as
shown in Figure 9, which would also include Mike’s
cube, where Mike is another vulnerable person be-
ing looked after Susan, in the same neighborhood as
that of Jane. This may be akin to putting three iden-
tical Battenberg cakes on the table, one behind the
other. The resulting cake is bigger, but the coloured
elements are in the same relation to each other.

We now discuss a few scenarios, which might con-
stitute ground for future research work.

6.1 Failure Scenarios

It is important for evaluating care actions and risks
to consider failure scenarios. In Example 2, we as-
signed a probabilistic availability expectation on the
WiFi connectivity to be νP(WiFi) = 0.9. However,
suppose that the WiFi fails, i.e. η(Wifi) = 0, at a
given instant in time. Then Jane, Susan or anyone else
connected, will suddenly have a problem with their
WiFi-dependent requirement(s) identified simultane-
ously by one or more slices of the composite cube
matrix becoming unfit (i.e. turning red). Appro-
priate care actions, therefore, can follow for all per-
sons affected. However, this requires an adequate
risk mitigation plan and an underlying risk analysis
of the damage that a requirement’s slice turning red
can cause.

6.2 Scenarios which Change with Time

The cube, including need for the goals, and the avail-
ability of resources and infrastructure has been con-

sidered at a specific moment in time, and in the con-
text of some static scenario. However, change may
be introduced to scenarios, with time. For example,
Jane may have a relative staying with her, so while
her goal of getting up if she falls remains, the resource
requirement of a wearable device is reduced (or prob-
ably even eliminated). Likewise, if Mike is in hospital
for a few days, his requirements will also change due
to increased and different level of care being available
at the hospital, compared to his home environment.

As a result, one of the future direction of work
stemming from this paper will focus on the adapta-
tion of the requirements cube with time and with the
change of scenarios (including changes in require-
ments, resources and infrastructure).

6.3 Role of Susan the Carer

As we mentioned earlier, the discussion thus far had
centred on single end-user clients, e.g. Jane, and
then this was expanded to include multiple clients and
other stakeholders, by creating composite cubes.

However, it is also possible that the added stake-
holders, e.g. Susan the carer, might have a set of
requirements that includes her clients requirements,
but also her own unique requirements (e.g. respect-
ing client time slots and traveling around to complete
visits at different clients’ residences). Since Susan
has to look after the clients, the goals of the clients
will also be goals for Susan. Therefore, adding new
stakeholders’ cubes may require revisiting the added
requirements’ slices to remove redundancies and en-
sure consistencies. In this way the commonalities and
dependencies between the requirements can be inter-
linked, and changes over time readily understood.



AJane rJane1 . . . rJanen

iJane1

...

iJanem

AMike rMike1 . . . rMiken

iMike1

...

iMikem

ASusan rSusan1 . . . rSusann

iSusan1

...

iSusanm

Figure 9: A composite cube, representing the requirements for Jane, Mike and Susan.

7 CONCLUSION

We presented in this paper the sketch of a new model
of end-user requirements based on matrix theory. We
termed this model the Requirements Cube due to its
analogy with Battenberg cake loaves. We defined a
slice in this loaf to be a single requirement, with rows
and columns representing relevant resources and in-
frastructure elements. The intersection value of each
cell defines the semantics of whether the resource and
infrastructure elements are needed for the specific re-
quirement. The stacking of multiple requirements
then defines a full loaf (cube).

It would be interesting, in the future, to explore
further the current ideas in a digital twin and the
creating of training data to support the validation of
this new model. In particular, we plan to apply the
model to several scenarios observed within the cur-
rent project ADA (ADA Project, 2025). Additionally,
there are several other directions of research work that
we highlighted in Section 6, which we plan to pur-
sue in the future. These include the idea of applying
machine learning techniques to predict when require-
ments might fail (i.e. become unfit) before the condi-
tions for their failure occur. We will use the data col-
lected in project ADA (ADA Project, 2025) as ground
truth to train our classification algorithms.
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