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Abstract

A key part of CNC machine tools is the rolling bearing, and thus, it is vital to employ

a data-driven approach for fault diagnosis. This paper proposes a two-stage fusion

sparse learning algorithm for fault data processing that can identify and diagnose

the fault types of rolling bearings based on sensor measurement data. During the

feature extraction phase, temporal features of sequential data within the big data

are extracted using a Long Short - Term Memory (LSTM) network. Moreover, the

classification learning stage contains a new sparse learning algorithm, which applies

L1/2 regularization on stochastic configuration networks (SCN). The iterative learn-

ing formula combines the alternating direction method of multipliers (ADMM) with

the analysis of the quadratic equations theory. Simultaneously, the model’s inequal-

ity supervision mechanism is updated based on convergence analysis. This devel-

oped algorithm incorporates the benefits of LSTM in extracting temporal data char-

acteristics, along with the sparsity, ease of convergence, and lightweight nature of

SCN. Consequently, it mitigates the shortcomings of deep models in end-to-end

applications, particularly in terms of interpretability and structural redundancy, thus

making it suitable for deployment on edge devices. Finally, a fusion sparse learning

model (LSTM-L1/2-SCN) is introduced based on the two-stage learning algorithm for

rolling bearing fault diagnosis. In the experiments on the benchmark dataset, the opti-

mal sparsity degree of this algorithm for the Sparse Coding Network (SCN) reached

76.66%, which was 30% higher than that of the Pooling-based Sparse Coding Net-

work (PSCN). Moreover, in the experiments based on the dataset of Case Western

Reserve University (CWRU), the optimal test classification accuracy achieved was

97.51%, and the optimal sparsity degree for SCN reached 29.39%. These results
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verify that the proposed algorithm exhibits sparsity, demonstrates effectiveness, and

is capable of identifying faults in rolling bearings.

Introduction

Rolling bearings are essential to CNC machine tools, significantly affecting CNC’s
regular operation. Specifically, the outer ring, inner ring, or rolling part of the rolling
bearing is most prone to wear or deformation under high-load operation, affecting the
entire production process. Therefore, fault prediction and diagnosis of rolling bear-
ings are significant. Due to the swift advancement of deep learning, data-driven fault
diagnosis of rolling bearings has gained increasing popularity. In such strategies,
data acquisition is realized by sensors and measured by signal processing methods.
Vibration signal analysis is one of the most studied sensing methods at present.

Traditional vibration signal analysis methods rely on manual feature extraction
and are difficult to adapt to complex working conditions, such as Fourier trans-
form and wavelet decomposition, Vector Local Characteristic-Scale Decomposition
(Vector LCD) [2], fuzzy signal feature fusion technology [3], Principal Component
Analysis (PCA), and digital twin and transfer learning [4,5]. Although deep learn-
ing models (such as CNN and LSTM) have achieved automatic feature extraction
through end-to-end learning, they still face two major challenges in practical industrial
applications: High model complexity leads to difficult deployment (for example, the
parameter count of ResNet-50 reaches 23M), and it is challenging to systematically
analyze the convergence of the model.

The current research on bearing fault diagnosis mainly falls into three categories
of methods: Deep learning methods: numerous models have garnered extensive
application [6–8], with the main models including CNN, Deep Belief Network (DBN),
Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU) [9], Long Short-Term
Memory (LSTM) and Resnet [10]. In [11], the authors demonstrated that combining
multi-scale CNN and LSTM models can efficiently diagnose bearing faults. CNN can
also be combined with a multi-layer perceptron [12] or multi-task model [13]. CNN
algorithms mentioned in [14–19] have also been successfully applied to the field of
rolling bearings. Concurrently, recent advancements have led to more efficient archi-
tectures such as EPyNet, an energy-efficient 1D-CNN architecture, which achieves
significant energy reduction and high accuracy on multiple audio emotion recognition
datasets while being compatible with CPU and resource-constrained edge devices
[20]. In recent years, combining deep learning with attention mechanisms has yielded
promising results, with representative methods being Attentive dense CNN [21],
Attention-temporal convolutional neural networks (ATCN), Attention-LSTM, Convo-
lutional Bi-Directional LSTM (CBLSTM) [22], 1DCNN-LSTM [23], TCN-BiLSTM, and
Attention TCN-BiLSTM [24].These models proposed attained an accuracy surpass-
ing 90% on the CWRU dataset, but it requires GPU acceleration and cannot explain
the decision-making basis. [25] combines CNN with the self-attention of Transformer
to achieve efficient computing on mobile devices. In the ImageNet classification task,
the model with 0.701M parameters was superior to the pure Transformer scheme.
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Lightweight models: SVM, KNN, and SCN [26] are computationally efficient, with SCN converging under an inequality
supervision mechanism. However, SCN’s sparsity and generalization capabilities require further improvement to facili-
tate lightweight deployment. Regularization techniques, including L1, L2, and smooth L1 regularization, have been applied
to enhance these aspects [27–29]. Among them, L1/2 regularization is particularly effective in generating sparser solu-
tions, offering a more accurate model representation while preserving sparsity [30]. The sparsity and generalization
performance of L1/L2-regularized SCN is insufficient. Further optimization of SCN’s sparsity and generalization is still
desirable.

Hybrid architectures combining deep and shallow models: Hybrid models can combine the respective advantages of
deep and shallow models in feature extraction and achieving model lightweighting and sparsity. Unfortunately, there are
not many cases of fusing deep and shallow models for phased prediction at present. The ones that have been proposed
so far include: LSTM-SVM, which uses LSTM for signal prediction followed by SVM for mechanical state diagnosis [31],
and the CNN-LSTM-SVM, which extracts signal features via CNN and LSTM before SVM-based fault classification [32].
The average accuracy rate for fault classification achieved by these models exceeds 95.92% on the CWRU dataset.

Current hybrid models are constrained by two main issues: CNN-based approaches are inadequate for representing
time-varying fault characteristics like impact periodicity, and the shallow classifiers used lacks the global approximation
capabilities like SCN and is not sufficiently sparse.

In response to the above problems, this paper proposes a novel diagnostic framework that integrates LSTM and L1/2
regularized SCN. The main contributions include:

1) An L1/2 regularization solution algorithm based on the roots of cubic equations is proposed. Theoretically, it is proved
that it has a better sparse error bound than L1 regularization. Construct an incremental supervision mechanism to guar-
antee that the model converges to a certain extent and simultaneously enhances its feature selection ability. 2) Design a
hierarchical feature processing architecture: The LSTM layer extracts temporal features, and the L1/2-SCN layer conducts
sparse classification. 3) On the CWRU dataset, experimental evaluations demonstrate that the proposed model achieves
a 0.64% improvement in average classification accuracy and attains 23.44% model sparsity when compared with state-of-
the-art benchmarks including TCN-LSTM, TCN-BiLSTM, ResNet architectures, and other representative methods.

The remainder of this article is organized as follows. The second part introduces the preliminary knowledge about
LSTM and SCN. The third part proposes a sparse learning algorithm based on L1/2 regularization and then provides the
fusion sparse learning algorithm. The fourth part conducts some numerical experiments to verify the effectiveness of the
proposed algorithm. Finally, the fifth part summarizes this paper.

Preliminaries
Feature extraction method based on LSTM

The state of the system at a certain moment is determined by the combined influence of its past state and the current
input. Since the system’s state evolves over time based on these factors, the signals processed by the system are inher-
ently time-dependent. The core design objective of LSTM is to handle sequential data. It can autonomously learn to
remember long-term information, forget irrelevant information, and focus on the current input through the forget gate,
input gate, and output gate, which makes it well-suited for handling vibration signals with long-term trends and periodic
patterns. Meanwhile, LSTM offers a low-attenuation path for gradient backpropagation through cell states and gating
mechanisms, thereby effectively alleviating the problem of vanishing gradients. Compared with CNN, which is better at
extracting local regional features from signals, LSTM has more advantages in extracting features from sequential data.
Fig 1 illustrates the schematic representation of LSTM’s architecture, where ft, it, and ot represent the forget gate, input
gate, and output gate, respectively. Besides, ct and ht represent the state of the cell and hidden layer at time t, 𝜎 and tanh
are activation functions. LSTM, through its gated architecture, effectively captures both short-term and long-term (h and c)
dependencies in sequential data, making it particularly suitable for tasks like natural language processing and time series
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Fig 1. The structure of LSTM.

https://doi.org/10.1371/journal.pone.0339859.g001

forecasting. Specifically, the gating mechanism within LSTM enables data to be added, discarded, and stored within the
cell. The forgetting gate ft processes the forgotten information from ct−1 and preserves the stored data in the current state.
The input gate captures the current information, which is then used to compute a candidate cell state ct combined with
the previous cell state ct−1 to generate the new cell state ct. Meanwhile, the output gate ot determines what part of the
cell state ct is used to create the hidden state ht for the current time step. The final output represents a comprehensive
representation of the current states, and the data flow within LSTM is calculated as follows:

f(t) = 𝜎(Wf ⋅ [ht−1, xt] + bf) (1)

it = 𝜎(Wi ⋅ [ht−1, xt] + bi) (2)

̂ct = tanh(Wc ⋅ [ht−1, xt] + bc) (3)

ct = ftct−1 + itct (4)

ot = 𝜎(Wo ⋅ [ht−1, xt] + bo) (5)

ht = ot ⋅ tanh(ct) (6)

whereWi,Wf,Wc andWo represent the input gate, forget gate, current status, and output gate weights, respectively, and
bi, bf, bc and bo represent the corresponding bias. To improve the learning performance and obtain more specific data
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features, LSTM is used to extract the time features, and the output h of the hidden layer is used as the data features.
The output of LSTM reflects the relevant historical information. Due to its superiority in processing time series data, this
paper does not employ a complex deep model for end-to-end fault diagnosis processing. LSTM is selected for the feature
extraction stage.

Principles of stochastic configuration networks

Let X = (x1, x2, ..., xN)T be the input data, where xi = (xi1, x
i
2, ..., x

i
d). T = (t1, t2, ..., tN)T are the corresponding output data ,

where ti = (ti1, t
i
2, ..., t

i
m), N signifies the quantity of samples, d denotes the dimensionality of input features, and m repre-

sents the count of output features. The structure of SCN with L hidden nodes is depicted in Fig 2.
Let the weights and biases between the input and hidden layer beW = (w1,w2, ...,wL), b = (b1,b2, ..., bL), where

wl = (wl1,wl2, ...,wld)T, l = 1,2, ..., L, bl ∈ R. Then, the output of the L-th hidden node and outputs of all hidden nodes are
formulated in (7) and (8).

hl = g(Xwl + bl) (7)

H = (h1,h2, ..., hL) = g(XW + b) (8)

where X ∈ ℝN×d, H ∈ ℝN×L,W ∈ ℝd×L, g is the activation function. The weight between the hidden and output layer is
𝛽 = (𝛽1, 𝛽2, ..., 𝛽L)T, where 𝛽 ∈ ℝL×m, 𝛽l = (𝛽l1, 𝛽l2, ..., 𝛽lm) , the output of SCN is

y(L) = (y1(L), y2(L), ..., ym(L)) = H𝛽 =
L

∑
l=1

hl𝛽l (9)

the error is

eL = T − H𝛽 = (eL1,eL2, ..., eLm) (10)

Fig 2. The structure of SCN with L hidden nodes.

https://doi.org/10.1371/journal.pone.0339859.g002
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where T ∈ ℝN×m, then the equation eL+1 = eL − hL+1𝛽L+1 can be get based on the equation y(L + 1) = y(L) + hL+1𝛽L+1.
The construction process of the model begins with its initialization, setting y(0) = 0. Subsequently, e0 is calculated as
T − y(0) = T. When the L-th node is generated, the choice of wL and bL follows the inequality supervision mechanism.

m

∑
q=1

⟨eL−1,q,hL⟩2 ≥ b2g(1 − r − 𝜇L)‖eL−1‖2 (11)

where eL−1,q represents the q-th dimension error after the L-1 hidden node has been configured, bg is the upper bound
of the activation function, r is a constant close to 1, and the real number sequence {𝜇L} is satisfied lim

L→+∞
𝜇L = 0. The

inequality constraint in Eq (11) forms the theoretical foundation for SCN stability by guaranteeing monotonic error reduc-
tion during incremental construction. This inequality supervision is essential because: (i) it ensures each new hidden
node decreases the residual error to guarantee the convergence of the network, preventing network overgrowth; (ii) the
parameters r and 𝜇 create a contraction mapping that guarantees convergence. Without this constraint, random node
addition could cause oscillating or divergent training behavior. 𝛽 can be determined by the global least square method
by (12).

𝛽∗ = argmin
𝛽

‖H𝛽 − T‖2 = H†T (12)

When the first node has been configured (w1,b1, and 𝛽1 are determined), the above steps are repeated to gradually
increase the nodes and guide the predetermined maximum number or accuracy.

The fusion sparse learning algorithm
The sparse learning algorithm of L1/2-SCN

The unregularized SCN employs least squares for weight estimation, often resulting in numerical instability and overfit-
ting. While L1 regularization improves sparsity and reduces model complexity. Theoretical analysis demonstrates that L1/2
regularization possesses stronger sparsity-inducing properties than L1 regularization [30], L1/2 regularization strikes an
optimal balance between L0 sparsity and L1 tractability, and its non-convex formulation better approximates L0’s sparsity
while remaining computationally feasible. Meanwhile, in practical scenarios with limited samples, its adaptive threshold-
ing mechanism provides superior noise-feature discrimination by selectively preserving weak but diagnostically significant
fault characteristics.

L1/2 regularization is an effective sparsity method that improves the error function of SCN, specifically by adding the
L1/2 regularization term to the objective function, as presented in (13). Here, 𝜆 is the regularization coefficient.

min
𝛽

∶ 1
2
‖H𝛽 − T‖2 + 𝜆‖𝛽‖1/21/2 (13)

The Admm algorithm is used to solve the L1/2 regularization problem, and the specific methods are described below.
Construct the optimization problem:

min ∶ f(x) + g(𝛽) = 1
2
‖Hx − T‖2 + 𝜆‖𝛽‖1/21/2 (14)

s.t. x − 𝛽 = 0 (15)
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Let 𝜇1 =
𝜇
𝜌
, the original problem is equivalent to solving the following problem

xk+1 = argmin
x

(f(x) + 𝜌
2
‖x − 𝛽k + 𝜇k1‖22) (16)

𝛽k+1 = argmin
𝛽

(g(𝛽) + 𝜌
2
‖xk+1 − 𝛽 + 𝜇k1‖22) (17)

𝜇k+11 = 𝜇k1 + xk+1 − 𝛽k+1 (18)

solve for (16) and the following equation can be get

xk+1 = (HTH + 𝜌I)−1(HTT + 𝜌(𝛽k − 𝜇k1)) (19)

Take the derivative of 𝛽 in formula (17), search the stagnation point, get the equation (20)

𝜌𝛽 + 𝜆
2
⋅ sign(𝛽)
√(𝛽)

− 𝜌(xk+1 + 𝜇k1) = 0 (20)

a. If 𝛽 > 0, let t =√(|𝛽|), then formula (20) is converted to (21)

t3 − (xk+1 + 𝜇k1)t +
𝜆
2𝜌 = 0 (21)

let m = xk+1 +𝜇k1, n =
𝜆
2𝜌
, it can be seen from the cubic equation and the graph form that when the discriminant

Δ = ( n
2
)2 − (m

3
)3 < 0, namely (m

3
)3 > ( n

2
)2, the equation has three unequal real roots. According to Cartan’s formula, the

roots of the equation are one negative and two positive, and the largest positive root is the minimum point of (17), as
shown in (22) and (23). For the L1/2 regularization problem, Xu et al. [30] proved that the objective function is unimodal on
the positive real axis, with its unique critical point (the maximum root of the cubic equation) guaranteed to correspond to a
local minimum, as verified through second-order convexity analysis.

t = 2√(|m|/3) ⋅ cos(𝜋
3
− 𝜙

3
) (22)

𝜙 = arccos(n
2
⋅ ( |m|

3
)
−3
2 ) (23)

therefore

𝛽 = 4|m|
3

⋅ cos2(𝜋
3
− 𝜙

3
) (24)

b. If 𝛽 < 0, let t =√(|𝛽|), then formula (20) is converted to (25)

t3 + (xk+1 + 𝜇k1)t +
𝜆
2𝜌 = 0 (25)
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In a similar way, when (m
3
)3 < −( n

2
)2

𝛽 = −4|m|
3

⋅ cos2(𝜋
3
− 𝜙

3
) (26)

Then the optimal solution of the objective function is

𝛽k+1 =
⎧⎪
⎨⎪
⎩

4|m|
3
⋅ cos2(𝜋

3
− 𝜙

3
), (m

3
)3 > ( n

2
)2

0, others

− 4|m|
3
⋅ cos2(𝜋

3
− 𝜙

3
), (m

3
)3 < −( n

2
)2

(27)

The update formula of 𝜇1 can be equivalently converted from (18) to (28).

𝜇k+11 = 𝜇k1 + xk+1 − 𝛽k+1q (28)

In summary, the sparse learning algorithm of L1/2 regularized SCN is given by iterative solution according to formulas
(19), (27) and (28).

Inequality supervision mechanism for L1/2-SCN

Analysis the objective function

J = 1
2
‖H𝛽 − T‖2 + 𝜆‖𝛽‖1/21/2 (29)

= 1
2
‖eL−1 − gL𝛽L‖2 + 𝜆∑(|𝛽|1/2) (30)

𝜕J
𝜕𝛽L

= −gL(eL−1 − gL𝛽L) +
𝜆
2
⋅ sign(𝛽L)
√(|𝛽L|)

= 0 (31)

in the same way as the solution for (20), let ieql = ( ⟨eL−1,gL⟩
3g2L

)3,ieqr = 2( 𝜆
4g2L

)2,we can get

𝛽L =
⎧⎪
⎨⎪
⎩

4

3
| ⟨eL−1,gL⟩

g2L
| ⋅ cos2(𝜋

3
− 𝜙

3
), ieql > ieqr

0, |ieql| ≤ ieqr

− 4

3
| ⟨eL−1,gL⟩

g2L
| ⋅ cos2(𝜋

3
− 𝜙

3
), ieql < −ieqr

(32)

In SCN, the choice of w and b need to satisfy the inequality ‖eL−1‖2 − ‖eL‖2 ≥ (1 − r − 𝜇)‖eL−1‖2, namely

2⟨eL−1,gL⟩𝛽L − 𝛽2Lg2L ≥ (1 − r − 𝜇)‖eL−1‖2 (33)

Let

v1 =
|⟨eL−1,gL⟩|

g2L
⋅ cos2(𝜋

3
− 𝜙

3
) (34)

v2 =
8
3
⟨eL−1,gL⟩ (35)
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v3 =
16
9
|⟨eL−1,gL⟩| ⋅ cos2(

𝜋
3
− 𝜙

3
) (36)

An inequality supervision mechanism for L1/2-SCN is obtained by substituting the expression for 𝛽L into (33), as shown
in (37) and (38). The following conclusions can be drawn:

if

( ⟨eL−1,gL⟩
3g2L

)3 > 2( 𝜆
4g2L

)2) (37)

the inequality supervision mechanism is:

v1(v2 − v3) ≥ (1 − r − 𝜇L)‖eL−1‖2, (38)

and if

( ⟨eL−1,gL⟩
3g2L

)3 < −2( 𝜆
4g2L

)2) (39)

the inequality supervision mechanism is:

−v1(v2 + v3) ≥ (1 − r − 𝜇L)‖eL−1‖2, (40)

Therefore, new hidden nodes are incrementally added when either condition (37) or (39) is satisfied, strictly following
the inequality constraints specified in (38) or (40) respectively. If neither condition is met, according to (32), the corre-
sponding weight is set to zero. It is noteworthy that the inequality supervision mechanism proposed above enables the
model to converge to a certain degree. Nevertheless, during the sparse - processing procedure, 𝛽 is set to zero without
fulfilling the inequality constraints. Formula (32), (37)–(40) reveal the contradictions inherent in these two aspects. Con-
sequently, in practical applications, it is imperative to strike a balance between sparsity and model accuracy. The L1/2-
SCN proposed in this section theoretically analyzes its own convergence and updates the original inequality supervision
mechanism. This update allows the algorithm to offer a sparser model representation, which is advantageous for actual
fault identification and classification tasks. In the entire fault diagnosis process, the algorithm can take over the feature
extraction task from the previous stage to facilitate fault type identification. The algorithm flow of L1/2-SCN is shown in
Algorithm 1.

Fusion sparse learning algorithm

Massive information, inherent noise, temporal dependencies, and pronounced periodicity typically govern signal data.
Utilizing a singular model for learning may hinder the thorough examination of the underlying patterns within the data. To
confront the intricacies arising from voluminous datasets and vague features, this study employs LSTM to extract tem-
poral features. Subsequently, these features are input for sparse learning via the L1/2-SCN model, enhancing its perfor-
mance and resulting in a sparse structural representation. Fig 3 depicts the architecture of the fusion model, while the
detailed algorithmic steps are outlined in Algorithm 2.

Standardized Feature Fusion Pipeline is as follows:
(1) Temporal Feature Extraction The original input data X ∈ ℝN×d undergoes feature extraction through a single-layer

LSTM network configured with hidden units:

H_LSTMt = LSTM(X;Wh,Uh,bh), H_LSTMt ∈ ℝN×h (41)
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Algorithm 1 Incremental node addition with adaptive regularization.
Require:

X ∈ ℝN×d ▷ Input data matrix (N samples × d features)
T ∈ ℝN×m ▷ Target matrix
𝜉 = 10−2 ▷ Residual error tolerance (convergence threshold)
Lmax = 500 ▷ Maximum hidden nodes
Tmax = 30 ▷ Max attempts per regularization parameter

Ensure:
𝛽 = [𝛽1, 𝛽2, ..., 𝛽L], ▷ Output weights
w∗ = [w∗

1,w
∗
2, ...,w

∗
L], b∗ = [b∗1,b

∗
2, ..., b

∗
L] ▷ Optimal node parameters

1: Initialize: e0 ← T,r← 0.9 ▷ Initialization
2: Set regularization grid: 𝛾 ← {1,5,10,20,30} ▷ Λ search range
3: while L ≤ Lmax and ‖eL‖2 > 𝜉 do
4: for Λ ∈ 𝛾 do ▷ Adaptive node generation
5: for k = 1 to Tmax do
6: Sample wL ∼ 𝒰(−Λ,Λ), bL ∼ 𝒰(−Λ,Λ) ▷ Random projection
7: if Inequality (32) satisfied then
8: W←W ∪ {wL}, ▷ Archive valid nodes
9: end if
10: end for
11: if W ≠∅ then
12: Select (w∗

L,b
∗
L) maximizing formula (33) ▷ Node selection

13: break (textbfgoto (15))
14: else
15: Adjust r← r + 𝜏, 𝜏 ∼ 𝒰(0,1 − r),Return 4 ▷ Relax supervision
16: end if
17: end for
18: Compute 𝛽∗ via Eq (19), (27), (28) ▷ Least squares solution
19: Update residual: eL ← eL−1 − 𝛽Lh∗L, h∗L = [g∗1,g

∗
2, ..., g

∗
L] ▷ Error correction

20: L← L + 1
21: end while

Fig 3. The fault identification method utilizing fusion sparse learning model.

https://doi.org/10.1371/journal.pone.0339859.g003

whereWh, Uh and bh denote the input weights, recurrent weights, and bias terms, respectively.
(2) Standardize the output H_LSTMt of the LSTM layer. (The numerical range of LSTM hidden states is influenced by

both the input data’s physical dimensions and the activation function, potentially resulting in magnitude variations across
different samples. Therefore, the data needs to be normalized)

(3) The standardized data is taken as input and entered into the L1/2-SCN classifier for learning and training to obtain
classification.
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Algorithm 2
1: Set input-output data pair (X,Y);
2: Initialize the parameters of LSTM, including learning rate, optimizer, activation function,

weights and biases Wi,Wf,Wc,Wo,bi,bf,bc,bo; Optimization: SGDM with learning rate 𝜂 = 0.2, momentum
𝛾 = 0.5

3: Calculate the outputs of LSTM according to Formula (1)-(6), and constantly update the weights by
BP algorithm to get the output h;

4: Normalize h to h′;
5: Input h′ into L1/2-SCN classifier and perform calculation according to Algorithm 1; ▷ Sigmoid

activation function for all hidden nodes
6: Return the outputs of L1/2-SCN: y(L) = (y1(L), y2(L), ..., ym(L)).

The algorithm proposed above constitutes a two-stage hybrid approach. As an end-to-end learning framework, dur-
ing the classification phase, the parameter selection for the L1/2-SCN model is guided by a rigorous inequality supervi-
sion mechanism, and its convergence properties have been analyzed. Consequently, in comparison to other deep learn-
ing models, the proposed algorithm exhibits mathematical interpretability with respect to its convergence behavior. This is
also the reason for this paper emphasizing the proposed model’s some interpretability. However, we admit that the selec-
tion of model parameters is still random, and it is not a deterministic mathematical model that can be analyzed in terms of
its underlying mechanism.

Numerical experiments

This section employs L1/2-SCN on benchmark datasets to demonstrate its effectiveness in sparsity and generalization.
The fusion algorithm is then used to determine the fault type based on the Case Western Reserve University dataset.
Meanwhile, we also designed a comparative experiment using L1/2-SCN without a feature extraction process to illustrate
the effectiveness of feature extraction.

Experiments based on the benchmark datasets

The subsequent experiments rely on the Iris, Wine, Mnist, Prostate, and Dee datasets from UCI Machine Learning Repos-
itory. The first three datasets are used for classification, while the remaining datasets are used for regression. Table 1
summarizes the attributes of these datasets. In [27] and [28], the authors introduced SCN with L2 and L1 regulariza-
tion terms, respectively, denoted as RSCN (Regularized SCN) and PSCN (Parsimonious SCN). The generalization per-
formance and sparsity of L1/2-SCN will be compared with RSCN, PSCN, and SCN. However, RSCN and SCN do not
possess sparse capabilities, so L1/2-SCN will primarily be compared with PSCN regarding sparsity. Table 2 reports the
parameters of all models, where C represents the regularization parameter of RSCN.

Table 1. Attributes of dataset.

Dataset Samples size Training samples Test samples Input Features Output Features Attribute
Iris 120 90 30 4 3 Classification
Wine 178 148 30 13 3 Classification
Mnist 70000 60000 10000 784 10 Classification
Prostate 97 67 30 8 1 Regression
Dee 365 300 65 6 1 Regression

https://doi.org/10.1371/journal.pone.0339859.t001
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Table 2. Parameters setting.

Dataset Hidden nodes 𝝀 C Iterations of ADMM
Iris 40 0.005 25 1000
Wine 20 0.005 210 1000
Mnist 200 0.0005 25 100
Prostate 200 0.0005 210 1000
Dee 70 0.005 210 2000

https://doi.org/10.1371/journal.pone.0339859.t002

Let NR represent the samples that is correctly classified, NT represent the total number of samples, the classification
accuracy is defined as follows.

ACC = NR

NT
(42)

Define the root mean square error(RMSE) as follows.

RMSE =
√√√
√

( 1
NT

NT

∑
i=1
(ti − yi)2) (43)

where ti is the target output of the i-th sample, while y i is the network output. Let 𝛽total represent the number of weights
between the hidden layer and output layer (L1/2-SCN, PSCN, RSCN and SCN), and let D represent the number of zero
weights among them, and define sparsity Z as follows:

Z = 𝛽zero
𝛽total

(44)

The regularization coefficient 𝜆 was examined via grid search. When 𝜆 was set to the values presented in Table 2, the
optimal sparsity-precision trade-off was achieved. The number of hidden nodes was incrementally increased from one to
the values listed in Table 2. Beyond these node counts, model performance remained stable.

Table 3 evaluates the models on the first three datasets based on classification accuracy and the last two datasets
using the RMSE criterion. Therefore, the data in the table is described by ’Accuracy or RMSE’.

Table 3 reports the results of each test set, and Table 4 presents the sparsity of each model. Table 3 highlights that
L1/2-SCN exhibits superior generalization performance on most datasets, and its sparsity remains superior even when the
generalization performance is comparable. In both the Iris and Prostate benchmark experiments, the classification accu-
racy progressively improves with increasing numbers of hidden nodes, while the regression error exhibits a consistent
decline. This phenomenon demonstrates the critical role of node quantity in model capacity (Figs 4 and 5). Figs 6 and 7
demonstrate the weights distribution of the four models. Table 4 presents the sparsity, indicating that the sparsity degree
of L1/2-SCN is higher than that of PSCN, verifying that L1/2 regularization leads to better sparsity.

Table 3. Performance comparison on the test set.

Dataset Accuracy or RMSE
L1/2-SCN PSCN RSCN SCN

Iris 96.33% 93.00% 93.50% 90.50%
Wine 99.67% 99.50% 97.75% 96.50%
Mnist 90.10% 89.99% 89.58% 89.68%
Prostate 0.2269 0.2409 0.2373 0.9471
Dee 0.0932 0.0892 0.0892 0.0890

https://doi.org/10.1371/journal.pone.0339859.t003
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Table 4. Sparsity of each model (Ratio of zero weights between the hidden layer and the output layer).

L1/2-SCN PSCN RSCN SCN
Iris 76.66% 46.67% 0 0
Wine 21.66% 8.33% 0 0
Mnist 4.70% 0.05% 0 0
Prostate 92.5% 36.50% 0 0
Dee 91.42% 71.43% 0 0

https://doi.org/10.1371/journal.pone.0339859.t004

Fig 4. Convergence of L1/2-SCN: Training ACC achieve 98% with 40 nodes (Iris).

https://doi.org/10.1371/journal.pone.0339859.g004

Fig 5. Convergence of L1/2-SCN: training loss drops below 0.09 with 70 nodes (Prostate).

https://doi.org/10.1371/journal.pone.0339859.g005

Notably, on the Mnist dataset, the model achieves increased accuracy as the number of hidden nodes rises to 200.
Both L1/2-SCN and PSCN demonstrate excellent performance on the Wine dataset, with an accuracy of less than 100%
only one or two times out of 20 experiments. Notably, L1/2-SCN excels in sparsity despite the similar classification capa-
bilities of the two models.
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Fig 6. Sparsity pattern contrast: L1/2-SCN achieves 76.66% zero weights (Iris).

https://doi.org/10.1371/journal.pone.0339859.g006

Fig 7. Sparsity pattern contrast: L1/2-SCN achieves 92.50% zero weights (prostate).

https://doi.org/10.1371/journal.pone.0339859.g007

Fault diagnosis experiment of rolling bearings

Experimental methodology. In this section, the performance of the proposed model is verified using the rolling
bearing failure dataset of Western Reserve University in the United States. The rolling bearing fault experiment intro-
duces varying-sized fault points into the three parts of the bearing. Precisely, accelerometers are placed on the bear-
ing, the motor’s driving terminus, and the fan-facing extremity to collect vibration data. Data from the motor housing drive
end are also recorded at a sampling rate of 12,000 samples per second. Under a 12 kHz sampling rate, 12,000 sam-
ples correspond to a 1-second time duration, which fully encompasses the characteristic periodicity of typical bearing
fault frequencies. This paper selects standard data and nine types of fault data spanning four cases of motors ranging
from 0 to 3 horsepower (Cases 1 through 4). The fault points on the outer ring are located at 6 o’clock. The specific fault
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classifications are detailed in Table 5, and Fig 8 illustrates the vibration signals for nine different faults and normal operat-
ing states.

The specific experimental process is as follows. Step 1. Data Processing: The raw data is initially aligned to ensure
consistency in length. For each category, the first 120,000 data points are selected. The signal data of length 120,000 is
then divided into a matrix of 1200x100(The segment length of 100 points was determined through time-frequency anal-
ysis of bearing vibration characteristics), interpreted as 1200 samples. The supervised learning data for LSTM is con-
structed by considering the following 20 data points as their corresponding outputs(Through random forest MDI evalua-
tion, the top 20 features are identified as critical discriminators, collectively accounting for 93.5% (95% CI: ±2.1%) of the
importance weight), every 100 data points. Step 2. Feature extraction: LSTM extracts 1200*20 features for each category.
Step 3. Dataset Splitting: The 1200 samples from each category in Step 2 are utilized for the second-stage experiment.
One thousand samples are randomly selected to form the training set, while the remaining 200 constitute the test set.

Table 5. Classification of faults in motor housing driver-end data (case 4).

Status Description
1 Manufacture a fault of 0.007 inches on the ball
2 Manufacture a fault of 0.014 inches on the ball
3 Manufacture a fault of 0.021 inches on the ball
4 Manufacture a fault of 0.007 inches in the inner ring
5 Manufacture a fault of 0.014 inches in the inner ring
6 Manufacture a fault of 0.021 inches in the inner ring
7 Manufacture a fault of 0.007 inches of the bearing outer ring at 6 o’clock
8 Manufacture a fault of 0.014 inches of the bearing outer ring at 6 o’clock
9 Manufacture a fault of 0.021 inches of the bearing outer ring at 6 o’clock
10 Normal state

https://doi.org/10.1371/journal.pone.0339859.t005

Fig 8. Fault data distribution diagram of the drive end of the motor housing.

https://doi.org/10.1371/journal.pone.0339859.g008
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Consequently, the total number in the training and test sets for the second-stage experiment is 10,000 and 2,000, respec-
tively. Step 4. The feature data obtained in Step 3 is normalized and then input into the L1/2-SCN for classification, where
the output represents the fault category. Fig 9 outlines the processing flow.

The fault identification ability of the proposed method is compared against Attention-TCN, Attention-BiLSTM,
TCN-BiLSTM, Attention-TCN-BiLSTM, GRU, Resnet and TCN-Transformer models.

Evaluation indexes and results. The evaluation indicators are Test ACC, Precision, Recall, F1, AUC, ROC curve, PR
curve. Considering binary classification, for example, TP signifies the number of True Positives, FP denotes the quantity
of False Positives, and FN represents the number of False Negatives. These metrics are defined based on the TP, FP,
TN, and FN.

Precision = TP
TP + FP

(45)

Recall = TP
TP + FN

(46)

F1 = 2Precision ∗ Recall
Precision + Recall

(47)

AUC = TP + TN
TP + TN + FP + FN

(48)

To ensure a comprehensive evaluation, compare LSTM-L1/2-SCN against a diverse set of benchmarks, which are
selected to represent different architectural paradigms in time-series modeling and fault diagnosis.

Fig 9. The processing flow of rolling bearing fault dataset.

https://doi.org/10.1371/journal.pone.0339859.g009
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(1)Hybrid Models: Attention-TCN, Attention-BiLSTM, TCN-BiLSTM, and Attention-TCN-BiLSTM , which capture
complex temporal dynamics by the trend of combining convolutional, recurrent and attention models.

(2)Sequential Model: GRU is selected as a simple basic baseline as recurrent neural networks out of these neural
network types are known to efficiently work with sequential data.

(3)Deep Residual Architecture: ResNet, a model constructed for computer vision, is used to benchmark against a
generic architecture that can learn complex hierarchical representations.

(4)Advanced Transformer-based Architecture: The TCN-Transformer model is selected for a contrastive impact with
the long-range properties of a TCN and the global context learning capability of the Transformer, and is one of advanced
architectures.

This selection guarantees that the proposed model is evaluated across a wide spectrum of technical routes, thereby
providing a holistic demonstration of its performance.

Following the LSTM feature extraction, Tables 6 to 9 compare the performance between LSTM-L1/2-SCN and Attention-
TCN, Attention-BiLSTM, TCN-BiLSTM, Attention-TCN-BiLSTM, GRU, Resnet and TCN-Transformer. In the experiments,
the procedure was executed 50 times.

The above results show that Attention - TCN - BiLSTM is a suboptimal model. To verify the significance of the proposed
model in terms of performance comparison, a paired t-test was conducted between the proposed model and Attention -
TCN - BiLSTM. Table 10 presents paired t-test results of L1/2-SCN and Attention-TCN-BiLSTM.

To demonstrate the training process and sparsity effect of the proposed model, Figs 10 to 13 present the training con-
vergence curves of the model under four cases, while Figs 14 to 17 show the weight distribution on the output side of L1/2-
SCN. Taking Case 1 as a representative instance, Figs 18 and 19 present the statistical indicators of the proposed model
for each type of fault identification and their overall distribution, while Fig 20 presents the confusion matrix based on the
test set. Figs 21 and 22 depict the ROC and PR curves, respectively.

Table 6. Comparison of experimental results (Case 1).

Model Evaluation indexes (%, Mean ± 95% CI)
Test ACC Precision Recall Macro F1 Macro AUC

LSTM-L1/2-SCN 0.9728±0.0096 0.9729±0.0096 0.9728±0.0096 0.9725±0.0100 0.9989±0.0003
TCN-BiLSTM 0.9705±0.0008 0.9708±0.0008 0.9705±0.0008 0.9704±0.0008 0.9265±0.0022
Attention-TCN-BILSTM 0.9706±0.0009 0.9708±0.0008 0.9706±0.0009 0.9708±0.0008 0.9348±0.0017
Attention-TCN 0.9546±0.0012 0.9547±0.0012 0.9546±0.0012 0.9544±0.0013 0.9558±0.0013
Attention-BILSTM 0.9341±0.0012 0.9343±0.0012 0.9341±0.0012 0.9336±0.0012 0.9100±0.0008
GRU 0.8673±0.0014 0.8663±0.0014 0.8673±0.0014 0.8641±0.0016 0.9852±0.0002
Resnet 0.9509±0.0127 0.9552±0.0127 0.9509±0.0127 0.9507±0.0131 0.9964±0.0032
TCN-Transformer 0.9642±0.0017 0.9649±0.0014 0.9642±0.0017 0.9640±0.0017 0.8805±0.0047

https://doi.org/10.1371/journal.pone.0339859.t006

Table 7. Comparison of experimental results (Case 2).

Model Evaluation indexes (%, Mean ± 95% CI)
Test ACC Precision Recall Macro F1 Macro AUC

LSTM-L1/2-SCN 0.9751±0.0086 0.9750±0.0087 0.9751±0.0086 0.9748±0.0089 0.9991±0.0003
TCN-BILSTM 0.9706±0.0009 0.9710±0.0008 0.9706±0.0008 0.9706±0.0009 0.9185±0.0026
Attention-TCN-BILSTM 0.9706±0.0008 0.9710±0.0009 0.9706±0.0008 0.9705±0.0009 0.9197±0.0022
Attention-TCN 0.9537±0.0013 0.9538±0.0013 0.9537±0.0013 0.9534±0.0013 0.9554±0.0013
Attention-BILSTM 0.9383±0.0010 0.9385±0.0011 0.9383±0.0010 0.9379±0.0010 0.9075±0.0010
GRU 0.8687±0.0013 0.8671±0.0013 0.8687±0.0013 0.8655±0.0014 0.9852±0.0002
Resnet 0.9559±0.0109 0.9572±0.0105 0.9559±0.0109 0.9557±0.0108 0.9976±0.0010
TCN-Transformer 0.9662±0.0014 0.9667±0.0014 0.9662±0.0014 0.9660±0.0015 0.8826±0.0043

https://doi.org/10.1371/journal.pone.0339859.t007
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Table 8. Comparison of experimental results (Case 3).

Model Evaluation indexes (%, Mean ± 95% CI)
Test ACC Precision Recall Macro F1 Macro AUC

LSTM-L1/2-SCN 0.9710±0.0076 0.9712±0.0077 0.9710±0.0076 0.9708±0.0090 0.9978±0.0004
TCN-BILSTM 0.9617±0.0011 0.9629±0.0008 0.9617±0.0011 0.9617±0.0010 0.9500±0.0017
Attention-TCN-BILSTM 0.9638±0.0007 0.9643±0.0007 0.9638±0.0007 0.9637±0.0007 0.9489±0.0013
Attention-TCN 0.9496±0.0010 0.9500±0.0009 0.9496±0.0010 0.9495±0.0009 0.9684±0.0011
Attention-BILSTM 0.9459±0.0010 0.9463±0.0009 0.9459±0.0010 0.9457±0.0010 0.908±0.0017
GRU 0.9248±0.0013 0.9256±0.0012 0.9248±0.0013 0.9244±0.0014 0.9939±0.0001
Resnet 0.9553±0.0210 0.9565±0.0182 0.9553±0.0210 0.9547±0.0222 0.9976±0.0014
TCN-Transformer 0.9616±0.0023 0.9627±0.0021 0.9616±0.0023 0.9615±0.0076 0.9051±0.0041

https://doi.org/10.1371/journal.pone.0339859.t008

Table 9. Comparison of experimental results (Case 4).

Model Evaluation indexes (%, Mean ± 95% CI)
Test ACC Precision Recall Macro F1 Macro AUC

LSTM-L1/2-SCN 0.9680±0.0091 0.9685±0.0092 0.9680±0.0091 0.9679±0.0100 0.9899±0.0003
TCN-BILSTM 0.9624±0.0009 0.9628±0.0007 0.9625±0.0009 0.9624±0.0009 0.9195±0.0019
Attention-TCN-BILSTM 0.9626±0.0008 0.9630±0.0008 0.9626±0.0008 0.9625±0.0008 0.9295±0.0017
Attention-TCN 0.9517±0.0009 0.9519±0.0009 0.9517±0.0009 0.9516±0.0009 0.9553±0.0016
Attention-BILSTM 0.9285±0.0012 0.9287±0.0010 0.9285±0.0012 0.9280±0.0011 0.9004±0.0016
GRU 0.8615±0.0015 0.8636±0.0016 0.8615±0.0015 0.8599±0.0016 0.9842±0.0002
Resnet 0.9375±0.0323 0.9414±0.0280 0.9375±0.0323 0.9377±0.0317 0.9966±0.0020
TCN-Transformer 0.9609±0.0013 0.9616±0.0012 0.9609±0.0013 0.9607±0.0013 0.8806±0.0048

https://doi.org/10.1371/journal.pone.0339859.t009

Table 10. Paired t-test results of L1/2-SCN vs. Attention TCN-BiLstm (Case 1).

Statistical metric t-value p-value
Test ACC 3.8833 0.0003
Precision 3.4725 0.0011
Recall 3.8833 0.0003
Macro F1 3.9434 0.0003
Macro AUC 79.0984 0.0000

https://doi.org/10.1371/journal.pone.0339859.t010

To showcase the efficacy of LSTM in feature abstraction and extraction, LSTM-L1/2-SCN is compared with L1/2-SCN
without data feature extraction, with the corresponding fault identification results reported in Table 11. The test accuracy is
less than 60%, which infer the important role played by the LSTM model in feature extraction in the first stage.

In order to analyze the influence of the value of theegular parameter 𝜆 on the sparsity and performance of the model,
Table 12 lists the results of LSTM-L1/2-SCN when the regular parameters are set to 0.005 and 0.01, respectively. The
results infer that the regularization coefficient 𝜆 significantly impacts the sparsity of L1/2-SCN. The larger 𝜆, the stronger
the sparsity. Therefore, choosing the appropriate coefficient requires a parameter-tuning process to balance the two
aspects.

Table 13 presents the sparsity of LSTM-L1/2-SCN across the four working conditions, and Table 14 presents a compu-
tational cost comparison between the LSTM-L1/2-SCN model and the Attention-TCN-BiLSTM model.

To further verify the generalization performance of the model, Table 15 validates the performance of the proposed
model based on noisy datasets (with noise added).

To highlight the overall merits of the proposed method, Table 16 compares its performance with other models in terms
of sparsity and classification accuracy. The values reported represent the average experimental results across four oper-
ating conditions derived from the CWRU dataset, whereas the accuracy of competing models is averaged based on their
suboptimal experimental outcomes.
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Fig 10. Convergence of L1/2-SCN: training accuracy exceeds 98% with 500 hidden nodes in Case 1.

https://doi.org/10.1371/journal.pone.0339859.g010

Fig 11. Training accuracy exceeds 98% with 500 hidden nodes in Case 2.

https://doi.org/10.1371/journal.pone.0339859.g011

Results analysis and discussion

Benchmark experiments. The results on five benchmark datasets (Tables 3 and Table 4, Figs 4 to 7) demonstrate
that L1/2-SCN exhibits superior sparsity and generalization capabilities. Regarding sparsity performance, when compared
to PSCN, L1/2-SCN has a maximum increase of 56%. This is primarily due to integrating L1/2 regularization into SCN,
which offers better sparsity than the L1 regularization. It also results in a significant number of zero weights, effectively
preventing overfitting and enhancing the generalization ability.
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Fig 12. Training accuracy exceeds 98% with 500 hidden nodes in Case 3.

https://doi.org/10.1371/journal.pone.0339859.g012

Fig 13. Training accuracy exceeds 98% with 500 hidden nodes in Case 4.

https://doi.org/10.1371/journal.pone.0339859.g013

Fault diagnosis experiments. Statistics metrics analysis: Tables 6 to 9 show that LSTM-L1/2-SCN performs excep-
tionally well on the mean values of all five indicators. Take condition 1 as an example. The Test ACC of LSTM-L1/2-SCNis
97.28%, which is 0.22 percentage points higher than that of the suboptimal model Attention-TCN-BiLSTM. The Preci-
sion is 0.9729, which is 0.21 percentage points higher than that of the suboptimal model. The Recall is 0.9728, which is
0.21 percentage points higher than that of the suboptimal model. F1 is 0.9725, which is 0.17 percentage points higher
than that of the suboptimal model. The AUC is 0.9989, which is 6.41 percentage points higher than that of the suboptimal
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Fig 14. Sparsity pattern contrast: L1/2-SCN achieves 24.24% zero weights (Case 1).

https://doi.org/10.1371/journal.pone.0339859.g014

Fig 15. Sparsity pattern contrast: L1/2-SCN achieves 23.88% zero weights (Case 2).

https://doi.org/10.1371/journal.pone.0339859.g015

model. These indicators illustrate the superiority of the model in terms of accuracy. However, the drawback of LSTM-L1/2-
SCN is that the variance of the experimental results is relatively large, which indicates that the randomness of the model
parameter values is still relatively high and requires subsequent improvement. Figs 10 to 13 show the training conver-
gence curves of the proposed model for one experiment conducted under each of the four working conditions. It can be
seen that when the number of hidden layer nodes increases to 500, the accuracy rate of the model on the training set can
all exceed 98%, indicating the good performance of the model. Figs 14 to 17 present the weight distribution of L1/2-SCN in
the fusion model, the percentage of zero weight is above 23%, verifying the sparse effect.

Confusion matrix analysis: In order to observe the intuitive recognition of various types of faults by the model, Fig 20
presents the confusion matrix of the test set in a certain experiment. It can be seen that the classification effect of the
model for categories 8 and 10 is not good. These two categories are ’a 0.014-inch fault on the bearing outer ring at 6
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Fig 16. Sparsity pattern contrast: L1/2-SCN achieves 29.39% zero weights (Case 3).

https://doi.org/10.1371/journal.pone.0339859.g016

Fig 17. Sparsity pattern contrast: L1/2-SCN achieves 24.72% zero weights (Case 4).

https://doi.org/10.1371/journal.pone.0339859.g017

o’clock’ and ’Normal state’. This is related to the data distribution and quality to some extent. As can be seen from Fig 8,
the vibration periodicity of the 8th type of data is poor and the data variance is large, while the 10th type of data is affected
by some outliers (noise). This will affect the learning effect of the model and thereby the classification effect.

The paired t-test analysis (Table 10): The results of the paired t-test reveal statistically significant disparities between
the proposed model and the a-cnn-bilstm model across five pivotal performance metrics: test accuracy (test acc), preci-
sion, recall, macro F1 score, and macro AUC. Specifically, for all five metrics, the t-statistics exhibit relatively high values,
with corresponding p-values substantially below the conventional significance threshold of 0.05. This finding underscores
that the observed performance differences between the two models are unlikely to be attributable to random variation and
are instead statistically robust. Notably, in the macro AUC metric, the t-statistic reaches an exceptionally high value of
79.0984, accompanied by a p-value approaching zero. This compelling evidence further substantiates that the proposed
model outperforms the a-cnn-bilstm model markedly in discriminating between positive and negative samples.
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Fig 18. Average metric per class (Case 1).

https://doi.org/10.1371/journal.pone.0339859.g018

Fig 19. Experiment performance metric distribution (Case 1).

https://doi.org/10.1371/journal.pone.0339859.g019
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Fig 20. The confusion matrix on the test set for a specific experiment (Case 1).

https://doi.org/10.1371/journal.pone.0339859.g020

ROC and PR curve analysis (Figs 21 and 22): The ROC curves closely approach the top-left corner, with a minimum
AUC value of 0.98 and an average AUC exceeding 0.99 across all samples, indicating high classification accuracy across
all thresholds. As evidenced by a well-behaved ROC curve indicating stable model performance. Similarly, the PR curves,
boast a minimum of 0.91 and an average of 0.987, highlighting the model’s balance between accuracy and recall rates,
underscoring its better performance.

Analysis of the Feature Extraction Function of LSTM (Table 11): The first stage uses only the basic LSTM model to
maintain model simplicity, avoiding more complex alternatives like BiLSTM. A comparative experiment underscores
LSTM’s role in feature extraction, contrasting the L1/2-SCN model without LSTM. In Table 11, the average test ACC of
L1/2-SCN without LSTM under the same parameter settings is 48.06%. Therefore, the shallow model alone exhibits limi-
tations in handling large-scale data, with suboptimal fault identification performance using solely L1/2-SCN. Hence, fusing
LSTM and L1/2-SCN can better realize fault identification.

Sparsity and the regularization parameter 𝜆 analysis (Tables 12 and 13): Table 13 highlights that the sparsity of L1/2-
SCN surpasses 23% when the regularization coefficient 𝜆 is set to 0.005, and it can even exceed 33% when the coeffi-
cient increases to 0.01. This indicates that SCN attains better sparsity when enhanced with the L1/2 regularization tech-
nique. Although a larger regularization coefficient generally leads to better sparsity, striking a balance is crucial, as exces-
sively sparse models can result in reduced effective weights, ultimately compromising the model’s accuracy. Therefore,
we need to select an appropriate value for 𝜆. Based on the results of the sensitivity experiment in this paper, 𝜆 is selected
as 0.005. Figs 14 to 17 illustrate the weight distribution, revealing that the zero weights are almost uniformly generated
during the gradual increase of the model’s hidden units, which is determined by the principle of L1/2 regularization and is
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Fig 21. Multi-class discriminability: receiver operating characteristic (ROC) curves for LSTM-L1/2-SCN model with all AUC >0.99 (Case 1).

https://doi.org/10.1371/journal.pone.0339859.g021

also in line with our expectations. In summary, L1/2-SCN is used for fault identification in the second stage, affording bet-
ter sparsity. On the test set, this model achieves an accuracy of 97.20% while maintaining a sparsity level exceeding 23%.
Compared to current deep learning models, such as TCN and LSTM, the proposed approach exhibits distinct advantages
in terms of sparsity, proving the validity of the L1/2-SCN fusion sparse algorithm.

Computational Cost (Table 14): Table 14 reveals that the LSTM-L1/2-SCN model demonstrates a notable computational
efficiency advantage, with training time reduced to 1/21.8 of the attention mechanism-based temporal model (9.25 min-
utes per training session), peak memory usage controlled at 2.5GB (58% lower than the 6GB of the comparative model),
floating-point operations decreased by 53%, and parameter size only 10% of the comparative model; this efficiency stems
from triple optimization—LSTM sequence modeling avoiding large convolution kernel calculations, L1/2 regularization elim-
inating redundant connections via sparse constraints, and an incremental node growth mechanism dynamically adjust-
ing network complexity—making it suitable for deployment in edge computing units of resource-constrained industrial
equipment.

Generalization Ability Analysis (Table 15): To verify the robustness and generalization performance of the model, Gaus-
sian noise with a zero - mean and a standard deviation of 0.05, as well as uniformly distributed perturbations with an
amplitude range of [-0.05, 0.05], were added, increasing the diversity of the data set. Table 15 presents the various sta-
tistical indicators for the model’s classification of the new data set. It can be seen that when the model processes the data
after adding noise, in terms of Test ACC, Precision, Recall, and F1, the indicators have decreased on average by approx-
imately 0.2 percentage points, and in terms of AUC, they have decreased by 9 percentage points. However, even when
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Fig 22. Precision-Recall Dominance: Class-wise curves exhibiting minimum AUPRC of 0.96 with five classes achieving perfection (Case 1).

https://doi.org/10.1371/journal.pone.0339859.g022

Table 11. Experimental results of L1/2-SCN without LSTM.

Case Training ACC Test ACC Sparsity
Case 1 39.62% 35.05% 9.70%
Case 2 63.30% 57.95% 9.68%
Case 3 61.38% 54.25% 10.30%
Case 4 51.44% 45.00% 9.58%

https://doi.org/10.1371/journal.pone.0339859.t011

Table 12. Results of fault identification of rolling bearings with different regularization
coefficient.

Case Training ACC, Test ACC
𝜆 = 0.005 𝜆 = 0.01

Case1 98.46%, 97.20% 98.51%, 97.00%
Case2 98.59%, 97.50% 98.73%, 98.15%
Case3 97.81%, 97.10% 98.43%, 97.30%
Case4 98.17%, 96.80% 98.06%, 96.55%

https://doi.org/10.1371/journal.pone.0339859.t012

exposed to noise, the model can still maintain a level of more than 90% in key performance indicators. This indicates
that when facing a certain degree of data change, the core classification and prediction capabilities of the model have not
been fundamentally damaged.
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Table 13. Sparsity of L1/2-SCN.

Case 𝝀 = 0.00 𝝀 = 0.01
Case1 24.24% 33.62%
Case2 23.88% 34.18%
Case3 29.39% 33.82%
Case4 24.72% 34.50%

https://doi.org/10.1371/journal.pone.0339859.t013

Table 14. Computational cost comparison.

Metrics LSTM-L1/2-SCN Attention-Tcn-BiLSTM Ratio
Training time 9.25min 198min 1:21.8
Resource usage 2.5G 6G 1:2.4
FLOPs 74.6G 160.16G 1:2.15
Params 15.9K 157K 1:10

https://doi.org/10.1371/journal.pone.0339859.t014

Table 15. Comparison of LSTM-L1/2-SCN performance before and after adding noise to the dataset (Case 1).

Model Evaluation indexes (%, Mean ± 95% CI)
Test ACC Precision Recall Macro F1 Macro AUC

Before adding noise 0.9728±0.0096 0.9728±0.0096 0.9727±0.0096 0.9725±0.0100 0.9989±0.0003
After adding noise 0.9706±0.0008 0.9710±0.0009 0.9706±0.0008 0.9705±0.0009 0.9197±0.0022

https://doi.org/10.1371/journal.pone.0339859.t015

Table 16. Comparison and summary of LSTM-L1/2-SCN and others.

LSTM-L1/2-SCN Others
Sparsity 25.56% N/A
Accuracy 97.17% 96.69%

https://doi.org/10.1371/journal.pone.0339859.t016

In conclusion, the enhanced performance of the proposed method stems primarily from its unique model structure, dif-
fering from conventional deep models. The seven deep learning models in the comparison perform end-to-end tasks, inte-
grating two steps into one process. However, their feature mapping lacks a theoretical foundation. On the contrary, the
proposed approach employs LSTM as a feature extractor, effectively condensing the original data while preserving his-
torical time information. This compressed data is input into a shallow model, SCN, leveraging its universal approximation
capability. We further refine SCN’s structure with L1/2 regularization, enhancing conciseness and minimizing redundancy.
This two-stage learning model exhibits sparsity and achieves higher accuracy, leading to improved fault identification
results.

Conclusion

This study presents an integrated LSTM and L1/2-SCN architecture for rolling bearing fault diagnosis. By fusing temporal
feature extraction with non-convex sparse regularization, the model achieves 25.56% weight sparsity (achieves an aver-
age improvement of 24.8% over PSCN) while reducing training duration by 95.3%. Convergence is guaranteed through a
reconstructed supervision mechanism validated by mathematical formulas. Testing on the CWRU 10-class dataset yields
97.17% accuracy - surpassing comparable deep models by 0.2-10 percentage points. The implementation demonstrates
industrial viability by enabling real-time diagnosis, which is suitable for edge deployment in rotating machinery monitoring
systems.

Nevertheless, the model exhibits limitations under extreme variable operating conditions, particularly in multi-fault cou-
pling scenarios. These constraints originate from the inherent non-stationarity of vibration signals and the current feature
extraction mechanism’s limited frequency band adaptability.
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Future work will focus on exploring the comprehensive integration of multimodal information to further enhance the
modeling and prediction capabilities in complex scenarios. Specifically, the idea of integrating multi-scale time series
modules for prediction [33] and the relational interaction modeling method [34] can be applied. Meanwhile, this work will
explore the architectural design of a modal fusion Vision Transformer (ViT), similar to [35], and the multimodal deep learn-
ing scheme outlined in [36], and study the fusion strategies for lightweight and adaptive models. This direction aims to
build a more flexible multimodal fusion system to solve complex problems involving multi-source heterogeneous data. To
ensure the practical deployment of such advanced systems, future work will also involve benchmarking the models on
specific edge platforms and evaluating key metrics such as inference latency and power consumption.
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