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Abstract 

Purpose: Few studies have assessed neuromuscular fatigue after self-paced locomotor 

exercise; moreover, none have assessed the degree of supraspinal fatigue. This study assessed 

central and peripheral fatigue after self-paced exercise of different durations. Methods: 

Thirteen well-trained male cyclists completed 4 km, 20 km and 40 km simulated time-trials 

(TTs). Pre- and immediately post-TT (< 2.5 min), twitch responses from the knee-extensors 

to electrical stimulation of the femoral nerve and transcranial magnetic stimulation of the 

motor cortex were recorded to assess neuromuscular and corticospinal function. Results: 

Time to complete 4 km, 20 km and 40 km was 6.0±0.2 min, 31.8±1.0 min and 65.8±2.2 min, 

at average exercise intensities of 96%, 92% and 87% of V̇O2max, respectively. Exercise 

resulted in significant reductions in maximum voluntary contraction, with no difference 

between TTs (–18%, –15% and –16% for 4, 20 and 40 km respectively). Greater peripheral 

fatigue was evident after the 4 km (40% reduction in potentiated twitch) compared to the 20 

km (31%) and 40 km TTs (29%). In contrast, longer TTs were characterized by more central 

fatigue, with greater reductions in voluntary activation measured by motor nerve (–11% and –

10% for 20 km and 40 km vs. –7% for 4 km) and cortical (–12% and –10% for 20 km and 40 

km vs. –6% for 4 km) stimulation. Conclusions: These data demonstrate fatigue after self-

paced exercise is task-dependent, with a greater degree of peripheral fatigue after shorter, 

higher intensity (~6 min) TTs and more central fatigue after longer, lower intensity TTs (>30 

min).  
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Introduction 

Paragraph 1. In exercise science fatigue is commonly defined as an exercise-induced 

impairment in the ability to produce muscular force (17) in the presence of an increased 

perception of effort (14). Fatigue can be attributed to various processes along the motor 

pathway that are broadly split in to central and peripheral origins. Peripheral fatigue attributes 

the decline in force to processes at, or distal to, the neuromuscular junction (17). Central 

fatigue attributes the decline in force to processes residing within the central nervous system 

(17), commonly assessed by supramaximally stimulating the peripheral motor nerve during 

an isometric maximum voluntary contraction (MVC; 28). A subset of central fatigue is 

supraspinal fatigue, which attributes the decline in force to a sub-optimal output from the 

motor cortex (48, 49). Transcranial magnetic stimulation (TMS) has been successfully used 

to demonstrate the presence of supraspinal fatigue across a range of exercise paradigms (18-

20, 32, 37, 38). Used in concert, motor nerve and motor cortical stimulation methods can 

develop a deeper understanding of the processes underpinning fatigue. 

 

Paragraph 2. The extent to which peripheral and central processes contribute to fatigue is 

dependent on the nature of the exercise task and hence task-dependency remains a central 

theme in the study of fatigue.  During sustained isometric maximal contractions of a single 

muscle group, peripheral fatigue is dominant, particularly during the early (<60 s) portion of 

the exercise bout, with central mechanisms increasing in influence as the exercise bout is 

prolonged (9, 36). During submaximal contractions (sustained or intermittent) at low 

intensities (<30% MVC) the contribution of central fatigue is higher than observed during 

higher-intensity submaximal contractions (>30% MVC), where peripheral fatigue 

predominates and central fatigue is modest or absent (8, 41, 42). Though less data are 

available, these patterns of central and peripheral fatigue can also be extended to locomotor 

exercise. Peripheral fatigue develops early during fatiguing locomotor exercise (13) and 

reductions in voluntary activation are evident when the exercise bout is prolonged (23, 31). 

While the available literature suggests higher intensity, shorter duration exercise is primarily 

limited by peripheral fatigue, and central fatigue is exacerbated as the exercise bout 

lengthens, a direct comparison of the contribution of central and peripheral processes to 

fatigue after locomotor exercise tasks of different durations is not available. 

 



Paragraph 3. Previous studies investigating fatigue during whole body locomotor exercise 

have largely employed constant-load exercise protocols; a small number of studies have 

employed locomotor exercise paradigms that allow self-selected pacing strategies in response 

to sensations of fatigue and effort (3, 5, 6, 32). A series of recent studies by Amann and 

colleagues (3, 5, 6) have demonstrated the potential for studying fatigue using self-paced, 

whole body locomotor exercise modes. The authors proposed that the magnitude of exercise-

induced peripheral fatigue is regulated to an individual “critical threshold”, as evidenced by a 

remarkably similar end-exercise peripheral fatigue following self-paced 5 km cycling time-

trial exercise in conditions of altered inspired air concentrations (4), pre-fatiguing exercise (3) 

and impaired afferent feedback (5). This centrally mediated restriction is proposed to be 

regulated by inhibitory afferent feedback in order to prevent excessive homeostatic disruption 

(1), perhaps to protect or maintain a muscular reserve capacity (7), and coincides with 

attainment of an individual “sensory tolerance limit” (17). 

 

Paragraph 4. Amann & Secher (7) were careful to emphasize the critical threshold might be 

specific to the exercise task, and further work from the same group has demonstrated 

differences in the magnitude of peripheral fatigue after constant-load single- and double-leg 

knee extensor exercise modes (34, 35). Some support for a universal critical threshold of 

muscle fatigue during the same exercise mode has been provided for intermittent submaximal 

isometric contractions to exhaustion at intensities between 38-55% MVC (11). Interestingly, 

Burnley et al. (11) also observed a lower degree of peripheral fatigue at lower exercise 

intensities (<31% MVC), suggesting the critical threshold might not be attained in longer 

duration, lower intensity exercise; though the exercise was capped at 60 min and task failure 

only occurred in 1 of 9 participants. No study has directly compared the contribution of 

central and peripheral processes to fatigue after locomotor exercise tasks of different 

duration, and the existence of a critical threshold for peripheral fatigue after locomotor 

exercise warrants further investigation. Self-paced exercise offers an interesting test of this 

question, as the ability to modulate exercise intensity would theoretically permit the athlete to 

exhaust the available muscular reserve to maximize performance and attain such a threshold 

of muscle fatigue.  In addition, the contribution of central processes to the fatigue observed 

after self-paced exercise of different durations has yet to be investigated, nor has the 

contribution of supraspinal fatigue. Accordingly, the aim of the present study was to examine 

the degree of central and peripheral fatigue induced by self-paced cycling exercise of 



different durations. We hypothesized the existence of a consistent critical level of peripheral 

fatigue between time-trials of different durations, while the degree of central fatigue would 

increase as the length of the exercise bout is extended.  

 

Methods 

Participants 

Paragraph 5. Following institutional ethical approval, thirteen well-trained male cyclists 

(mean ± SD age, 31 ± 8 years; stature, 1.80 ± 0.07 m; body mass, 72.9 ± 9.1 kg; maximum 

oxygen uptake [V̇O2max], 4.26 ± 0.38 L·min-1, Power at V̇O2max [Wpeak] = 383 ± 29 W) gave 

written informed consent to take part in the study.  All participants were regularly competing 

in cycling time-trial (TT) events similar in duration to those employed in the study. 

 

Experimental Design 

Paragraph 6. Using a repeated measures design, each participant visited the lab on 5 

separate occasions to complete a preliminary assessment, a practice time-trial, and three 

experimental time-trials of 4 km, 20 km and 40 km in length. Trials were separated by a 

minimum of two and a maximum of seven days, and were conducted at the same time of day 

(±1 h). The order of experimental trials was randomized and counter-balanced. Prior to each 

visit, participants were required to refrain from caffeine (for at least 12 h), strenuous exercise 

(for at least 24 h) and to arrive in a fully rested, hydrated state. Before the first experimental 

trial participants completed a 48 h food and activity diary and were instructed to replicate 

their exercise and nutrition as closely as possible for each subsequent trial. Cardiorespiratory, 

blood lactate and perceptual responses were recorded during each time-trial and measures of 

central and peripheral fatigue were assessed pre-trial and within 2.5 min post-trial. 

 

Procedures 

Preliminary visit 

Paragraph 7. Participants attended the laboratory to complete an incremental assessment to 

measure V̇O2max and Wpeak. The test started at 200 W and incremented by 5 W every 15 s. 

Participants cycled to the limit of tolerance and were given strong verbal encouragement in 

the latter stages. The test was terminated when participants were unable to maintain a 

cadence within 20 rpm of their self-selected cadence for the test. Maximum oxygen uptake 



(L·min-1) was calculated as the highest 30 s mean value, Wpeak (W) was recorded as the end 

test power output.  

 

Practice trial  

Paragraph 8. Participants completed a practice trial to habituate to the measurement tools of 

the study, in particular electrical stimulation of the femoral nerve and magnetic stimulation of 

the motor cortex. A 4 km time-trial was chosen as the distance for the practice trial as the 

participant group were regularly competing in trials of distances approximating 20 km and 40 

km, but were less practiced in shorter duration time-trials. In addition, previous data from our 

lab has shown evidence of a learning effect in well-trained cyclists for 4 km (44) but not 20 

km (47) simulated time-trials. The reproducibility of time-trial performance across the 

distances employed is good (CV = 1.6-2.3%; 44, 47). The procedures adopted during the 

practice trial replicated that of the experimental trials (described below). 

 

Experimental trials 

Paragraph 9. Participants completed 4 km, 20 km and 40 km time-trials on separate 

occasions with instructions to “complete the distance as fast as possible”. All exercise was 

completed on an electromagnetically braked cycle ergometer (Velotron Pro, RacerMate Inc., 

USA). Participants adjusted the ergometer to mimic their racing position (replicated for each 

trial) and wore their own cycling shoes and cleats. Visual feedback of distance covered, 

power output (W) and cadence (rpm) was available to view on a computer screen through the 

ergometer software (Velotron CS 2008, RacerMate Inc., USA). Participants were able to 

adjust their power output through variations in cadence and use of an electronic gearing 

system, and were instructed to remain seated for the duration of the trial. An electric fan was 

positioned 0.5 m in front of the ergometer for cooling during each trial.  

 

Neuromuscular function 

Paragraph 10. Measures of neuromuscular function for the assessment of central and 

peripheral fatigue were evaluated pre- and post-trial (within <2.5 min of exercise cessation) 

using transcranial magnetic stimulation (TMS) of the motor cortex and electrical stimulation 

of the femoral nerve, with evoked responses recorded with surface electromyography (EMG). 

Pre-time-trial exercise participants completed six isometric maximum voluntary contractions, 

separated by 60 s rest. The first three contractions ensured adequate potentiation of the knee 



extensors. Femoral nerve stimulation was delivered during and 2 s post-MVC to assess 

voluntary activation and potentiated quadriceps twitch force (Qtw,pot), respectively. 

Subsequently, TMS was delivered during brief (~3-5 s) contractions at 100%, 75% and 50% 

MVC, separated by ~5 s of rest, for determination of voluntary activation from cortical 

stimulation (VATMS). This procedure was repeated 3 times with 15 s rest between each set. 

Post-time-trial exercise participants completed three MVCs with femoral nerve stimulation, 

and three sets of contractions at 100%, 75% and 50% MVC with TMS; in line with other 

investigations that have assessed exercise-induced fatigue of the knee extensors, these 

measurements were completed within 2.5 min of exercise cessation (18, 35, 38). The rapid 

nature of this procedure is necessary to capture the magnitude of fatigue induced by the 

exercise before it dissipates (16), and the duration (2 to 2.5 min) was consistent between 

trials. Resting MEPs (eight stimuli) were recorded prior to these baseline measures of fatigue, 

and immediately after the final TMS set post-trial. Further detail on these procedures follows. 

 

Force & EMG recordings 

Paragraph 11. Knee-extensor force (N) during voluntary and evoked contractions was 

measured using a calibrated load cell (MuscleLab force sensor 300, Ergotest technology, 

Norway) fixed to a custom built chair and connected to a noncompliant strap attached round 

the participant’s right leg superior to the ankle malleoli. The height of the load cell was 

individually adjusted to ensure a direct line with the applied force. During all measurements 

participants sat upright with the hips and knees at 90 degrees flexion, and were given specific 

instruction to maintain seated. Electromyography of the knee extensors and flexors was 

recorded from the vastus lateralis and lateral head of the biceps femoris, respectively. After 

the skin was shaved and cleaned, surface electrodes (Ag/AgCl; Kendall H87PG/F, Covidien, 

Mansfield, MA, USA) were placed 2 cm apart over the belly of each muscle. A reference 

electrode was placed on the patella. The positions of the electrodes were marked with 

indelible ink to ensure a consistent placement on repeat trials. The electrodes were used to 

record the root-mean-square amplitude for maximal voluntary contractions (MVCRMS), the 

compound muscle action potential (M-wave) from the electrical stimulation of the femoral 

nerve, and the motor evoked potential (MEP) elicited by TMS. Surface electrode signals were 

amplified (× 1,000; 1902, Cambridge Electronic Design, Cambridge), band-pass filtered 

(EMG only; 20-2,000 Hz), digitized (4 kHz, micro 1401, Cambridge Electronic Design) and 

acquired for off-line analysis (Spike 2 version 7.01, Cambridge Electronic Design).  



 

Femoral nerve stimulation 

Paragraph 12. Single electrical stimuli (200 µs duration) were delivered to the right femoral 

nerve via surface electrodes (CF3200, Nidd Valley Medical Ltd, Harrogate, UK) using a 

constant-current stimulator (DS7AH, Digitimer Ltd, Welwyn Garden City, UK) at rest and 

during MVC. The cathode was placed over the nerve high in the femoral triangle; the anode 

was positioned midway between the greater trochanter and the iliac crest (20). The exact 

positioning was determined by the response that elicited the maximum quadriceps twitch 

amplitude (Qtw) and M-wave (Mmax) at rest. To determine the stimulation intensity, single 

stimuli were delivered in 20 mA step-wise increments from 100 mA until a plateau in Qtw and 

M-wave were observed. To ensure a supramaximal stimulus the final intensity was increased 

by 30% (mean ± SD current = 194 ± 101 mA). The peak-to-peak amplitude and area of the 

electrically evoked Mmax was used as a measure of membrane excitability (15). Measures of 

muscle contractility were derived for each resting twitch; twitch amplitude, maximum rate of 

force development (MRFD), maximum relaxation rate (MRR), contraction time (CT) and 

one-half relaxation time (RT0.5).  

 

Transcranial magnetic stimulation 

Paragraph 13. Using a concave double cone coil (110 mm diameter; maximum output 1.4 T), 

single pulse magnetic stimuli of 1 ms duration were delivered to the left motor cortex, 

powered by a monopulse magnetic stimulator (Magstim 200, The Magstim Company Ltd., 

Whitland, UK). The coil was held and tilted lateral to the vertex (1.5 ± 0.6 cm) to stimulate 

the left hemisphere (postero-anterior intracranial current flow) over the area relating to 

Brodmann Area 4, the primary motor cortex. The coil position elicited a large MEP in the 

vastus lateralis and a concurrent small MEP in the biceps femoris, and was marked on the 

scalp using indelible ink to ensure consistent placement on repeat trials. Resting motor 

threshold (rMT) was determined prior to each experimental trial, and was not different 

between trials (P = 0.49). Starting at sub-threshold intensity (35% of stimulator output), 

single pulse TMS was delivered over the optimal site of stimulation in 5% increments until 

the peak-to-peak amplitude of the evoked MEP consistently exceeded 50 µV.  Subsequently, 

the stimulus intensity was reduced in 1% decrements until the MEP response was below 50 

µV in more than half of 10 stimuli (33). Resting motor threshold (rMT) for the knee 

extensors occurred at 49 ± 12% of maximum stimulator output, and subsequently during 



experimental trials TMS was delivered at 130% of rMT. This intensity elicited a large MEP 

in the vastus lateralis (area on average 80% of Mmax during knee extensor MVC) and a small 

MEP in the biceps femoris (area on average 6% of the raw quadriceps MEP during MVC). 

 

Cardiorespiratory, Blood [lactate] & Perceptual measures 

Paragraph 14. During each trial expired air was analyzed breath-by-breath using an online 

system (Cortex Metalyser 3b, Biophysik, Germany) and heart rate was measured with short 

wave telemetry (Polar Electro, Finland). Blood [lactate] was determined from 20 µL samples 

of fingertip capillary blood immediately analyzed using an automated analyzer (Biosen 

C_Line, EKF diagnostic, Barleben, Germany) that was calibrated prior to use with a 12 

mMol·L-1 standard. Blood sampling was aligned between trials such that samples occurred at 

the same distance covered in each, based on sampling blood at 20% of the distance covered 

in each trial; at 0.8, 1.6, 2.4, 3.2 and 4 km for the 4 km TT, at the same intervals plus 8, 12, 

16 and 20 km for the 20 km TT, and then at all of the previously outlined intervals plus 24, 

32 and 40 km for the 40 km TT. Ratings of perceived exertion (RPE) were obtained every 

20% of trial distance covered using the Borg 6-20 scale. Participants were asked to provide a 

subjective assessment of RPE taking into account all sensations of physical stress, effort and 

fatigue (10). After assessment of neuromuscular function and a timed 5 minute standardized 

cool down participants were asked for a session RPE score that best represented the effort 

over the entire time-trial. 

 

Data analysis 

Paragraph 15. Voluntary activation measured through stimulation of the motor nerve was 

quantified using the twitch interpolation method (28). Briefly, the amplitude of the 

superimposed twitch force (SIT) measured during MVC was compared with the amplitude of 

the potentiated twitch force assessed ~2 s post-MVC at rest. Voluntary activation (%) = (1 – 

[SIT/Qtw,pot] × 100). For cortical stimulation, VATMS was assessed by measurement of the 

force responses to TMS at 100%, 75% and 50% MVC (see figure, supplemental digital 

content 1, for an illustration of these methods). Corticospinal excitability increases during 

voluntary contraction, therefore it is necessary to estimate, rather than directly measure, the 

amplitude of the resting twitch in response to motor cortex stimulation. The amplitude of the 

estimated resting twitch (ERT) was calculated as the y-intercept of the linear regression 

between the mean amplitude of the superimposed twitches evoked by TMS at 100%, 75% 



and 50% MVC and voluntary force (19, 48, 49); regression analyses confirmed the existence 

of a linear relationship both pre- and post-exercise (r2 = 0.96 ± 0.03 and 0.94 ± 0.05 

respectively). Voluntary activation (%) was subsequently calculated as (1 – [SIT/ERT] × 

100). The reproducibility and validity of this procedure for the knee extensors has been 

previously established (19, 37). For pre- and post- measures of voluntary activation the 

median score was used for analysis (17). The peak-to-peak amplitude and area of the evoked 

Mmax and MEP responses were quantified offline. The peak-to-peak amplitude was measured 

as the absolute difference between the maximum and minimum points of the biphasic M-

wave or MEP (15). The area was calculated as the integral of the reflected value of the entire 

M-wave or MEP (15). The area of vastus lateralis MEP was normalized to the Mmax measured 

during the MVC to ensure the magnetic stimulus was activating a high proportion of the 

knee-extensor motor units, and to quantify corticospinal excitability during contraction. 

Resting corticospinal excitability was quantified as the ratio between the resting MEP and 

resting Mmax. The cortical silent period (CSP), was quantified during the MVC as the duration 

between the point of cortical stimulation until the post-stimulus EMG exceeded ±2 SD of the 

pre-stimulus EMG for >100 ms (20).  

 

Reproducibility coefficients 

Paragraph 16. Typical error (TE) and intra-class correlation coefficients (ICC) between the 

pre-trial scores were calculated to quantify reproducibility of the outcome measures of 

interest. Reproducibility was high for MVC (ICC = 0.98, TE = 4.0%), Qtw,pot (ICC = 0.98, TE 

= 6.6%), motor nerve VA (ICC = 0.96, TE = 3.0%), VATMS (ICC = 0.98, TE = 1.7%) and 

moderate for ERT (ICC = 0.91, TE = 10.8%), CSP (ICC = 0.95, TE = 12.8%), Mmax (ICC = 

0.86, TE = 29.1%) and MEP/Mmax ratio (ICC = 0.74, TE = 12.6%). 

 

Statistical analysis 

Paragraph 17. Statistical procedures were planned a priori. For all neuromuscular measures, 

paired samples t-tests were used to assess the expected impact of each time-trial on measures 

of fatigue (pre- vs. post-trial comparison). The effect of time-trial length on all measures of 

fatigue and neuromuscular function was assessed using one-way repeated measures ANOVA 

on the pre- to post-trial change scores, with Tukey’s pairwise post-hoc comparisons 

calculated in the event of a significant main effect. The same procedure was used to analyze 

differences between trials for time-trial performance (power output, W) cardiorespiratory and 



blood lactate responses. Where a significant main effect was detected, selected effect sizes 

for three group comparisons were computed as eta-squared (η2) and for two group post-hoc 

comparisons as Cohen’s D. Friedman’s ANOVA with post-hoc Wilcoxon signed-ranks test 

were employed for non-parametric data (i.e. RPE). To assess for differences in the pacing 

strategy, mean power output covered was computed in bins representing 10% of the distance 

covered for each trial, and expressed relative to the trial mean. This data was then analyzed 

using 3x10 repeated measures ANOVA, with a focus on the interaction effect to determine 

whether pacing strategy differed between trials. Previous data have demonstrated association 

between the degree of peripheral fatigue and capillary blood [lactate] accumulation (38), thus 

Pearson’s product moment correlations were used to determine the relationship between these 

variables. The assumptions underpinning these statistical procedures were verified as per the 

guidelines outlined by Newell et al. (30) and all data were considered normal. Descriptive 

data are presented as means ± SD in text, tables and figures unless otherwise indicated. 

Statistical analysis was conducted using SPSS (IBM SPSS, version 19.0, Chicago, IL.). 

Statistical significance was assumed at P < 0.05.  

 

Results 

Paragraph 18. Exercise Responses. Mean power output was significantly higher in the 4 km 

(340 ± 30 W) compared to the 20 km (279 ± 22 W; D = 0.98, P < 0.05), and the 20 km 

compared to the 40 km (255 ± 21 W; D = 0.97, P < 0.05) (Figure 1, panel A). The pacing 

strategy adopted was not different between trials (P = 0.57, Figure 1, panel A). The mean 

power output during 4, 20 and 40 km corresponded to relative exercise intensities of 89%, 

73% and 67% of Wpeak, and 96%, 92% and 87% of V̇O2max respectively. Mean whole trial 

values for oxygen uptake (V̇O2), minute ventilation (V̇E), tidal volume (VT), ventilatory 

equivalent for oxygen (V̇E/V̇O2) and respiratory exchange ratio (RER) were higher in the 4 

km compared to both the 20 km and 40 km (P < 0.01) and RER was higher (P < 0.01) in the 

20 km compared to 40 km (Table 1). Heart rate was higher in both the 4 km and 20 km in 

comparison to 40 km (P < 0.01, Table 1). Both mean and peak blood lactate were higher in 

the 4 km (mean = 9.6 ± 1.9 mMol·L-1, peak = 14.5 ± 2.8 mMol·L-1) compared to both 20 km 

and 40 km (P < 0.05), and higher in the 20 km (mean = 7.8 ± 0.9 mMol·L-1, peak = 11.5 ± 1.8 

mMol·L-1) compared to the 40 km (mean = 5.1 ± 1.3 mMol·L-1, peak = 8.1 ± 2.2  mMol·L-1 ; 

P < 0.05, Figure 2). The evolution of RPE across each trial was similar independent of 



distance (Figure 1, panel B), but participants perceived the 4 km to be harder than both the 20 

km and 40 km, with differences between both the average RPE and the session RPE (P < 

0.05, Table 1).  

 

Pre- and post-exercise responses 

Paragraph 19. Peripheral responses. Exercise resulted in significant peripheral fatigue in all 

time-trials (ΔQtw,pot) along with alterations in muscle contractility (Table 2). Conversely, 

there were no differences in MVCRMS, or measures of membrane excitability pre- to post-trial 

(Mmax amplitude and area, Table 2).  The reduction in MVC was not different between trials 

(102 ± 85 N, 84 ± 62 N and 84 ± 41 N drop for 4 km, 20 km and 40 km, respectively; P = 

0.56, η2 = 0.04, Figure 3, Panel A). The drop in Qtw,pot was different between trials (P = 0.03, 

η2 = 0.25). There was evidence of a greater reduction in Qtw,pot after the 4 km trial (61 ± 37 N) 

compared to both the 20 km trial (46 ± 28 N, P = 0.03, D  = 0.46) and the 40 km trial (44 ± 

28 N, P = 0.049, D = 0.52) with no difference between 20 km and 40 km (Figure 3, Panel B). 

Greater decrements in MRFD of the potentiated twitch were observed after the 4 km 

compared to both 20 and 40 km (P < 0.05), while MRR, CT and RT0.5 changed similarly 

independent of TT length (Table 2). End-trial peak [lactate] was correlated with the reduction 

in potentiated twitch force for the 4 km trial (r = –0.76, P < 0.01) but not for 20 km (r = –

0.37, P = 0.22) or 40 km (r = 0.17, P = 0.66). 

 

Paragraph 20. Central responses. Two participants exhibited small responses to TMS 

(MEP:Mmax ratio in VL <60%). Low MEP:Mmax ratios are indicative of an incomplete 

activation of the available motoneuron pool by the magnetic stimulus, which could invalidate 

the measurement of voluntary activation (37). These participants were subsequently excluded 

from analysis of data elicited by TMS (Table 3). Voluntary activation at baseline was similar 

for both motor nerve and motor cortical stimulation methods (93 ± 6% vs. 93 ± 4%, P > 

0.05). Exercise resulted in significant reductions in both motor nerve VA (Table 2) and 

VATMS (Table 3). The change in motor nerve VA was different between trials (P = 0.02, η2 = 

0.37). Specifically, the drop in motor nerve VA was less after the 4 km (–7%) compared to 

both the 20 km (–11%, P = 0.03, D = 0.47) and the 40 km (Δ10%, P = 0.02, D = 0.59, Figure 

3, panel C). The reduction in VATMS was also different between trials (P = 0.02, η2 = 0.34) 

and mirrored the pattern observed for motor nerve VA. The decline in VATMS was less after 

the 4 km (–6%) compared to both 20 km (–12%, P = 0.01, D = 1.00) and the 40 km (–10%, P 



= 0.04, D = 0.55, Figure 3, panel D). Corticospinal excitability during contraction (MEP 

expressed relative to Mmax during MVC) was unchanged post-exercise (Table 3). At rest, 

corticospinal excitability was reduced after the 20 km (P = 0.004) and 40 km (P = 0.04) 

compared to baseline, but not after the 4 km (Table 3), though analysis of the relative and 

absolute change revealed no significant effect of time-trial length (P < 0.05). The cortical 

silent period was unchanged in all trials (Table 3). 

 

Discussion 

Paragraph 21. This study assessed the contribution of central and peripheral processes to 

fatigue after self-paced locomotor exercise of different durations. The main findings 

demonstrate that the magnitude of peripheral fatigue after high-intensity, short-duration (~6 

min) self-paced locomotor exercise is greater than lower-intensity, longer exercise bouts (>30 

min), where central fatigue is exacerbated. These data are the first to demonstrate the 

contributions of central and peripheral processes to the fatigue observed after self-paced 

locomotor exercise are dependent on the duration and intensity of the exercise task.  

 

Paragraph 22. Peripheral fatigue after self-paced cycling exercise. Previous research has 

demonstrated the existence of an individual critical threshold of peripheral fatigue and 

associated sensory tolerance limit that is never voluntarily exceeded after high-intensity 

endurance cycling (3-5). These authors were careful, however, to emphasise this threshold 

might be task-dependent, and have recently demonstrated differences in the sensory tolerance 

limit between different modes of exercise requiring small vs. large muscle mass (35). Some 

support for the concept of a universal critical threshold has however been provided during 

isolated knee extensor exercise at intensities between 38-55% MVC by Burnley et al. (11). 

Based on this work, we hypothesized that such a threshold might exist across self-paced 

cycling time-trials of different duration. Self-pacing would theoretically allow participants to 

modulate power output in response to sensations of fatigue to maximize performance, which 

would presumably coincide with attainment of the aforementioned critical threshold of 

peripheral fatigue. However, contrary to our hypothesis, we observed a greater degree of 

peripheral fatigue after the 4 km (40% reduction in Qtw,pot), compared to both the 20 km and 

40 km time-trials (31 and 29% reduction, respectively). The reduction in potentiated twitch 

force after the 4 km TT was similar in magnitude to previous studies that have proposed the 



existence of a critical threshold of peripheral fatigue after high-intensity locomotor exercise 

(~35%: 3, 4, 5), and it is plausible this degree of peripheral fatigue represents such a 

threshold. However, our data indicate that this threshold is not attained after longer duration, 

lower intensity self-paced exercise. 

 

Paragraph 23. The most likely explanation for the greater magnitude of peripheral fatigue 

observed after the 4 km is the higher intensity of this trial. The concept of a critical threshold 

of peripheral fatigue is currently limited to studies of high-intensity locomotor (2-6) and 

isolated muscle (11) exercise. During these trials the high exercise intensity elicited responses 

consistent with non-steady state exercise; including a high and rising blood lactate response 

(Figure 2), attainment of near-maximal values for oxygen uptake (Table 1) and, in other 

work, a progressive recruitment of higher threshold motor units (11). The critical intensity 

(i.e. torque, speed, power) for a given task demarcates the boundary between sustainable, and 

unsustainable exercise, and exercise above and below this intensity is characterized by 

distinct physiological responses (11, 22). High-intensity exercise is associated with 

significant disruption to intramuscular homeostasis (22), and a disproportionate increase in 

the rate of peripheral fatigue development (11). It is possible that the greater degree of 

peripheral fatigue observed in the 4 km reflects the distinct physiological responses observed 

during high-intensity exercise. In contrast, the elevated but stable blood lactate response in 

the longer TTs indicates the exercise intensity in these trials was sustainable for the majority 

of the bout (Figure 2). During lower-intensity, longer-duration exercise peripheral fatigue 

occurs without significant metabolic disturbance (22), and exercise terminates with a 

substantial motor unit reserve (11). The smaller but significant degree of peripheral fatigue 

observed after the longer TTs is probably specific to the lower threshold motor units 

responsible for the exercise task (27), and likely explained by the lower average intensity of 

the longer trials.  

 

Paragraph 24. Why was peripheral fatigue different between trials? The differing degree 

of peripheral fatigue observed after self-paced locomotor exercise of different durations is 

therefore likely explained by differences in exercise intensity, and further work is warranted 

to explicitly test this postulate. However, this proposal does not explain why peripheral 

fatigue was lower in the longer duration trials where participants were afforded the ability to 

self-pace. The pacing strategy adopted was also consistent between trials (Figure 1, panel A), 



suggesting no influence of this on the observed differences in fatigue. For longer duration 

TTs, our data suggest factors other than muscle fatigue might play a larger role in limiting 

performance. Greater demands on temperature regulation, glycogen utilisation, and additional 

central fatigue occur during sub-maximal exercise (22) which might have limited the 

attainment of a greater magnitude of peripheral fatigue after the longer time-trials. 

Alternatively, the longer duration of the trials might have negatively impacted motivation, 

and the observed difference in peripheral fatigue could reflect a psychological rather than 

physiological limit to performance. Both mean and peak RPE were higher in the 4 km 

compared to the 20 and 40 km (Table 1, Figure 1 panel B). In the present study the RPE scale 

was used as originally defined to measure the total physical and psychic strain of the exercise 

(10). In this respect the RPE does not distinguish between the perception of effort, defined as 

the conscious awareness of the central motor command to the active muscles (29) and the 

perception of exertion or sensation of fatigue that arises due to afferent feedback from the 

working muscle (43). Consequently, it is unknown whether the higher RPE in the 4 km 

reflects a higher perception of effort (because of a greater power output) or a higher 

perception of exertion (because of a stronger afferent signal). Both concepts are limiting 

factors to self-paced exercise performance (1, 26) but will be balanced against the desire to 

perform, knowledge of the endpoint and previous experience of similar exertion (24). The 

shorter duration of the 4 km trial, where the endpoint of exercise is within reach for much of 

the bout, might permit a higher sensory tolerance limit than could be reached during longer 

duration trials. In contrast, the substantial degree of both central and peripheral fatigue in the 

latter stages of the longer time-trials might act collectively to negatively impact motivation, 

and the effort required to sustain a higher power output might have been perceived as 

unattainable (25).  

 

Paragraph 25. Greater central fatigue after longer TTs. While the degree of peripheral 

fatigue was lower after longer time-trials, central fatigue (defined as a reduction in the 

voluntary activation of muscle) was exacerbated. This pattern supports previous research in 

both single limb and locomotor exercise models that has demonstrated a duration-dependent 

contribution of central fatigue to reductions in the voluntary force producing capability of 

skeletal muscle (11, 23, 31). For single-limb exercise, Burnley et al. (11) demonstrated that 

central fatigue decreased as exercise intensities increased above critical torque in the knee 

extensors. The present study is the first to explicitly compare different durations of locomotor 



exercise, but the available literature also suggests a duration-dependent contribution of 

central processes to fatigue, at least for constant-load exercise. For example, reductions in 

VA have been observed after 4 hours of cycling (23) and 5 hours of running (31) at 55% of 

aerobic maximum. For higher intensity constant-load cycling, significant central fatigue has 

been observed after 30-40 min of repeated 5 minute intervals at 80% of aerobic maximum 

(38) that only manifests after 80% of the exercise bout is completed (13). For a continuous 

bout of constant-load cycling to exhaustion at a similar intensity, reductions in VA have been 

observed after only 8 min of exercise (18). Collectively, the current data and the available 

literature suggest that central fatigue is exacerbated in a duration-dependent manner, but the 

intensity of exercise also seems to be of influence. This is further supported by the present 

data, as central fatigue was similar in the 20 km compared to the 40 km despite the longer 

duration of the 40 km. Further work that explicitly compares different durations of exercise, 

both self-paced and constant-load, is warranted to better understand the contribution of 

central and peripheral processes to the fatigue induced by locomotor exercise. 

 

Paragraph 26. The reduction in voluntary activation measured using TMS followed a similar 

pattern to that measured using stimulation of the motor nerve, with greater reductions after 

the 20 km and 40 km compared to the 4 km. This reduction implicates a potential 

contribution of supraspinal processes to fatigue, or sub-optimal output from motor cortical 

cells (17). The resting excitability of the corticospinal pathway was also significantly 

depressed after the 20 and 40 km, with no apparent depression after the 4 km (Table 3). 

Whether or not this depression could have contributed to the observed central fatigue is not 

clear, particularly considering corticospinal excitability was unchanged when measured 

during contraction (Table 3), a finding that has previously been reported after prolonged 

constant-load locomotor exercise (38). In addition, without a concomitant measure of 

motoneuron excitability (i.e. via stimulation at the cervicomedullary junction) it is not 

possible to distinguish between changes in cortical vs. motoneuron excitability. Further work 

is warranted to better understand the functional consequences of fatigue-induced changes at 

all levels of the motor pathway. 

 

Paragraph 27. The measurement of fatigue post-exercise in this study was completed within 

2.5 min of exercise cessation. Considering significant recovery of muscle function can occur 

2 min post-exercise (16) it is likely that the magnitude of central and peripheral fatigue was 



under-estimated. This limitation is common to the majority of literature studying fatigue 

incurred by locomotor exercise modes, and assumes that the fatigue observed after exercise is 

also present during the bout. This notwithstanding, the time taken to assess fatigue was 

consistent between trials, significant central and peripheral fatigue was observed after all 

time-trials and the magnitude of central and peripheral fatigue was influenced by time-trial 

length. These observations suggest the methods employed were suitable to detect differences 

in the central and peripheral contributions to fatigue after time-trial exercise of different 

durations. The time-delay might also have masked changes in processes relating to fatigue 

that could recover quickly on exercise cessation. For example, membrane excitability in the 

VL was unchanged post-trial in this study, but has recently been shown to be depressed 

during, but not post-, a 30 min bout of locomotor exercise (39). In addition, the cortical silent 

period has consistently been shown to lengthen during sustained isolated muscle exercise, 

including for knee extensor contractions (21) but recovery on exercise cessation is rapid (12, 

45, 46). The lack of difference observed in these variables post-exercise, which have been 

reported in other similar studies (18, 38) could be due to the time delay between the end of 

exercise and the assessment of neuromuscular function. Assessing the development of central 

and peripheral fatigue during exercise is an area warranting further research (40). 

 

Paragraph 28. In conclusion, the contribution of central and peripheral processes to fatigue 

after self-paced time-trial cycling exercise is task-dependent, with a greater degree of 

peripheral fatigue evident after shorter, high intensity (~6 min) time-trials, and an increased 

contribution of central fatigue after longer, lower intensity time-trials (>30 min). These 

findings suggest an intensity- and duration-dependent influence on the neuromuscular 

underpinning to fatigue after self-paced exercise, and further research that explicitly 

compares the central and peripheral contributions to fatigue after locomotor exercise tasks of 

different demand is warranted.  
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Table & Figure Legends 

 

Table 1. Performance, cardiorespiratory and perceptual responses to 4, 20 and 40 km cycling 

time trials. Values are mean ± SD for the whole trial (n = 13). 

 

Table 2. Neuromuscular function and surface EMG responses to electrical stimulation of the 

motor nerve at rest and during maximum voluntary contraction pre- and post- 4, 20 and 40 

km cycling time-trials (Values are mean ± SD, n = 13). 

 

Table 3. Neuromuscular function and surface EMG responses to magnetic stimulation of the 

motor cortex at rest and during maximum voluntary contraction pre- and post- 4, 20 and 40 

km cycling time trials (Values are mean ± SD, n = 11) 

 

Figure 1. Time-course of power output (A) and rating of perceived exertion (RPE, B) during 

4, 20 and 40 km cycling time-trials expressed relative to the distance covered in each trial. 

Values for power output are 1% means of the total distance covered. Values for RPE are 

mean ± SD, error bars are omitted for clarity. 

 

Figure 2. Time-course of blood [lactate] (mMol·L-1) response to 4, 20 and 40 km cycling 

time-trials (values are mean ± SD). Capillary blood sampling was aligned between trials such 

that samples occurred at the same distance covered in each, based on sampling blood at 20% 

of the distance covered in each trial. 

 

Figure 3. Pre- to post-trial percentage change in maximum voluntary contraction (A), 

potentiated twitch (B), voluntary activation measured with motor nerve stimulation (C) and 

voluntary activation measured with cortical stimulation (VATMS) (D) after 4, 20 and 40 km 

cycling time-trials. Values are mean + SD. *P < 0.05 different from 20 km, †P < 0.05 

different from 40 km. 

 

 

 

 



Supplemental digital content 

 

Supplemental digital content 1. Raw traces of twitch forces and electromyographic (EMG) 

responses to transcranial magnetic stimulation (TMS) and peripheral motor nerve stimulation 

(PNS) from a representative participant. A, superimposed twitch (SIT) forces evoked by TMS 

during contraction strengths of 50%, 75% and 100% maximum voluntary contraction (MVC, 

background voluntary force has been offset to allow direct comparison). B, calculation of 

estimated resting twitch (ERT) force from the linear regression between evoked twitch force 

and voluntary force, pre- (l) and post- (�) time-trial exercise. C, Motor evoked potentials 

(MEPs) measured in vastus lateralis (VL) during contractions at 50%, 75% and 100% MVC, 

and in biceps femoris (BF) during MVC (NB. cortical silent period not shown). D, SIT and 

potentiated twitch force (Qtw,pot) in response to PNS pre- (black line) and post- (grey line) 

time-trial exercise. E, M-waves measured in VL and BF during MVC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 



 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 



 


