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Abstract 
This PhD thesis focuses on using time series models for counts in modelling and 
forecasting a special type of count series called intermittent series. An intermittent 
series is a series of non-negative integer values with some zero values. Such series 
occur in many areas including inventory control of spare parts. Various methods 
have been developed for intermittent demand forecasting with Croston?s method 
being the most widely used.  
Some studies focus on finding a model underlying Croston?s method. With none of 
these studies being successful in demonstrating an underlying model for which 
Croston?s method is optimal, the focus should now shift towards stationary models 
for intermittent demand forecasting.    
This thesis explores the application of a class of models for count data called the 
Integer Autoregressive Moving Average (INARMA) models. INARMA models have 
had applications in different areas such as medical science and economics, but this is 
the first attempt to use such a model-based method to forecast intermittent demand.  
In this PhD research, we first fill some gaps in the INARMA literature by finding the 
unconditional variance and the autocorrelation function of the general INARMA(p,q) 
model. The conditional expected value of the aggregated process over lead time is 
also obtained to be used as a lead time forecast. The accuracy of h-step-ahead and 
lead time INARMA forecasts are then compared to those obtained by benchmark 
methods of Croston, Syntetos-Boylan Approximation (SBA) and Shale-Boylan-
 Johnston (SBJ).  
The results of the simulation suggest that in the presence of a high autocorrelation in 
data, INARMA yields much more accurate one-step ahead forecasts than benchmark 
methods. The degree of improvement increases for longer data histories. It has been 
shown that instead of identification of the autoregressive and moving average order 
of the INARMA model, the most general model among the possible models can be 
used for forecasting. This is especially useful for short history and high 
autocorrelation in data. 
The findings of the thesis have been tested on two real data sets: (i) Royal Air Force 
(RAF) demand history of 16,000 SKUs and (ii) 3,000 series of intermittent demand 
from the automotive industry. The results show that for sparse data with long history, 
there is a substantial improvement in using INARMA over the benchmarks in terms 
of Mean Square Error (MSE) and Mean Absolute Scaled Error (MASE) for the one-
 step ahead forecasts. However, for series with short history the improvement is 
narrower. The improvement is greater for h-step ahead forecasts. The results also 
confirm the superiority of INARMA over the benchmark methods for lead time 
forecasts.        
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Chapter 1 INTRODUCTION 
 
 
 
 
 
 
 
 
This chapter lays the foundations for this thesis and provides an overall perspective 
for this PhD research. It introduces the research by means of an overview of the 
project. The business context and research background are described. The research 
problem and research questions are then defined and the methodology is briefly 
outlined.  
All the above topics are explained in detail by a step-by-step process through 
chapters 2 to 9. However, the introductory chapter is intended to outline the research 
through a summary of the research background and problems, expected results, and 
designated methodology. The structure of chapter 1 and sequences of sections are 
shown in Figure  1-1.  
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Figure ?1-1 The structure of Chapter 1 
 
1.1 Introduction 
To attain a unified understanding of related concepts in this PhD thesis, a brief 
description of the key terms and phrases used in the study is provided in this section. 
These are the definitions that will be adopted in this thesis. More discussion will 
follow in later chapters.   
Time series 
Bowerman et al. (2005) have defined a time series as ?a chronological sequence of 
observations on a particular variable? (p.4). Demand of a product over time and 
inventory level for a product over time are examples of time series.  
One of the most general classes of models for forecasting a time series is the class of 
autoregressive integrated moving average (ARIMA) models (Box et al., 1994). 
ARIMA models are based on adding linear combinations of lags of the differenced 
series and/or lags of the forecast errors to the prediction equation, as needed to 
remove any last traces of autocorrelation from the forecast errors.      
Time series of counts 
Time series of counts is defined by McKenzie (2003) as ?counts of events, objects or 
1.1 Introduction 
1.2 Research Overview 
1.5 Research Problem 
1.3 Business Context 
 
1.6 Research Methodology 
1.7 Thesis Structure 
1.4 Research Background 
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individuals in consecutive intervals or at consecutive points in time?. Integer 
autoregressive moving average (INARMA) models have been proposed for 
forecasting time series of counts, and have received a certain amount of attention 
over the last 25 years. These models are explained in detail in chapter 3. 
Intermittent series  
Intermittent series are time series of non-negative integer values where some values 
are zero (Shenstone and Hyndman, 2005). A common example is intermittent 
demand. Intermittent demand should be distinguished from lumpy demand where the 
nonzero values are highly variable. Methods for intermittent demand forecasting 
(IDF) are reviewed in chapter 2.  
 
1.2 Research Overview 
This PhD concentrates on modelling intermittent demand by integer autoregressive 
moving average (INARMA) processes and proposing a forecasting method based on 
such processes. The study first focuses on stochastic characteristics of INARMA 
processes, including finding the second unconditional moment and the 
autocorrelation function (ACF) and partial autocorrelation function (PACF) 
structure. Lead time forecasts are also developed for INARMA models. 
INARMA models are then used for intermittent demand forecasting. The results are 
compared to some benchmark methods in the literature, namely Croston's method 
(Croston, 1972), Syntetos-Boylan Approximation (SBA) (Syntetos and Boylan, 
2005), and Shale-Boylan-Johnston (SBJ) (Shale et al., 2006). The rationale for this 
choice of benchmarks is given in chapter 2.     
 
1.3 Business Context 
Accurate demand forecasting is a significant concern for many organizations. It lays 
a foundation for every part of inventory management. Various forecasting models 
have been developed to incorporate different components of demand such as trend 
and seasonality. A class of demand called intermittent demand exists in which some 
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periods have no demand at all. This is especially the case for service parts and capital 
goods (Willemain et al., 2004). Examples are commonly found in the aerospace, 
automotive, computer components, electronics, and industrial machinery industries. 
In general, all companies that must stock spare parts face intermittent demand.    
Intermittent time series are also common in business and economic data. There are 
many cases for which non-intermittent data is intermittent at lower levels of data 
disaggregation (for example, greater frequency or smaller geography).  
The items with intermittent demand are not rare and in fact they constitute the 
majority of items held by many stockists (Johnston et al., 2003). These items are also 
important from a financial point of view. In the U.S. alone, service parts management 
grew to a $700 billion business sector in 2001 (Patton and Steele, 2003). The fact 
that, in many cases, service parts face a high risk of obsolescence makes accurate 
forecasting for such items even more important. Lower stock-holding costs and 
higher service levels are the outcomes of more accurate forecasts.  
INARMA models have had applications in a wide area including medical science 
(Franke and Seligmann, 1993; Cardinal et al., 1999), economics (B?ckenholt, 1999; 
Br?nn?s and Hellstr?m, 2001; Freeland and McCabe, 2004b) and service industries 
(Br?nn?s et al., 2002). However, the performance of these models in an intermittent 
demand context is yet to be tested. This testing is to be conducted in this research as 
a new application for INARMA models.  
Although the empirical analysis of this thesis focuses on intermittent demand data, 
the theoretical and simulation findings can generally be applied to any time series 
with low non-negative integer-valued data.     
   
1.4 Research Background 
Many companies use single exponential smoothing (SES) for intermittent demand 
forecasting (Teunter and Sani, 2009) but Croston (1972) shows that this can result in 
biased forecasts and excessive stock levels. He proposes a method based on separate 
exponential smoothing estimates of demand size and interval between demands, 
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which he claims to be unbiased. However, Syntetos and Boylan (2001) show that 
Croston?s method is positively biased. Some methods have been suggested to reduce 
this bias (Lev?n and Segerstedt, 2004; Syntetos and Boylan, 2005). While it is 
confirmed that the correction by Syntetos and Boylan does reduce the bias of 
Croston?s method, the modification by Lev?n and Segerstedt is even more biased 
than Croston?s method (Teunter and Sani, 2009).  
In parallel with these studies, some authors focus on finding a model underlying 
Croston?s method (Shenstone and Hyndman, 2005; Snyder and Beaumont, 2007). 
This is especially useful to find the distribution and prediction intervals of the 
forecasts. However, none of these studies has yet demonstrated an underlying model 
for which Croston?s method is optimal. It has been suggested that the focus should 
now be moved to stationary models for IDF such as time series models for counts 
(Shenstone and Hyndman, 2005).  
Time series models for counts occur as counts of individuals (e.g. the number of 
people in a queue waiting to receive a service at a certain moment) or events (e.g. the 
number of accidents in a firm each three months). If these discrete variates are large 
numbers, they could be approximated by continuous variates; otherwise, special 
models should be used.   
A class of models for count data has been developed, namely the integer 
autoregressive moving average (INARMA) models. These models were originally 
introduced in the 1980s (McKenzie, 1985; Al-Osh and Alzaid, 1987) and it will be 
shown in chapter 3 that they are analogous to well-known ARMA models (Box et al., 
1994).  
Intermittent demand data belong to a broader class called count data. Although count 
data frequently occur in many industries, not many stochastic models have been 
developed for them (Gooijer and Hyndman, 2006). As one of these few models, 
integer autoregressive moving average models have recently received much 
attention. This PhD thesis aims to bridge the gap between models for counts and 
intermittent demand forecasting, focusing specifically on INARMA models. In doing 
so, some issues such as identification, estimation of parameters and lead time 
forecasting need to be addressed. Identification of the autoregressive and moving 
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average orders of INARMA models has been mainly conducted in the literature 
using the autocorrelation function (ACF) and the partial autocorrelation function 
(PACF) (Jung and Tremayne, 2006a; Zheng et al., 2006; Zhu and Joe, 2006; Bu and 
McCabe, 2008). To our knowledge, the ACF of the general INARMA(p,q) process 
has not been looked at before. Therefore, we establish the unconditional variance and 
the ACF of such processes. The conditional expected value of the over-lead-time 
aggregated process are also obtained. The accuracy of h-step-ahead and lead time 
INARMA forecasts are compared to those obtained by the benchmark methods 
mentioned in section  1.2. In doing so, the difficulties of forecasting intermittent 
demand are borne in mind, particularly if the length of data history is short or the 
data is sparse.   
 
1.5 Research Problem 
1.5.1 Initial Problem 
The main problem addressed in this research is as follows:  
o In the context of intermittent demand, is there any benefit in modelling and 
forecasting the demand using INARMA models, in terms of forecast 
accuracy, compared to simpler methods? 
 
1.5.2 Research Questions 
Based upon the above initial research problem, the four detailed questions for the 
research are as follows: 
I. How can the appropriate integer autoregressive moving average (INARMA) 
model be identified for a time series of counts?  
Different methods have been suggested for identification of ARIMA processes 
including: using the sample autocorrelation function (SACF) and the sample 
partial autocorrelation function (SPACF), and using a penalty function such as 
the Akaike information criterion (AIC) or the Bayesian information criterion 
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(BIC). This research focuses on finding the ACF and PACF structure of 
INARMA processes. But, using ACF and PACF needs a visual check. 
Identification based on these functions has not been automated for INARMA 
models as it has been for ARMA models (e.g. in AutoBox). Therefore automated 
methods should be used. It has been suggested in the literature that data should be 
first tested for any serial dependence. As a result, two identification procedures 
are compared in this research: a two-stage procedure first uses a test of serial 
dependence to distinguish between an independent and identically distributed 
(i.i.d.) process and other INARMA processes and then the AIC is used to select 
among other possible INARMA processes. A one-stage procedure does not have 
the first step and only uses the AIC. However, the correct model might not be 
identified at all times. In such cases, it is of interest to find the impact that 
misidentification has on forecast accuracy.  
II. How can the parameters of integer autoregressive moving average 
(INARMA) models be estimated?  
The performance of different estimation methods are to be tested in terms of both 
the accuracy of parameter estimates and their impact on forecast accuracy.  
III. How can an INARMA process be forecasted over a lead time? 
One of the application areas of lead-time aggregation is in the inventory control 
field where there is a lead time between placing an order by a manufacturer and 
receiving it from its supplier. The manufacturer has to place an order to cover the 
demand over the lead time and, therefore, the lead-time demand has to be 
forecasted. The aggregated INARMA(p,q) process over a lead time and its 
conditional expected value are found. The latter is then used as the lead time 
forecast.  
IV. Do INARMA models provide more accurate forecasts for intermittent 
demand than non-optimal smoothing-based methods? 
This research has suggested using INARMA models to forecast intermittent 
demand. The accuracy of forecasts provided by INARMA methods then has to be 
compared with some of the methods that have been used in the literature of 
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intermittent demand forecasting. As this research solely focuses on demand 
forecasting and not inventory control, forecast-accuracy metrics will be used 
rather than accuracy-implication metrics (measures that analyze the effect of 
forecasting methods on inventory performance measures (Boylan and Syntetos, 
2006)). As previously mentioned, the methods that will be used for comparison 
purposes are Croston's method (Croston, 1972), the Syntetos-Boylan 
Approximation (Syntetos and Boylan, 2005), and the method of Shale-Boylan-
 Johnston (Shale et al., 2006).  
  
1.6 Research Methodology 
This section will try to sufficiently clarify the ?philosophy?, ?approach? and 
?strategy? of this study to demonstrate how the expected results in this PhD may be 
achieved. This research follows the ?positivism? philosophy where the research 
approach will be ?deductive?. Accordingly, based upon the detailed hypotheses and 
the required level of generalisation, ?simulation? and then ?empirical study? is 
believed to be the most suitable strategy for this research. 
To explain the research methodology of this study, the approach of the ?research 
process onion? as termed by Saunders et al. (2003) is followed. On this basis, an 
appropriate research philosophy, research approach, and research strategy are 
proposed for the study. Consistent with the research strategy, source(s) of data are 
identified for analysis. The structure of this section is shown in Figure  1-2.  
 
 
Figure ?1-2 The structure of the research methodology 
1.6.1 Research Philosophy 
 
1.6.2 Research Approach 
1.6.3 Research Strategy 
1.6.3.1 Mathematical Analysis 1.6.3.2 Simulation 1.6.3.3 Empirical Study 
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1.6.1 Research Philosophy 
Taking into account the existing knowledge of the overall environment of forecasting 
and time series analysis, the ground philosophy of this research tends towards 
?positivism? (rather than pure ?realism? or ?interpretivism?), i.e. the end product of 
the research can be law-like generalisations. The nature of intermittent data makes it 
difficult for humans to detect patterns for this type of data. This means that a 
positivistic deductive approach is a natural starting point. An interpretivistic 
approach may be more appropriate for investigating human adjustments to 
intermittent demand forecasts.   
 
1.6.2 Research Approach 
Research approaches are classified into two main groups of ?deductive? and 
?inductive?. While the former works on the basis of a clear understanding of the 
research theory and questions, the latter tries to find these through investigations with 
real world data (Saunders et al., 2003). Although some inductive studies have been 
done in the area of forecasting (e.g. Collopy and Armstrong, 1992; Adya et al., 
2001), most of the studies in this field are deductive. A theory is developed first and 
a research strategy to test it is designed. This research is also based on developing a 
theoretical structure and testing the findings by simulation and empirical analysis. 
Hence, a deductive approach is followed in this PhD thesis.  
 
1.6.3 Research Strategy 
A research strategy endeavours to plan the process of answering the research 
questions (section  1.5.2). Our strategy consists of three steps: mathematical analysis, 
simulation and empirical study.  
 
1.6.3.1 Mathematical Analysis 
Although the introduction of INARMA models dates back to the 1980s, there are still 
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an increasing number of studies which investigate the statistical properties of these 
models. The mathematical analysis of this research aims at extending the theory of 
INARMA modelling making it more complete.   
The mathematical results of this PhD are provided in chapters 3 to 6. Some stochastic 
properties of the general INARMA(p,q) process have been obtained which are: the 
unconditional variance and the autocorrelation function (ACF) and partial 
autocorrelation function (PACF). The results of aggregation of an INARMA(p,q) 
process over lead time along with the conditional expected value of the aggregated 
process are established. These results are then used in chapters 8 and 9 to compare 
the performance of the INARMA method with some benchmark methods in 
forecasting intermittent demand.      
 
1.6.3.2 Simulation 
Simulation will be used for the following reasons: 
? to assess the percentage of theoretically generated INARMA time series that 
can be identified correctly 
? to investigate the effect of misidentification on forecasting accuracy 
? to compare the performance of different estimation methods 
? to assess the sensitivity of the results (parameter estimates and forecasting 
accuracy) to the sparsity of data and the length of history 
? to compare the INARMA forecasts with those of the benchmark methods  
It can be seen that simulation is essential for the first three objectives (and the part of 
the fourth objective relating to parameter estimates) because only for theoretically 
generated data, the order of the INARMA model and the parameters are known. For 
the remaining objectives, simulation is useful to gain additional insights. The design 
of the simulation study is explained in chapter 7.   
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1.6.3.3 Empirical Analysis 
The findings of this PhD thesis are to be tested on real empirical data to assess the 
practical validity and applicability of the main results of the study. As discussed, 
simulation helps us to test the accuracy of model identification, when we know that 
the intermittent demand follows an INARMA process with known order and 
parameters. However, this is not true for real data in that we do not have such 
information from the beginning. Therefore, empirical analysis would help us to test 
the applicability of the results in real situations.  
Although many studies focus on the statistical aspects of INARMA models, there are 
fewer studies regarding the application of these models (Jung and Tremayne, 2003). 
There is especially a lack of empirical testing of INARMA models on intermittent 
demand. The demand data series used in this PhD thesis are Royal Air Force (RAF) 
individual demand histories of 16,000 SKUs over a period of 6 years (monthly 
observations) and 3,000 series of intermittent demand for 24 periods (two years 
monthly series) from the automotive industry.  
        
1.7 Thesis Structure 
Based on the position adumbrated in this chapter, this PhD thesis is structured as 
follows. Chapter 2 discusses different definitions and categorizations of intermittent 
demand, reviews methods for intermittent demand forecasting and the accuracy 
measures that can be used in this context. 
Chapter 3 briefly reviews different count models and introduces INARMA models. 
The stochastic properties of these models and their application in the literature are 
examined. The unconditional variance and ACF of the INARMA(p,q) process are 
obtained.  
Chapter 4 reviews different approaches for identification of the order of INARMA 
models. The PACF structure of INARMA models is also derived.  
Chapter 5 discusses methods for estimation of the parameters of these models.  
Chapter 6 investigates the forecasting of an INARMA process over lead time. 
Chapter 7 discusses the design of simulation, and the results of simulation experiments 
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are presented in Chapter 8. 
Chapter 9 assesses the validity of theoretical and simulation results on real intermittent 
demand data. 
Finally, the findings of this PhD research, the limitations and some potential future 
studies are reviewed in chapter 10. The structure of the thesis is shown in Figure  1-3.  
 
Figure ?1-3 The structure of the thesis
 Chapter 1 Introduction 
Chapter 2 Forecasting Intermittent 
Demand  
Chapter 5 Estimation in INARMA 
Models 
Chapter 3 Integer Autoregressive 
Moving Average Models  
 
Chapter 6 Forecasting in 
INARMA Models 
Chapter 7 Simulation Design 
Chapter 4 Identification in 
INARMA Models 
Chapter 8 Simulation Results 
Chapter 10 Conclusions and 
Further Research 
Chapter 9 Empirical Analysis 
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Chapter 2 FORECASTING INTERMITTENT 
DEMAND 
 
 
 
 
 
 
 
 
2.1 Introduction 
This chapter aims to provide an overview of the literature on forecasting intermittent 
demand. This research focuses on integer autoregressive moving average (INARMA) 
models to address intermittent demand modelling and forecasting. As the focus of 
this research is on forecasting, we do not review the literature on inventory control 
for slow-moving items.  
The chapter is organized as follows. Intermittent demand is defined in detail in 
section  2.2. Methods for forecasting intermittent demand are then discussed in 
section  2.3. We start our review with Croston?s method (Croston, 1972) as the most 
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widely used approach in this field. Some variants of Croston?s method are then 
reviewed. Studies based on bootstrapping to forecast lead-time demand are also 
discussed. As this research is based on comparing different forecasting methods, the 
forecast accuracy measures need to be selected. Some accuracy measures cannot be 
used in an intermittent demand context. Section  2.4 determines these measures and 
classifies the measures that can be applied to intermittent series. A number of studies 
have compared different methods of forecasting intermittent demand. These studies 
are reviewed in section  2.5. The motives to use INARMA models for modelling and 
forecasting intermittent demand are discussed in section  2.6 and, finally, section  2.7 
concludes the chapter.  
 
2.2 Definition of Intermittent Demand  
Intermittent demand is defined by Silver et al. (1998) as ?infrequent in the sense that 
the average time between transactions is considerably larger than the unit period, 
the latter being the interval of forecast updating? (footnote, p.127). The main 
disadvantage of this definition is its impracticality, i.e. it does not define how long 
the average time between transactions should be for demand to be considered 
intermittent.   
The definition provided by Johnston and Boylan (1996) is more practical. They 
suggest that demand is intermittent when the mean inter-arrival time between 
demands is greater than 1.25 review intervals. This cut-off value is based on a 
comparison of Croston's method and Single Exponential Smoothing (SES) using 
simulated data. However, this definition also has its limitations: it is simulation 
based, it depends on specific methods, and it does not take into account the 
?lumpiness? of the demand. Intermittent demand is often lumpy, which means that 
the variability among the nonzero values is high (Willemain et al., 2004). However, 
these two concepts should be distinguished. 
Shenstone and Hyndman (2005) introduce another practical definition: ?Data for 
intermittent demand items consist of time series of non-negative integer values where 
some values are zero?. It can be seen that this does not take into account the 
lumpiness of demand either.   
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There are two main categorization schemes for intermittent demand in the literature. 
The first approach, proposed by Williams (1984) and later revised by Eaves and 
Kingsman (2004), is based on second moment variability (transaction variability, 
demand size variability and lead-time variability). The other approach, suggested by 
Syntetos et al. (2005) is based on frequency of transactions and demand size 
variability.    
The classification approach by Eaves and Kingsman (2004) is a revision of the 
method of Williams (1984) who classified demand by decomposing the variance of 
lead-time demand into transaction variability, demand size variability and lead-time 
variability. This is shown in Table  2-1.  
Table ?2-1 The categorization scheme for intermittent demand data (Eaves and Kingsman, 2004) 
Lead-time demand component Demand pattern 
classification Transaction variability Demand size variability Lead-time variability 
Low Low  Smooth 
Low High  Irregular 
High Low  Slow moving 
High High Low Mildly intermittent 
High High High Highly intermittent 
 
The main disadvantage of Eaves and Kingsman?s classification is its lack of 
practicality. Unlike Syntetos et al. (2005), they do not provide cut-off values for 
different classes.  
Syntetos et al. (2005) categorize demand based on the expected mean square error 
(MSE) of each forecasting method. They propose four categories of demand shown 
in Figure  2-1 which are: ?erratic?, ?lumpy?, ?smooth?, and ?intermittent?. Each of 
these demand classes are uniquely specified by two parameters: ? which is the 
average inter-demand interval, and ? which is the squared coefficient of variation of 
the demand when it occurs.  
The classification by Johnston and Boylan (1996) is based on comparing Croston's 
method with SES as methods widely used in forecasting software packages. 
Therefore, although it has the benefit of being practical, one can argue that it is not a 
comprehensive classification method that can be used for all forecasting methods. 
The categorization scheme of Syntetos et al. (2005) also includes the Syntetos-
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Boylan Approximation (SBA) (explained in section  2.3.1.1) in addition to the other 
two methods. The main benefit of their scheme is again its practicality (because of 
determining the cut-off values) and that it is empirically validated. However, as the 
authors mentioned, the categories are based on only one forecast accuracy measure 
(MSE) (see section  2.4 for more information on accuracy measures). 
 
Figure ?2-1 The categorization scheme for intermittent demand data (Syntetos et al. 2005) 
 
The classification by Syntetos et al. (2005) distinguishes between intermittent and 
smooth demand to determine which method should be used in each situation. This is 
because the Syntetos-Boylan Approximation and SES methods are not universal, i.e. 
these methods are not appropriate for both categories of demand.   
This research aims at using integer autoregressive moving average (INARMA) 
models to model and forecast intermittent demand. This method can be used for both 
intermittent and non-intermittent data provided that the data is not lumpy. Therefore, 
we do not need to focus on a specific classification method for intermittence to find 
when the method should be used. We do need to follow a standard definition that is 
practical and universal (not limited to specific methods).   
Among the definitions that we reviewed before, only the one by Shenstone and 
Hyndman (2005) met all the above criteria and therefore is used for the purpose of 
this study. As a result, whenever a data series has at least one zero, it is considered as 
an intermittent data series, and an INARMA forecasting method can be used. 
However, the universality of the INARMA approach means that it can also be used 
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?= 0.49 
?= 1.31 
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when all the observations are positive.   
As previously mentioned, although the classification by Syntetos et al. (2005) is 
practical, it is only based on specific forecasting methods. We will test this 
classification when the data is INARMA. INARMA forecasts will be compared to 
the best benchmark method based on this classification.  
The main reason for not using Eaves and Kingsman classification method is its lack 
of practicality and also because lead-time variability will not be studied in this thesis. 
As mentioned before, the other reason for the selection of Syntetos et al.?s 
classification is that two methods used in their classification (Croston?s method and 
SBA) will be used in this research for comparison reasons.   
This research focuses on using INARMA models with Poisson marginal distributions 
to model intermittent demand. Due to the properties of the Poisson distribution, 
lumpy demand cannot be modelled by these models. As will be explained in chapter 
9, a filtering mechanism will be used to eliminate the lumpy series when dealing with 
empirical data.  
 
2.3 Methods of Forecasting Intermittent Demand  
Inventories with intermittent demands are common in practice (Shenstone and 
Hyndman, 2005) and they create significant problems in the manufacturing and 
supply environment (Syntetos and Boylan, 2001). The accurate forecasting of 
demand is one of the most important issues of inventory management (Ghobbar and 
Friend, 2003). This is more difficult when demand has an intermittent nature 
(Willemain et al., 2004).   
Willemain et al. (2004) divide intermittent demand forecasting (IDF) methods into: 
? simple statistical smoothing methods 
? Croston?s method and its variants  
? bootstrap methods 
from which we focus on the last two classes because, according to Croston (1972), 
the first class results in biased forecasts when applied immediately after a demand 
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occurrence. These methods have also been the subject of some comparison studies, 
including Teunter and Duncan (2009). These studies are reviewed in section  2.5.  
 
2.3.1 Croston?s?Method   
The most widely used approach for forecasting intermittent demand is Croston?s  
method (Shenstone and Hyndman, 2005). Croston (1972) suggested that conventional 
forecasting methods like Simple Moving Averages (SMA) and Single Exponential 
Smoothing (SES) may not be appropriate for slow-moving items. The bias associated 
with SES is expressed in a quantitative form for the case in which forecasts are 
updated after a demand occurrence. He then proposed a method based on separate 
Single Exponential Smoothing (SES) forecasts on the size of a demand and on the time 
period between observing two demands, both with the same smoothing constant ?.  
Let ?? be the demand occurring during the time period ? and the indicator variable ?? 
be: 
??=?
 1 when demand occurs
 0 when no demand occurs
 ? 
Equation ?2-1 
Furthermore, let ?? be the number of periods with nonzero demand during the interval 
[0,?], ??=? ??
 ?
 ?=1 . The size of the ?th non-zero demand is then shown by ?? and the 
inter-arrival time between ???1 and ?? is ??.  
Croston (1972) adopts a stochastic model of arrival and size of demand, assuming 
that demand sizes, ??, are normally distributed, ?(?,?
 2), and that demand is random 
and has a Bernoulli probability 1/? of occurring in every review period 
(subsequently, the inter-arrival time, ??, follows the geometric distribution with a 
mean ?). Both demand sizes and intervals are assumed to be stationary. 
The demand at period ? is given by:  
??=???? 
Equation ?2-2 
Using Croston?s method, the demand size and inter-arrival time between demands 
M.Mohammadipour, 2009, Chapter 2  19 
 
are separately forecasted using Single Exponential Smoothing (SES), with forecasts 
being updated only after demand occurrence. Let ?? and ?? be the forecasts of the 
(?+ 1)th demand size and inter-arrival time respectively, based on demands up to 
period j. Then, based on Croston?s method: 
??=?1??????1 +??? 
Equation ?2-3 
??=?1??????1 +??? 
Equation ?2-4 
The forecast for the next time period is then given by the smoothed size of demand 
divided by the smoothed inter-arrival time: 
??=??/?? 
Equation  2-5 
According to Croston (1972), the expected value and variance of the forecast for the 
stochastic model are given by: 
?????=?/? 
Equation  2-6 
var????=
 ?
 2??
 ?
 ??1
 ?2
 ?2 +
 ?2
 ?
 ?
  
Equation  2-7 
based upon which, he claims the method is unbiased. However, Syntetos and Boylan 
(2001) showed that Croston?s method is biased due to the fact that                   
?(??)??(??)/?(??). Syntetos and Boylan (2005) suggest some modifications to 
reduce the bias which will be discussed in section  2.3.1.1.  
Rao (1973) made corrections to some of the expressions of the forecast variance. 
However, these changes have no effect on the forecast of mean demand.  
Croston?s method is based on using the same smoothing constant (?) for updating 
demand sizes and demand intervals. Schultz (1987) suggests using different 
smoothing constants, ? and ?, for size and interval between demands. 
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Croston's method is also based on assumptions of independence and normality of 
demand, independence of demand sizes and inter-arrival times, and independence of 
inter-arrival times with a Geometric distribution. The validity of these assumptions 
for real-world data has been discussed by several authors (e.g. Willemain et al., 
1994; Snyder, 2002; Shenstone and Hyndman, 2005). Willemain et al. (1994) argue 
that not only might there be autocorrelation among demand sizes and inter-arrival 
times, but it is also possible for sizes and intervals to be correlated.  
Shenstone and Hyndman (2005) explore possible models underlying Croston?s 
method. These models are reviewed in section  2.3.1.4.   
 
2.3.1.1 Bias Correction for Bernoulli Demand Incidence  
As explained in the previous section, Syntetos and Boylan (2001) showed that 
Croston?s forecasts are biased. A new estimator is proposed later by Syntetos and 
Boylan (2005) to reduce the bias associated with Croston?s method. It is shown that 
the bias can be approximated by ?
 ?
 2??
 ?
 ??1
 ?2
 ? as: 
??
 ??
 ??
 ??
 ?
 ?
 +
 ?
 2??
 ?
 ??1
 ?2
  
Equation  2-8 
and based on Equation  2-8 they suggest that the forecast should be multiplied by 
(1?
 ?
 2
 ) in order to reduce the bias.  
???1?
 ?
 2
 ?
 ??
 ??
 ??
 ?
 ?
  
Equation  2-9 
Therefore, the new estimator of mean demand is: 
??=?1?
 ?
 2
 ?
 ??
 ??
  
Equation  2-10 
All of Croston?s assumptions are maintained in the derivation of the new estimator 
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(however, the assumption of normality of demand sizes is not necessary for the 
derivation). Some of these assumptions have been changed in another study by Shale 
et al. (2006) which will be discussed in the next section.  
The new method, called the Syntetos-Boylan Approximation (SBA) in the literature, 
is then compared to three other forecasting methods: Simple Moving Average, Single 
Exponential Smoothing, and Croston?s method on 3,000 real intermittent demand 
data series from the automotive industry. The results suggest that the new method is 
the most accurate estimator for the faster intermittent demand data.  
Teunter and Sani (2009) also compared Croston's method, SBA and modified 
Croston (see section  2.3.1.3) and show that SBA has the smallest average standard 
deviations of all.   
 
2.3.1.2 Bias Correction for Poisson Demand Incidence 
Shale et al. (2006) consider the case of Poisson demand incidence instead of a 
Bernoulli distribution as in Croston?s model. Also, they assume that the inter-arrival 
time follows a negative exponential instead of a geometric distribution. They derive 
the bias expected for this case and provide the correction factor for application. This 
is done for the cases where either a simple or an exponentially weighted moving 
average (EWMA) is used. Hereafter, this method is called the Shale-Boylan-
 Johnston (SBJ) method.    
For the case of a simple moving average, when the ? most recent inter-arrival times 
have a negative exponential distribution, the average of them has an Erlang 
distribution. The correction factor for an adapted Croston?s estimate of mean demand 
for this case is shown to be [(??1)/?]. The adaptation consists of a ratio of simple 
moving average of demand size and demand interval. The estimate of demand would 
then be:   
?????=?
 ??1
 ?
 ?
 ?(??)
 ?(??)
  
Equation  2-11 
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where ?(??) and ?(??) are the arithmetic averages rather than the exponentially 
weighted averages of demand sizes and interval between demands. In the latter case, 
it is shown that the smoothing parameter ??? of EWMA is linked to ? as follows: 
?=
 2??
 ?
  
Equation  2-12 
Based on the above result, the estimate of demand (which will be used later in this 
research) is: 
  
?????=?1?
 ?
 2??
 ?
 ?(??)
 ?(??)
  
Equation  2-13 
When ? is not an integer, the probability distribution is the continuous form of the 
Erlang distribution which is Gamma distribution. The correction factor for this case 
is also [(??1)/?]. 
It has been shown through simulation that these correction factors are very close to 
the observed average bias associated with Croston?s method (Shale et al., 2006). 
 
2.3.1.3 Modified Croston (MC) 
Lev?n and Segerstedt (2004) propose a Modified Croston procedure, based on an 
earlier working paper by Segerstedt (2000), which they claim works for both fast-
 moving and slow-moving items. The procedure is given by:  
??
 ??=???1
 ?? +??
 ??
 ??????1
 ????1
 ??? 
Equation  2-14 
where ??
 ?? is the forecasted demand rate at the end of period ??, ?? is the time 
period in which the demand ?? occurs, ?? is the measured demand quantity during 
the nth period, and ? is the smoothing constant. Demand is assumed to follow the 
Erlang distribution. This modified Croston procedure is then compared to Croston?s 
method in which: 
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??
 ?=
 ??
 ??
  
Equation  2-15 
??=???1 +?(???1????1) 
Equation  2-16 
??=???1 +?(???1????1) 
Equation  2-17 
Where ??
 ? is the forecasted demand rate using Croston?s method and ?? is the 
forecasted demand interval calculated at the end of period ?? with other notations as 
before.  
The simulation results suggest that an inventory control system based on the MC 
procedure and the Erlang distribution yields fewer shortages than a system using 
exponential smoothing and the Normal distribution. The authors believe that is due to 
the MC procedure and not on the assumption of Erlang distribution. 
Lev?n and Segerstedt (2004) claim that the MC estimator avoids bias. However, 
Boylan and Syntetos (2007) prove that not only is it biased, but also its bias is 
substantially greater than the original Croston procedure, especially for highly 
intermittent series. The results of a comparison study by Teunter and Sani (2009) 
confirm the bias of the MC method, showing that it has the highest bias when 
compared to the original Croston?s method, SB approximation and the Syntetos 
approximation (Syntetos, 2001). Therefore, the MC method will not be considered 
further in this thesis.   
 
2.3.1.4 Models?underlying?Croston?s?Method 
Shenstone and Hyndman (2005) use autoregressive integrated moving average 
(ARIMA) models for both size of demand and inter-arrival times. In an attempt to 
find an underlying model for Croston?s method, they have looked at several models. 
First, they assume that ??~ARIMA(0,1,1) and ??~ARIMA(0,1,1), where ?? is the 
size of the jth non-zero demand, ?? is the inter-arrival time between ???1 and ??, and 
?? and ?? are independent. They also restrict the sample space of the underlying 
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model to be positive by defining log(??)~ARIMA(0,1,1) and 
log(??)~ARIMA(0,1,1). The other two models are the ones proposed by Snyder 
(2002) in which  ??~ARIMA(0,1,1) and ??~ Geometric(?), and 
log(??)~ARIMA(0,1,1) and ??~ Geometric(?) where ? is the average inter-arrival 
time of the series.  
Shenstone and Hyndman (2005) suggest that any model assumed to be underlying 
Croston?s method must be non-stationary and defined on a continuous sample space 
including negative values. However, they argue that none of the above mentioned 
models is consistent with the properties of intermittent demand data. Finally, they 
suggest that instead of focusing on models based on SES, it is worth considering 
stationary models such as Poisson autoregressive models. These models have not 
been used for intermittent demand data before, opening up a new area of study.  
In a recent working paper, Snyder and Beaumont (2007) claim to find a logically 
sound model underlying Croston?s method. They assume that the sizes of positive 
demands follow a Poisson distribution. However, they assume that the Poisson 
distribution is shifted by one to the right to avoid zero demands. This results in the 
following probability mass function for a positive demand at period ?: 
???=
 (???1?1)
 ??1
 ???1?!
 ?????1+1 
Equation  2-18 
where ? is the value of the positive demand. The probability of a positive demand in 
period ? is then defined by ?? which is:  
??=
 1
 ??
  
Equation  2-19 
Finally, the probability of demand in period ? is given by: 
????=??=?
 1??? if ?= 0
 ????? if ?> 0
 ? 
Equation  2-20 
The above equation is claimed to be the underlying model for Croston?s method 
i.i.d. 
i.i.d. 
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(Snyder and Beaumont, 2007). It can be considered as a model underlying Croston's 
method. However, they have not performed any assessment of the optimality of the 
proposed model for Croston's method. If a model exists for which Croston?s method 
is optimal, then it has yet to be formally established and proven.  
 
2.3.2 Bootstrapping    
Bootstrapping has been proposed by Willemain et al. (2004) and Porras (2005). It is 
based on repeatedly sampling ? demands from demand history to estimate the 
distribution of lead time demand (lead time = ?). The main advantage of bootstrapping 
is that it forecasts the whole lead time demand distribution.   
There are many variants of the bootstrapping method (see for example Efron, 1979; 
Bookbinder and Lordahl, 1989) many of them having the disadvantage of being 
complex, a disadvantage that also holds for the bootstrapping method proposed by 
Willemain et al. (2004). The bootstrapping method proposed by Porras and Dekker 
(2007) is simpler. Both of these methods along with the method proposed by Snyder 
(2002) are discussed in this section.  
 
2.3.2.1 Snyder (2002) 
Snyder (2002) proposes a parametric bootstrap method to generate an approximation 
for the lead-time demand distribution from Croston's model. In each iteration, first, 
the values for noise terms are generated from a normal distribution with mean 0 and 
variance ?2. Then the values for indicator variables (??, Equation  2-1) are generated 
from a Bernoulli distribution with probability
 p
 . A realisation of future demand 
series is then produced based on Croston?s method (Equation  2-3 and Equation  2-4), 
and finally, the lead-time demand is calculated from ? ??
 ?+?
 ?=?+1 .  
In order to tackle the problem of having negative demands, Snyder (2002) suggests 
two adaptations. The first is to apply exponential smoothing to the logarithm of the 
data, which is called log-space adaptation. The other method, called the adaptive 
variance version, differs from Croston?s method in two respects: (i) variability is 
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measured in terms of variances instead of mean absolute deviations (MAD); (ii) a 
second smoothing parameter, ?, is used to define changes of variability over time. 
Snyder (2002) claims that the advantage of the methods is that they can be applied to 
both fast and slow moving demand. However, they have the disadvantages of 
underestimating the variability of lead-time demand due to ignoring the effects of 
estimation error, and being based on the Normal distribution, which may not be 
appropriate when demand sizes are small. 
 
2.3.2.2 Willemain et al. (2004)  
Bootstrapping (Efron, 1979) produces pseudo-data by sampling with replacement 
from the observations. Willemain et al. (2004) develop a modified bootstrap to 
forecast the distribution of the sum of intermittent demands over a fixed lead time. 
The modification allows for autocorrelation, frequent repeated values, and relatively 
short series which are ignored in conventional bootstrapping.    
The underlying model of intermittent demand incidence that they assume is a two-
 state, first order Markov process.  
As for the demand sizes, two models have been discussed. The first model only 
assumes that demand sizes are stationary and they can be obtained by the method of 
sampling from the nonzero values that have appeared in the past. The problem here, 
as also mentioned by Willemain et al. (2004), is that no different values would 
appear in the future. As a result, they suggest an ad hoc method to deal with demand 
sizes called ?jittering? based on no model for demand sizes.    
The method is based on generating a sequence of zero and nonzero values over the L 
periods of the lead time. The state transition probabilities are estimated from the 
historical demand series using started counts. Then values are assigned to nonzero 
forecasts. Here, instead of only choosing nonzero values that have appeared in the 
past, which results in having no different values in the future, they jitter the selected 
value from the past, i.e. add some random variation to it.  
Although some methods for intermittent demand forecasting are based on the 
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assumptions that demands in each time period are independent and normally 
distributed, with neither of them necessarily being valid for intermittent demand 
(Willemain et al., 2004), Willemain et al.?s bootstrap method requires neither 
assumption. It only assumes that demand is stationary.  
The main advantage of bootstrapping is that it does not rely on any distribution while 
all other methods do. However, the model of Willemain et al. (2004) for demand 
occurrence is not general and also the method of producing variable demand sizes is 
ad hoc.   
They compare the accuracy of the developed bootstrap against exponential 
smoothing and Croston?s method by applying them to over 28,000 items provided by 
nine industrial companies. The results suggest that, although Croston?s method 
provides more accurate estimates of the mean level of demand at the moments when 
demand occur, it does not outperform exponential smoothing when forecasting the 
lead time distribution. However, the bootstrap provides an improvement on 
exponential smoothing, especially for short lead times. 
Gardner and Koehler (2005) argue that Willemain et al. (2004) did not use the 
correct lead time demand distribution for exponential smoothing and Croston's 
method in their comparison. They also argue that Willemain et al. (2004) should 
have considered the modifications to the Croston's method that have shown 
improvements. 
 
2.3.2.3 Porras and Dekker (2007)  
Porras and Dekker (2007) propose another procedure to specify the lead time 
demand (LTD) distribution. Known as the Empirical Method, it differs from 
Willemain?s in that it constructs a histogram of demand over lead time without 
sampling. Therefore, it has the benefit of capturing the autocorrelation of LTD. It is 
also easier than Willemain?s bootstrap to implement. However, when lead time is 
long and the length of demand history is short, which is often the case for 
intermittent demand data, there are few blocks of LTD to select from. 
Another problem with this method is that, particularly for short lead times (say ?=
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1), it is not possible to attain high percentiles in the demand distribution. Even if a 
high percentile can be reached, it might be an outlier and not representative of the 
population. Willemain et al. (2004) tackle this issue by introducing jittering, as 
explained in the previous section.     
An empirical study is conducted to compare the performance of the new method 
from an inventory control perspective to other methods including: Willemain?s 
bootstrap, Normal distribution, and Poisson distribution. For the normal-based 
model, it is assumed that demand per period follows a Normal distribution. The 
average and standard deviation of the observed demand are then used to estimate the 
parameters of the Normal lead time demand. When the lead time demand is assumed 
to have a Poisson distribution, the parameter is estimated from the demand data for 
the different items.   
The results show that although demand of spare parts does not generally follow a 
Normal distribution, the Normal model performs well, producing the highest savings 
in inventory costs. It has also been found that the Empirical Method outperforms the 
Willemain method.     
 
2.3.3 Causal Models   
As pointed out by Hua et al. (2007), demand of spare parts can be attributed both to 
the status of the equipment and the spare parts, and to the maintenance policy. Hua et 
al. (2007) establish the impact of the maintenance policy through finding the 
relationship between explanatory variables and the nonzero demand of spare parts. 
They develop a method called the Integrated Forecasting Method (IFM) that first 
forecasts the occurrence of nonzero demand and then estimates the lead time 
demand. The first is done using an autocorrelation function to choose either a 
Markov process or explanatory variables, while the second is done by sampling from 
the nonzero values observed in the past and summing them over the lead time. They 
compare the results of the Markov Bootstrapping (MB) method (same as 
Willemain?s bootstrapping method except that the jittering technique is not used) 
with IFM. The performance of SES, Croston?s method, MB and IFM is also 
compared based on the mean absolute percentage error of lead time demand 
M.Mohammadipour, 2009, Chapter 2  29 
 
(MAPELTD). The results confirm that Croston?s method provides more accurate 
estimates of mean LTD than the other methods.   
Ghobbar and Friend (2002) study the source of lumpiness of demand for aircraft 
maintenance repair parts, in order to reduce the occurrence of part shortages. They 
study the effect of five environmental factors on lumpiness. These factors are: the 
primary maintenance process (PMP) (including hard-time and conditional-
 monitoring), the aircraft utilization rate (AUR), the component?s overhaul life 
(COL), the squared coefficient of variation of demand (CV2) and the average inter-
 demand interval (ADI). The first three factors are independent variables and the last 
two are dependent variables in the general linear model (GLM). The results show 
that the demand variability increases when the level of aircraft utilization and flying 
hours increases. It shows that AUR can be a major source of lumpiness because it 
increases the CV2 and decreases the ADI for the observed demand.  
In another study, they compare the results of 13 forecasting methods including 
Croston?s method, SES, and also those used by aviation companies (Ghobbar and 
Friend, 2003). Four environmental factors considered in this study are: the seasonal 
period length, primary maintenance process (PMP), squared coefficient of variation 
(CV2) and the average inter-demand interval (ADI). CV2 and ADI are taken as 
covariate factors while the other two are considered as categorical factors. The 
variation attributable to each factor and their interactions is studied through using 
analysis of variance (ANOVA).  
Ghobbar and Friend (2003) also establish a predictive error-forecasting model 
(PEFM) to compare different forecasting methods based on their factor levels to 
evaluate which method is the best in any situation. The model is based on a GLM 
that predicts a response variable using its relationship with factor variables.       
The results of studies on causal models show an interesting line to pursue. These 
models are especially useful when a short demand history is available and time series 
methods cannot be used (Boylan and Syntetos, 2008). However, these models have 
not yet been well developed in the literature. As a future line of study, the effect of 
incorporating these models and INARMA models on the accuracy of forecasts can be 
investigated (see chapter 10).       
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2.3.4 Conclusions on IDF Methods   
Three classes of methods for intermittent demand forecasting have been reviewed in 
this section, namely Croston?s method and its variants, bootstrapping methods, and 
causal methods. 
Empirical studies have proved the ability of Croston?s method and variants 
(especially SBA) to produce reasonable forecasts (Eaves and Kingsman, 2004; 
Syntetos and Boylan, 2005). However, properties of these methods (such as bias) 
have been derived based on assumptions of independence of demand, independence 
of demand sizes and inter-arrival times. As mentioned, some of these assumptions 
are not valid for real-world data. Another problem with Croston?s method is that it 
has not yet been shown to be optimal for a specific demand model. Modelling 
intermittent demand by INARMA models makes it possible to take into account the 
correlation between demands. Another advantage is that optimal methods are known 
to exist for these models.  
Bootstrap methods have the advantage of having no distributional and independence 
assumptions. The main disadvantage of these methods is that they are rather 
complex. These methods along with causal methods have not been well developed in 
the literature and more comparative studies with the best benchmark methods (as 
criticized by Gardner and Koehler (2005)) need to be done to prove their 
performance.      
     
2.4 Assessing Forecast Accuracy 
The nature of intermittent demand data makes some of the conventional accuracy 
measures inappropriate. For example, when one or more of the observed demands is 
zero, the mean absolute percentage error (MAPE) is undefined and, therefore, cannot 
be used. 
In fact, none of the relative-to-the-series accuracy measures can be used because zero 
observations may yield ?division by zero? problems. This includes MAPE, Median 
Absolute Percentage Error (MdAPE), Root Mean Square Percentage Error (RMSPE), 
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and Root Mean Square Percentage Error (RMSPE).  
Although the symmetric MAPE introduced by Makridakis and Hibon (1995) tackles 
this issue by dividing the absolute error by the average of the actual observation and 
the forecast:  
sMAPE =?
 ?????
 (??+??)/2
 ?
 ?=1
 /?? 100 
Equation  2-21 
it is known that it suffers from asymmetry problems in its treatment of negative and 
positive errors (Goodwin and Lawton, 1999). Also, if the actual value ?? is zero, 
sMAPE would always be 200%, which is meaningless (Syntetos, 2001).  
As discussed by Syntetos and Boylan (2005), all relative-to-a-base accuracy 
measures that relate the forecast error to a benchmark, usually na?ve 1 method, 
should also be discarded because the error would often be zero.  
The mean absolute scaled error (MASE) proposed by Hyndman and Koehler (2006) 
does not have the problems seen with previous measures. This measure is obtained 
by scaling the absolute error based on the in-sample MAE from a benchmark forecast 
method. Assuming the benchmark method is the na?ve method, the MASE is defined 
as:  
MASE =
 1
 ?
 ? ?
 ?????
 1
 ??1
 ? ??????1?
 ?
 ?=2
 ?
 ?
 ?=1
  
Equation  2-22 
A 
1MASE ?
  means that the forecasting method is on average better than the na?ve 
forecasts, and a 
1MASE ?
  indicates that the method is on average worse than the 
na?ve method. As explained by Hyndman (2006), the in-sample MAE is always 
available and more reliably non-zero than any out-of-sample measures. The MASE 
would be infinite or undefined only if all historical observations are equal. However, 
using in-sample MAE has a disadvantage of making MASE vulnerable to outliers in 
the historical time series (Kolassa and Sch?tz, 2007). As a result, the MASE of two 
time series with the same forecasts and identical true demands during the forecast 
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horizon will be different if the two series differed in their historical demands. This 
makes it a more complicated metric to interpret.  
Syntetos and Boylan (2005) categorize the accuracy measures for the purpose of 
comparing methods in an intermittent demand context into two categories: absolute 
accuracy measures and accuracy measures relative to another method. Each of these 
categories is reviewed as follows.  
 
2.4.1 Absolute Accuracy Measures  
These measures are calculated as a function of the forecast errors alone. Examples 
include the mean square error (MSE) and the mean absolute error (MAE). 
Theoretically, these measures can be computed for intermittent demand. However, 
when averaged across many time series, they do not take into account the scale 
differences between them (Syntetos and Boylan, 2005). Mean error (ME) can be 
considered as an exception to the above rule because it takes into account the sign of 
the error and is less susceptible to scale effects. ME is given by:  
ME =?
 ?????
 ?
 ?
 ?=1
  
Equation  2-23 
If ME is divided by the average demand per unit time period, the scale dependencies 
are eliminated. 
 
2.4.2 Accuracy Measures Relative to another Method  
These measures are calculated as a ratio to other forecasting methods. Examples 
include percent better (PB) and the relative geometric root mean square error 
(RGRMSE).  
The percentage better measure counts and reports the percentage of time that a given 
method has a smaller forecasting error than another method.   
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The RGRMSE for methods A and B in a time series is:  
RGRMSE =
 ?? (?????,?)
 2?
 ?=1 ?
 1
 2?
 ?? (?????,?)2
 ?
 ?=1 ?
 1
 2?
  
Equation  2-24 
The theoretical properties of RGRMSE are discussed by Fildes (1992). He assumes 
that the squared errors of a particular series have the form of:  
??,?+?
 2 =??,?+?
 2 .??+?         
Equation  2-25 
where (??,?+?=??+????,?+?), ??+? are assumed positive and can be thought of as 
errors due to the particular time period affecting all methods equally, while ??,?+? 
are the method?s (M) specific errors. He argues that the model of Equation  2-25 
represents the case where data (and therefore errors) are contaminated by occasional 
outliers. He then shows that the geometric (rather than arithmetic) RMSE is 
independent of  ??+?.  
It can be seen from Equation  2-24 that GRMSE is identical to GMAE because the 
square and the square root cancel each other (Hyndman, 2006): 
GRMSE =
 ?? (?????,?)
 2?
 ?=1 ?
 1
 2
 ?? (?????,?)2
 ?
 ?=1 ?
 1
 2
 =
 ? |?????,?|
 ?
 ?=1
 ? |?????,?|
 ?
 ?=1
 = GMAE 
The only issue with calculating RGRMSE by Equation  2-24 is that if ?? and ??,? are 
identical for a specific time period ?, the measure will be undefined. Despite this 
problem, RGRMSE has been suggested as an appropriate measure for intermittent 
demand data (see for example Syntetos and Boylan, 2005), because in most of the 
cases the forecasts (??,?) are not integer (although averaging methods might produce 
integer forecasts) and therefore, the denominator is not zero. When all of the 
observations are zero, this shows that there has been no demand for the item in a long 
time and in reality no forecasts are made for such items. Therefore, such series can 
be excluded from the study.  
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2.4.3 Conclusions on Accuracy Measures  
When comparing the performance of different forecasting methods, a range of 
accuracy measures should be used. This is because different measures are designed 
to assess different aspects. For example, MSE puts heavier penalties on higher errors 
while MAE is designed to lessen the effect of outliers. It has been found through 
forecasting competition studies such as the M-competition (Makridakis et al., 1982) 
and the M3-competition (Makridakis and Hibon, 2000) that the performance of 
different methods changes considerably depending on the accuracy measure being 
used. As a result, such studies have used several accuracy measures. As discussed 
previously, not all accuracy measures can be used for intermittent demand data.  
MASE has been suggested for intermittent demand studies (Hyndman, 2006). 
Because it is based on in-sample MAE of the na?ve method, there is no ?division by 
zero? problem unless all of the observations are equal. However, MASE, as well as 
MAE, can sometimes be misleading when comparing forecasting methods.  
The following example illustrates how the Zero Forecasting method (ZF) can show 
superiority to exponential smoothing when only MASE is concerned. The idea of 
using ZF as a benchmark comes from Teunter and Duncan (2009). They only used 
MAE and MSE, but we also include ME and MASE in our comparison. The data, the 
same as that presented by Hyndman (2006), are given in Table  2-2.  
Table ?2-2 Example data (Hyndman, 2006) 
 In-sample Out-of-sample 
Actual ??  0 2 0 1 0 1 0 0 0 0 2 0 6 3 0 0 0 0 0 7 0 0 0 0 0 0 0 3 1 0 0 1 0 1 0 0 
Na?ve forecast ??   0 2 0 1 0 1 0 0 0 0 2 0 6 3 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
We have compared Exponential Smoothing (ES) with ZF. The results of ME, MASE, 
MAE, and MSE (average over both in-sample and out-of-sample errors) are given in 
Table  2-3.  
Table ?2-3 Comparing ES with ZF based on different accuracy measures 
 ME MASE MAE MSE 
Exponential Smoothing 
?=?.?  
0.1722 0.7114 1.1754 3.3458 
Zero Forecast 0.8 0.4842 0.8 3.3143 
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The results of Table  2-3 suggest that ZF is the best method when MASE, MAE and 
MSE are used. Teunter and Duncan (2009) suggest that therefore these accuracy 
measures should not be used in this regard and inventory implication metrics should 
be used instead. However, we believe that these measures should be interpreted 
based on what they are designed to measure and, as a result, different measures 
should be used to compare forecasting methods. MASE and MAE are designed to 
measure the absolute errors while ME is designed to measure bias. Because 
intermittent data have many zero observations, when ZF is used on these 
observations, the error would be zero. Therefore, ZF produces better results on 
MASE and MAE than ES does. But looking at ME reveals that the forecasts are 
much more biased than forecasts based on ES.  
Table  2-4 summarizes the absolute accuracy measures which will be used by this 
study. 
Table ?2-4 Accuracy measures for simulation and empirical studies 
 Theory Simulation Empirical 
MSE ? ? ? 
ME ? ? ? 
MASE  ? ? 
RGRMSE   ? 
PB   ? 
 
MSE is a widely used measure in the forecasting literature, is mathematically easy to 
handle, can be linked to a quadratic loss function and therefore it will be used for 
theoretical comparisons. MSE is a sensible measure for evaluating an individual time 
series and, although it is scale dependent and cannot be used for assessing a method?s 
accuracy across multiple series, it can be used in simulation where all the series are 
theoretically generated. Keeping in mind the scale-dependency and sensitivity to 
outliers issues, we will also use MSE for empirical analysis. 
ME can also be used for theoretical comparisons and, as discussed earlier, it does not 
have the scale-dependency problem. Therefore it will be used for both simulation and 
empirical analysis.  
Based on the above mentioned properties, MASE will be used for simulation and 
empirical analysis. It should be mentioned that as both MAE and MASE are used to 
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measure the same factor (absolute errors), we do not see any benefit in using both 
and only MASE will be calculated.  
In addition to the above measures, two relative-to-another-method measures will be 
used for empirical analysis: PB and RGRMSE. The PB is based on comparing the 
MASEs of two methods and determines how often a method is better than another, 
but not by how much. RGRMSE is used to calculate the magnitude of improvement 
(in terms of MSE) of one method over another. Both of these measures have been 
used in an intermittent demand context (Syntetos and Boylan, 2005; Teunter and 
Duncan, 2009). They are insensitive to outliers and have been used in other studies, 
allowing comparative analyses to be undertaken. 
  
2.5 Comparative Studies 
A number of studies have been undertaken to compare methods for forecasting 
intermittent demand (Willemain et al., 1994; Johnston and Boylan, 1996; Eaves and 
Kingsman, 2004; Lev?n and Segerstedt, 2004; Willemain et al., 2004; Syntetos and 
Boylan, 2005). Three of the main comparison studies will be discussed here.  
Eaves and Kingsman (2004) compare the performance of exponential smoothing 
(ES), Croston?s method, Syntetos-Boylan Approximation (SBA), a moving average 
(MA12) and a simple average method. Mean absolute deviation (MAD), root mean 
square error (RMSE) and MAPE have been used to compare the accuracy of 
forecasts obtained by each method, although it has been concluded that these 
measures are not ideal for slow-moving demands. It is also suggested to use stock-
 holdings as a measure instead of the above-mentioned conventional accuracy 
measures. The results show the superiority of SBA with regards to stock-holdings.  
The study by Willemain et al. (2004) compares three methods of ES, Croston?s, and 
Willemain?s bootstrap based on the uniformity of observed lead-time demand (LTD) 
percentiles. It is found that Croston?s method provides a more accurate estimate of 
mean demand than ES, but the same is not true for forecasting the distribution of 
LTD. The results also show that bootstrapping is the most accurate method, 
especially for short lead times.  
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Another study by Syntetos and Boylan (2005) compares the accuracy of forecasts 
obtained by simple moving average (SMA13), SES, Croston?s method, and SBA. 
ME, scaled mean error, RGRMSE, Percentage Better (PB), and Percentage Best 
(PBt) have been used and the results suggest that using different accuracy measures 
leads to different conclusions, agreeing with the findings of Eaves and Kingsman 
(2004). However, the SBA seems to be the most accurate method for faster 
intermittent demand (p values close to 1).  
It is also argued by Teunter and Duncan (2009) that the conflicting results of 
comparative studies in the literature are due to use of inappropriate measures. Instead 
of comparing ?per period forecast error? (measures such as MAD and MSE), they 
propose analyzing the effect of forecasting methods on inventory control parameters 
and also comparing the resulting average inventory and service levels. Boylan and 
Syntetos (2006) also highlight the distinction between these two approaches which 
they refer to as forecast-accuracy metrics and accuracy-implication metrics, 
respectively.  
As discussed previously, because this research only focuses on forecasting and not 
on inventory control, the forecast-accuracy metrics suggested in section  2.4 will be 
used. The proposed method based on INARMA modeling of intermittent demand 
will be compared with Croston?s method, SBA and SBJ. The reason for considering 
Croston?s is its simplicity, popularity (for example, it is used in Forecast Pro), and its 
superiority over SES and SMA (Syntetos and Boylan, 2005). SBA has also been 
proved by a number of studies discussed above to perform reasonably well and 
therefore is included for comparison in this research. SBJ is included because it is 
based on Poisson demand arrivals. The reason for ignoring bootstrapping is that we 
have restricted our model to Poisson marginal distribution which makes it an 
inappropriate comparison considering the fact that there is no distributional 
assumption for bootstrapping.   
 
2.6 INARMA Models  
As discussed by Willemain et al. (1994), stochastic models of intermittent demand 
have assumed that the successive intervals between demands, successive demand 
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sizes, and intervals and sizes are mutually independent. However, their sample data 
contradict this assumption (with some autocorrelations as high as -0.53 and 0.39). 
This emphasizes the necessity to use models that take into account autocorrelation.  
Shenstone and Hyndman (2005) also suggest using integer autoregressive moving 
average (INARMA) models with Poisson marginal distribution or other time series 
models for counts for intermittent demand forecasting. 
This research focuses on using a class of models called INARMA models to model 
intermittent demand. The forecasting method will then be the minimum mean square 
error (MMSE) of the model. We start from a stochastic model for intermittent 
demand and then build a method for forecasting which is optimal for the underlying 
model. It has also the advantage of enabling us to directly find the mean and variance 
of lead-time demand. The conditional mean of lead-time demand will be compared 
with the lead-time forecasts of the benchmark methods in chapters 8 and 9.    
Table  2-5 summarizes the methods for intermittent demand forecasting based on 
their dependence, distributional, and stationarity assumptions. Although this research 
only focuses on INARMA models with Poisson marginal distribution, other discrete 
distributions such as negative binomial can be considered as a future line of study.  
Table ?2-5 The categorization of methods of intermittent demand forecasting based on their assumptions 
Models Dependence structure Distribution 
Croston?s method independent 
Normal sizes of demand 
Geometric inter-arrival times 
SBA independent 
Normal sizes of demand 
Geometric inter-arrival times 
SBJ independent 
Geometric sizes of demand 
Negative Exponential or Erlang 
inter-arrival times 
Bootstrapping:  
Willemain et al. 
(2004) 
Markov demand incidence 
- 
Porras and 
Dekker (2007) 
- 
INARMA modelling  autocorrelated demand Poisson 
 
2.7 Conclusions 
The literature on forecasting intermittent demand has been reviewed in this chapter. 
Different definitions of intermittent demand have been reviewed. In this study, a 
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series is called intermittent if it contains non-negative integer values with some 
values being zero (Shenstone and Hyndman, 2005). As explained, intermittence and 
lumpiness are two different concepts and should be distinguished. This study focuses 
on INARMA models with a Poisson marginal distribution. Although other marginal 
distributions could be used to allow for more demand size variability, in general 
these models are not designed for very lumpy demand. The two classification 
schemes for intermittent demand by Eaves and Kingsman (2004) and Syntetos et al. 
(2005) have been reviewed. As explained, the INARMA approach is universal and 
can be used for both intermittent and smooth demand but we will use the Syntetos et 
al. classification to find the best benchmark method for comparison. 
Different intermittent demand forecasting methods have been reviewed. These 
methods are: 
? Croston?s method and its variants 
? Bootstrapping  
? Causal methods 
Although Croston's method is the most widely used approach for intermittent 
demand forecasting, it has been shown that it is biased (Syntetos and Boylan, 2001). 
Some modifications have been suggested to reduce its bias (e.g. SBA and SBJ) while 
some add even more bias (Modified Croston). The optimal demand model 
underlying Croston's method has not yet been established, although some studies 
have focused on finding such a model (Shenstone and Hyndman, 2005; Snyder and 
Beamont, 2007).  
Different bootstrapping methods have been established in the literature to estimate 
the distribution of lead time demand. The parametric bootstrap by Snyder (2002) has 
the disadvantage of being based on the Normal distribution. The method of 
Willemain et al. (2004), however, is not based on any distributional assumptions. 
Porras and Dekker (2007) develop another procedure for identification of the lead 
time demand. 
The studies on using causal models for intermittent demand forecasting have also 
been reviewed. Both bootstrapping methods and causal models seems promising but 
the literature on these methods is not yet well-developed. As will be discussed in 
chapter 10, incorporating causal factors into INARMA models can be pursued as a 
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future line of study. The performance of INARMA models in forecasting the lead 
time distribution can also be compared to that of bootstrapping methods. 
The fact that intermittent data include zero values makes some of the conventional 
accuracy measures inappropriate. Different accuracy measures that can be used for 
intermittent data are reviewed. Three absolute accuracy measures will be used in this 
research: ME, MSE, and MASE. For the empirical study, two relative-to-another-
 method accuracy measures will be added to the above-mentioned measures: PB and 
RGRMSE.     
Using the INARMA procedure for intermittent demand forecasting has the advantage 
of utilizing a model-based forecasting method which takes into account the 
correlation between demands. Unlike bootstrapping, a marginal distribution has to be 
assumed. The Poisson distribution has been selected because it has been used in the 
IDF literature and also due to its interesting properties in INARMA models, to be 
reviewed in chapter 3.    
As discussed in section  2.5, the results of INARMA method will be compared to 
Croston?s method, Syntetos-Boylan Approximation (SBA) and Shale-Boylan-
 Johnston (SBJ) method.  
The next chapter introduces INARMA models and reviews their properties in detail. 
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Chapter 3 INTEGER AUTOREGRESSIVE 
MOVING AVERAGE MODELS 
 
 
 
 
 
 
 
 
3.1 Introduction 
Continuous-valued autoregressive integrated moving average (ARIMA) models, also 
known as Box-Jenkins models, developed by Box and Jenkins (1970) are used to 
model stationary processes under the assumption of Gaussianity, i.e. all the joint 
distributions of the time series are multivariate normal (Brockwell and Davis, 1996). 
However, this assumption is not valid for modelling count data, especially for low-
 frequency count data that cannot be suitably approximated by continuous models. 
Therefore, a number of models using different approaches have been proposed for 
integer-valued time series in the literature (e.g. Smith, 1979; Zeger, 1988; Zeger and 
Qaqish, 1988; Harvey and Fernandes, 1989).  
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These models are divided into two categories: observation-driven and parameter-
 driven. Observation-driven models specify a direct link between current and past 
observations, while parameter-driven models rely on a latent process connecting the 
observations (Jung and Tremayne, 2006a). As an example of parameter-driven 
models for time series of counts, Zeger and Qaqish (1988) proposed Poisson 
regression to model trend and seasonality explicitly and an unobserved stationary 
process (latent process) to model the autocorrelation.       
One of the early observation-driven models for count data is the model suggested by 
Jacobs and Lewis (1978a; 1978b; 1983) called DARMA (discrete autoregressive 
moving average) models which will be discussed in section  3.2.  
Another class of observation-driven models has been developed by McKenzie (1985) 
and later generalized by Al-Osh and Alzaid (1987) as integer-valued autoregressive 
(INAR) models for modelling series with correlated counting data. Examples of this 
kind of time series include the number of patients in a hospital at a specific point of 
time, the number of people in a queue waiting to receive a service at a certain 
moment (Silva and Oliveira, 2004), and the number of accidents in a firm each three 
months (McKenzie, 2003).  
Table  3-1 briefly describes the most frequently used count models and summarizes 
their strengths and weaknesses (McKenzie, 2003; Rengifo, 2005). 
This thesis is focused on integer autoregressive moving average (INARMA) models. 
As explained in chapter 2, the need for a model-based method for intermittent 
demand forecasting has motivated this research. The similarities that these models 
have with the conventional ARMA models are also an advantage. Because DARMA 
models are also based on ARMA models, we introduce them in section  3.2. The 
main reasons for excluding these models from our study are explained in this 
section.   
This chapter mainly focuses on introducing the INARMA models and reviewing 
their statistical properties. Identification of these models, estimation of their 
parameters and INARMA forecasting will be discussed in subsequent chapters.   
This chapter is structured as follows. In section  3.2, DARMA models are introduced. 
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INARMA models are reviewed in section  3.3. Summary of literature review and the 
conclusions are provided in sections  3.4 and  3.5.   
Table ?3-1 Review of count models in time series 
Model Description  Strengths and weaknesses 
Markov chains First, the transition probabilities between all 
the possible values that the count variable 
can take are defined. Then, the appropriate 
order of the time series is determined  
(e.g. see Raftery 1985, and Pegram 1980). 
This method can only be reasonably 
used when the possible values that 
the observations can take are very 
limited. It is generally 
overparametrized and too limited in 
correlation structure. 
   
Discrete 
Autoregressive 
Moving Average 
(DARMA) models 
These models are structurally based of 
ARMA models and are probabilistic mixtures 
of discrete i.i.d. random variables with a 
marginal distribution (see section  3.2). 
When the serial correlation is high, 
the data will be characterized by a 
series of runs of a single value. 
Therefore, they are rarely used. The 
main application is in the hydrological 
literature. 
   
Integer 
Autoregressive 
Moving Average 
(INARMA) models 
These models are a generalization of the 
linear ARMA models for count data (see 
section  3.3). 
The models have the same serial 
correlation structure as ARMA 
models. The marginal distribution of 
the model is same as the distribution 
of the innovations if the latter is 
Poisson.  
   
Regression models 
(or generalized linear 
models) 
These are regression models for the special 
case where the dependent variable is a non-
 negative integer with a correction for 
autocorrelation (Zeger, 1988; Br?nn?s and 
Johansson, 1994). 
These models are generally easy to 
construct and have the 
ovserdispersion property. An explicit 
joint density function cannot be 
obtained which restricts the class of 
possible predictors.  
   
The hidden Markov 
models 
These models are extension of the basic 
Markov chains models, in which various 
regimes characterizing the possible values 
of the mean are identified. It is then 
assumed that the transition from one regime 
to another is ruled by a Markov chain 
(MacDonald and Zucchini 1997). 
There is no accepted way of 
determining the appropriate order for 
the Markov chain. There can be too 
many parameters to estimate, 
especially when the number of 
regimes is large.  
   
State Space models These models specify the conditional 
distribution of the series to depend on 
stochastic parameters that evolve according 
to a specified distribution. The parameters of 
such distributions are determined by some 
regressors (Harvey and Fernandes, 1989; 
Durbin and Koopman, 2000). 
These models are very general and 
can be used in a wide range of 
applications. The behaviour of 
different components of the series 
can be modelled separately and then 
put together.    
 
3.2 DARMA Models   
This class of models was first introduced by Jacobs and Lewis (1978a) for a 
stationary sequence of dependent discrete random variables. Because we focus on 
INARMA models in this thesis, only a brief review of the first order discrete 
autoregressive model is provided in this section. The applications of DARMA 
models will then be discussed.  
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3.2.1 DAR(1) Model 
The first order discrete autoregressive form, DAR(1), is given by: 
??=?????1 + (1???)?? 
Equation ?3-1 
where {??} are i.i.d. binary random variables with ????= 1?=? and {??} are i.i.d. 
discrete random variables with the probability mass function (hereafter called a 
?distribution? as by the authors) ?1 (Jacobs and Lewis, 1978a). Therefore, in this 
model, the current observation is either the previous observation, with probability ?, 
or another, independent, sample from a specific distribution. This approach is similar 
to the Box-Jenkins approach except that a probabilistic mixture replaces the linear 
combination in the continuous-valued model and, as the authors mentioned, a 
realization of the process will generally contain many runs of a constant value. This 
can be a significant disadvantage of these models. It is obvious that the larger the 
value of ?, the longer the runs.  
It can be seen that, in the model of Equation  3-1, ???1 contains all information about 
the past. Because there is randomization between ???1 and ??, if ?? is chosen, the 
memory of the process before time ? is gone forever.  
The autocorrelation function (ACF) of {??} is given by: 
??=?
 ?         for ?= 0,1,? 
Equation ?3-2 
The conditional mean of ?? given ???1 is linear in ???1 and the conditional variance is 
quadratic in ???1. It also follows from Equation  3-1 that {??} is a Markov chain since: 
????+1 =??1,?,???=????+1 =???? 
Equation  3-3 
The transition matrix for this Markov chain is given by: 
 
                                                 
1 ????=??=?(?) ?= 0,1,?  
M.Mohammadipour, 2009, Chapter 3  45 
 
????+1 =???=??=?
 ?1????(?) for ???
 ?+?1????(?) for ?=?
 ? 
Equation  3-4 
It can be seen from Equation  3-1 that when ?= 0, the model is reduced to a 
stationary sequence of i.i.d. random variables with distribution ?.  
The mixed DARMA(p,q+1) model is built by adding the two autoregressive and 
moving average components as follows:  
??=???????+ (1???)?????1 
Equation  3-5 
??=???????+ (1???)?? 
Equation  3-6 
where {??} and {??} are as before. {??} are i.i.d. random variables defined on the set 
?= {1,2,?,?} in such a way that ????=??=??. {??} are i.i.d. random variables 
so that ????=??=?? for ?= {0,1,?,?} and {??} are i.i.d. binary random 
variables with ????= 1?=?. 
 
3.2.2 Applications of DARMA Models 
Applications of DARMA models can be found mainly in the hydrological literature. 
This is not surprising given the structure of the model, which represents dependence 
as runs (McKenzie, 2003). These applications are briefly discussed below.     
In climatic analysis, these models were introduced by Buishand (1978). He proposes 
a binary discrete autoregressive moving average (B-DARMA) process to model daily 
rainfall sequences and finds that this model is promising in tropical and monsoonal 
areas.  
Chang et al. (1984) use the same type of models (B-DARMA) in their study of daily 
precipitation by transforming the daily level of precipitation into a discrete variable 
based on its magnitude. They conclude that the statistical properties of the daily 
rainfall process can be preserved by DARMA models. 
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Salas et al. (2001) use DARMA models to simulate the return period and risk of 
extreme droughts. A series of wet and dry years is obtained from a continuous-valued 
hydrologic series, such as annual stream flows, and a method is presented for relating 
the autocorrelation functions of these two series. The analysis of 23 series of annual 
flows reveals that this relationship is applicable and reliable.  
Ksenija (2006) employs a DARMA(1,1) model to describe the wet-dry day 
sequences in Split, on the middle Adriatic coast of Croatia. The results are compared 
to the DAR(1) model and reveal that, although both models underestimate dry spell 
runs, the DARMA(1,1) model provides a better fit to the empirical distribution both 
for short (one day) and long runs (more than 10 days). But, for short wet spells, the 
DAR(1) model estimates are closer to the observed frequencies of short spells in the 
months studied. 
As previously mentioned, the main disadvantage of the DARMA models, which 
makes their application areas very limited, is that a realization of the process will 
generally contain many runs of a constant value. This is especially true when the 
serial correlation is high. Therefore we exclude these models and concentrate on 
another class of models for count data, called integer autoregressive moving average 
models, which overcome these problems.  
 
3.3 INARMA Models  
The integer-valued autoregressive models are equivalent to autoregressive models for 
Gaussian time series. By ?equivalent? we mean that they share some similar 
properties, which will be discussed later in relevant subsections.   
First, we introduce the first-order integer autoregressive, INAR(1), model. It has 
been shown that this model belongs to a more general class of models known as non-
 Gaussian conditional linear AR(1), CLAR(1), models (Grunwald et al., 2000). Other 
integer autoregressive, moving average and mixed models are then described.   
Although many papers discuss the statistical aspects of INARMA models, fewer 
studies have been done regarding their practical application (Jung and Tremayne, 
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2003). Some applications of these models are reviewed at the end of this section.  
 
3.3.1 INAR(1) Model   
Before describing the INAR(1) model, we first introduce the meaning of the 
binomial thinning operation defined by Sueutel and van Harn (1979). Suppose Y is a 
non-negative integer-valued random variable. Then, for any ??[0,1], the thinning 
operation ??? is defined by: 
???=? ??
 ?
 ?=1
  
Equation  3-7 
where {??} is a sequence of i.i.d. Bernoulli random variables, independent of ?, and 
with a constant probability that the variable will take the value of unity:   
????= 1?= 1?????= 0?=? 
Equation  3-8 
From the above definition, some of the properties of the thinning operation can be 
obtained as follows:  
(1) 0??= 0 
(2) 1??=? 
(3) ??(???)  (??)?? 
(4) ??????=??(?) 
(5) ??????2 =?2???2?+??1????(?) 
(6) var?????=?2var???+??1????(?) 
where   stands for equal in distribution.   
Now, the integer-valued first order autoregressive, INAR(1), model is defined by the 
Equation  3-9. A discrete time stochastic process, ????, is called an INAR(1) process 
if it satisfies the equation: 
??=?????1 +?? 
Equation  3-9 
d 
= 
d 
= 
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where ??[0,1] and {??} is a sequence of i.i.d. non-negative integer-valued random 
variables, independent of ?? with mean ?? and finite variance ??
 2. ?? and ???1 are 
assumed to be stochastically independent for all points in time. The process obtained 
by the Equation  3-9 is stationary and it resembles the Gaussian AR(1) process except 
that it is nonlinear due to the thinning operation replacing the scalar multiplication in 
continuous models. It should be noted that, in Equation  3-9, subsequent thinning 
operations are performed independently of each other.  
Equation  3-9 shows that, based on the definition of the thinning operation, unlike the 
DAR(1) model, the memory of an INAR(1) model decays exponentially (Al-Osh and 
Alzaid, 1987). 
The two independence limitations we have assumed so far ? independence of  {??} in 
the thinning operation, and independence of ?? and ???1? have been relaxed in a 
study by Br?nn?s and Hellstr?m (2001).  
It is worth mentioning that the probability ? is assumed to be constant here. Alzaid 
and Al-Osh (1993) develop a model in which this probability of retaining an element 
is not constant. Also, Zheng et al. (2007) develop a random coefficient model where 
?? are i.i.d. random variables that can take values in the interval [0,1). 
A realization of ?? in an INAR(1) model of Equation  3-9 has two components: (i) the 
survivors of elements of the process at time (??1), ???1, each with probability of 
survival ? and (ii) the innovation term, ??, which represents new entrants to the 
system in the interval (??1,?]. 
The mean and variance of the process {??} are:  
?????=?
 ??(?0) +??? ?
 ?
 ??1
 ?=0
  
Equation  3-10 
var????=?
 2?var(?0) +?1???? ?
 2??1
 ?
 ?=1
 ???????+??
 2? ?2(??1)
 ?
 ?=1
  
Equation  3-11 
It is shown by Al-Osh and Alzaid (1987) that the autocorrelation function (ACF) of 
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this process is given by ??=?
 ? for ?= 1,2,?. This is identical to the ACF of a 
linear Gaussian AR(1) process. The only difference is that the ACF of the INAR(1) 
model is always positive. 
The derivation of the first and second order unconditional moments of the INAR(1) 
process is straightforward: 
?????=??/(1??) 
Equation  3-12 
var????= (???+??
 2)/(1??2) 
Equation  3-13 
It can be seen that both the first order (regression function) and the second order 
conditional moments are linear in ???1. 
????|???1?=????1 +?? 
Equation  3-14 
var???|???1?=?(1??)???1 +??
 2 
Equation  3-15 
Another similarity between the model of Equation  3-9 and the Gaussian AR(1) is that 
the distribution of the innovation term (??) plays the same role in determining the 
distribution of ?? that the normal distribution of the shock term plays in the AR(1) 
model. In fact, Al-Osh and Alzaid (1987) argue that the distribution of ?? is uniquely 
determined by the distribution of ??.  
In Equation  3-9, {??} can have any non-negative discrete distribution. A natural 
first choice of interest for these variables is Poisson. Al-Osh and Alzaid (1987) 
show that if ??~??(?), the marginal distribution of the process ?? is also Poisson 
??~??(?/(1??)). In this case the model is called PoINAR(1) (Jung and 
Tremayne, 2006b) (or PAR(1) as suggested, for example, by Freeland and McCabe 
(2004b)). Hence, the role of the Poisson distribution in the INAR(1) process is 
analogous to the role of the Gaussian distribution in the AR(1) process.  
The INAR(1) process is a member of a class of models introduced by Grunwald et al. 
(2000). They suggest that nearly all the non-Gaussian AR(1) models are in fact a part 
of a class of conditional linear AR(1) models, CLAR(1).  
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If ????,?= 0,1,? is a time-homogeneous first-order Markov process on a sample 
space ???, then it is said to have CLAR(1) structure if it satisfies: 
?????1?=????1 +? 
where ?????1?=?(??|???1)  and ? and ?  are real numbers. Grunwald et al. (2000) 
show that stochastic properties of CLAR(1) models are similar to those of the 
Gaussian AR(1) model. 
 
3.3.2 INAR(2) Model    
To take into account higher order dependence in the data, higher order INAR models 
are developed. In this section, the second order model, INAR(2), will be reviewed 
briefly.  
A discrete time stochastic process, {??} is called an INAR(2) process if it satisfies the 
equation: 
??=?1????1 +?2????2 +?? 
Equation  3-16 
with all the previously mentioned definitions, except for the thinning mechanism. 
There are two approaches regarding the binomial thinning mechanism.  
The first approach is proposed by Alzaid and Al-Osh (1990) and the other by Du and 
Li (1991). The corresponding processes will henceforth be denoted by INAR(2)-AA 
and INAR(2)-DL, respectively, as in Jung and Tremayne (2006b).   
In the INAR(2)-AA process, the random variables ?1????2 and ?2????2 which are 
elements of ???1 and ??, are connected in a powerful way. In fact, ??1?? and ??2?? 
and ???2 are dependent although they appear in different times. The vector (?1?
 ??,?2???) given ??=?? is multinomial with parameters (?1,?2,??). To understand 
this structure, consider the simulated process: at time ?, ?? is observed and from the 
previous time period we have ???1 and we have formed ?1????1, and ?2????1. 
Now, we form ??=?1??? and ??=?2???. Then we have ??+1 =??+???1 +
 ??+1 and ?? is available to obtain ??+2.  
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This dependence results in two important consequences: (i) the process maintains its 
physical interpretation in terms of the counts evolving as a birth and death process, 
and (ii) a moving average structure is included into the process in such a way that the 
ACF of the INAR(2)-AA process mimics that of a Gaussian ARMA(2,1) process 
(Alzaid and Al-Osh, 1990). 
The stationarity condition for the INAR(2)-AA process is ?1 +?2 < 1 and, 
assuming
  
??~??(?), the marginal distribution of the process ?? is ??~??(?/(1?
 ?1??2)).  However, the conditional mean function for this model is not linear, 
which shows that this process is not a member of the CLAR class.  
The ACF of the INAR(2)-AA process is given by: 
??=?1???1 +?2???2          for ??2 
Equation  3-17 
where the starting values are ?0 = 1 and ?1 =?1 (Jung and Tremayne, 2006b). 
The other specification of the INAR(2) model is that of Du and Li (1991). The 
concept of their model is closer to the Gaussian higher order AR models in which ?? 
is obtained by a direct multiplication of the constants ?1 and ?2 to ???1 and ???2, 
independent of all previous stochastic structures. It means that at time ? we have 
already observed ???1 and ???2 and the thinning operations are applied independently 
of the previous period which result in: ??= (?1????1) + (?2????2) +??. Du and 
Li (1991) show that the unconditional mean of the process is again ??/(1??1?
 ?2) and the stationarity condition remains the same. However, they show that the 
correlation properties of their model are identical to those of the Gaussian AR(2) 
model which is one of the main differences that distinguishes INAR(2)-DL from 
INAR(2)-AA. An additional difference is that the conditional mean of the ?? in 
INAR(2)-DL is given by: 
?(?????1,???2,??=?1???1 +?2???2 +?? 
Equation  3-18 
which obviously is linear, while that of the INAR(2)-AA process is nonlinear. 
Therefore, the INAR(2)-DL model has a CLAR(2) structure. It should also be noted 
that, even with Poisson innovations, the marginal distribution of ?? is not Poisson, 
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which is in contrast with the INAR(2)-AA model.  
Because the specification by Du and Li (1991) is similar to the conventional AR(2) 
model and we do not use the physical interpretation of the INAR models (as a birth 
and death process which is maintained in the specification by Alzaid and Al-Osh 
(1990)), we use the Du and Li approach in this study. 
 
3.3.3 INAR(p) Model    
Realizations of some counting process {??} might be attributed not only to its 
immediate predecessors {???1} and {???2} as in INAR(2), but also to previous 
realizations of the process, {????}?=3
 ?
 . The pth order integer-valued autoregressive, 
INAR(p), process is defined by Alzaid and Al-Osh (1990) as follows: 
??=?1????1 +?2????2 +?+???????+?? 
Equation  3-19 
with all the previously mentioned definitions. {??} are non-negative constants such 
that the process remains stationary and ?1,?,???1 ?[0,1] and ???(0,1]. The 
stationarity condition for the INAR(p) process is that the roots of the equation                               
????1?
 ??1??????1????= 0 lie inside the unit circle (Alzaid and Al-Osh, 
1990).  
Like the INAR(2), there are two approaches concerning the binomial thinning 
mechanisms. The first model is that of Alzaid and Al-Osh (1990) which will be 
denoted by INAR(p)-AA and the other is the model of Du and Li (1991), known as 
INAR(p)-DL. The idea behind these approaches is the same as that explained for 
INAR(2). The INAR(p)-AA process shares the same correlation properties with the 
Gaussian ARMA(p,p-1) process (Alzaid and Al-Osh, 1990), while the INAR(p)-DL 
mimics the AR(p) process (Du and Li, 1991). 
The unconditional first moment of the INAR(p)-AA process is given by: 
?????=? ???????
 ?
 ?=1
 +?? 
Equation  3-20 
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The conditional moments of ?? are given by: 
????|???1,?,?????=? ?????
 ?
 ?=1
 +?? 
var???|???1,?,?????=? ??(1???)????
 ?
 ?=1
 +??
 2 
Assuming ??~??(?), the marginal distribution of the process ?? would be     
??~??(?/(1-? ??
 ?
 ?=1 )). 
The autocovariance at lag ? of the INAR(p)-AA process satisfies the equation: 
??=? ?????
 ?
 ?=1
 + ? ????,??
 ?
 ?=?+1
 +??(0)??
 2 
Equation  3-21 
where ????,???cov?????+?,?????????? and ???0?= 1 if ?= 0 and zero 
otherwise. The autocovariance of the INAR(p)-AA has the same form of that of the 
Gaussian ARMA(p,p-1). 
As for the INAR(2)-DL, when the approach of Du and Li (1991) is taken, the 
marginal distribution of ?? is not the same as the distribution of innovations. The 
autocovariance function of the INAR(p)-DL satisfies:  
??=?1???1 +?2???2 +?+?????? 
Equation  3-22 
Therefore, the ACF of this process is found from equations of the form: 
??=?1???1 +?2???2 +?+?????? 
Equation  3-23 
which implies that the correlation structures of INAR(p) and AR(p) processes are the 
same. This makes these models similar to the standard AR(p) models not only in 
form, but also in stationarity conditions and correlation structure.  
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3.3.4 INMA(1) Model    
Having introduced integer autoregressive models for count series, Al-Osh and Alzaid 
(1988) then developed a class of models for integer-valued moving average (INMA) 
processes. In INMA models, a stationary sequence of random variables {??} is 
formed from a sequence {??} of i.i.d. random variables which are non-negative and 
also integer-valued.  The first order model, which we are going to describe in this 
section, is the case in which adjacent members of the sequence are correlated. A 
process {??} is called an INMA(1) process if it satisfies the equation: 
??=?????1 +?? 
Equation  3-24 
where ??[0,1] and {??} are as before and the thinning operation is defined via: 
 ???=? ??
 Z
 ?=1
  
Equation  3-25 
where {??} is a sequence of i.i.d. Bernoulli random variables, independent of ? and 
satisfying:   
????= 1?= 1??(??= 0) =? 
Equation  3-26 
The INMA(1) model defined by Equation  3-24 is similar to the Gaussian MA(1) 
process except that scalar multiplication is replaced by the thinning operation. Jung 
and Tremayne (2006a) present a physical interpretation of this model as follows. If 
we consider ?? as the number of particles in a well-defined space at time point ?, it 
can be assumed that this number is made of two components: (i) particles entering 
during (??1,?], and (ii) survivors of those who entered the space during (??2,??
 1]. Therefore, the thinning at time ?, is applied to only immigrants at time ??1, not 
all particles in space, as in an INAR(1) process. Examples of this process include the 
number of patients staying in a hospital or the number of customers in a department 
store (Al-Osh and Alzaid, 1988). 
It can be inferred from the Equation  3-24 that each element stays in the system no 
longer than two periods. This is in contrast to the INAR(1) process in which there is 
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no limit on the survival of elements in the system. 
The unconditional first and second moments of the INMA(1) process are: 
?????= (1 +?)?? 
Equation  3-27 
var????=??1?????+ (1 +?
 2)??
 2 
Equation  3-28 
It is shown by Al-Osh and Alzaid (1988) that the autocorrelation function (ACF) of 
this process is given by:  
??
 INMA (1)
 =?
 ???
 2
 ??1?????+ (1 +?2)??
 2 for ?= 1
 0 for ?> 1
 ? 
Equation  3-29 
which is analogous (but not identical) to that of the Gaussian MA(1) process, where 
??=????1 +?? and the ACF is given by: 
??
 MA (1)
 =?
 1 for ?= 0
 ?
 1 +?2
 for ?= ?1
 0 for ??> 1
 ? 
Equation  3-30 
Another property of the INMA(1) process which is similar to MA(1) is that if ?= 0, 
the sequence {??} becomes a sequence of i.i.d. random variables with the distribution 
of ??. Also, if ?= 1 the process will have the highest ?1 which again agrees with the 
MA(1) process.   
As for the INAR(1) process, a natural candidate for the marginal distribution of an 
INMA(1) process is the Poisson distribution. It is shown by Al-Osh and Alzaid 
(1988) that assuming ??~??(?), the marginal distribution of the process ?? would be            
??~??(?(1 +?)). This process is referred to as a PoINMA(1) process (Jung and 
Tremayne, 2006a). 
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3.3.5 INMA(2) Model    
The second-order moving average process is an extension of the INMA(1) process 
introduced in the previous section. The model is given by: 
??=?1????1 +?2????2 +?? 
Equation  3-31 
where both parameters ?1 and ?2 lie in the interval [0,1]. The individual thinning 
operations ??????? for ?= 1,2 follow the Equation  3-25 and it is assumed that they 
perform independently of each other. Two approaches arise regarding the thinning 
mechanisms, as in higher order autoregressive models.  
One approach is proposed by Al-Osh and Alzaid (1988), assuming dependence 
between the thinnings of terms ?1??? and ?2??? (similar to that of INAR(2)-AA). 
The unconditional expected value and variance of such a process, henceforth called 
INMA(2)-AA, are given by: 
?(??) =??(1 +?1 +?2) 
Equation  3-32 
var????=??? ???1????
 2
 ?=1
 +??
 2? ??
 2
 2
 ?=0
  
Equation  3-33 
with ?0 = 1. The ACF of the INMA(2)-AA process is: 
??=?
 ? [??(?????+?)??
 2??
 ?=0 +????+???
 2]
 ??? ??(1???)
 2
 ?=1 +??
 2? ??
 22
 ?=0
 for ?= 1,2
 0 for ?> 2
 ? 
Equation  3-34 
It can be seen that the cut-off property of the INMA(2)-AA process is the same as 
that of the Gaussian MA(2) process. 
The other approach concerning the thinning operation in an INMA(2) process is 
introduced by McKenzie (1988). In an INMA(2)-MK process, it is assumed that the 
individual thinning operations ??????? for ?= 1,2 are performed independently not 
only from each other, but also from corresponding operations at previous times in 
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Equation  3-31. The unconditional moments of this process with Poisson innovations 
are the same as INMA(2)-AA, ?????= var????=?(1 +?1 +?2), and the ACF, 
which is again the same as that of the Gaussian MA(2) process, is given by:  
??=?
 ? ????+?
 2??
 ?=0
 1 +?1 +?2
 for ?= 1,2
 0 for ?> 2
 ? 
Equation  3-35 
Unlike INAR(2)-DL, for an INMA(2)-MK process, if ??~??(?), then           
??~??(?(1 +?1 +?2)) which is the same as INMA(2)-AA. In this PhD thesis, we 
adopt the approach by McKenzie (1988) because his model is more similar to the 
classic MA(q) model (Br?nn?s and Hall, 2001).   
 
3.3.6 INMA(q) Model    
The ?th order integer moving average model, introduced by Al-Osh and Alzaid 
(1988) and McKenzie (1988) is defined by: 
??=?1????1 +?2????2 +?+???????+?? 
Equation  3-36 
where {??} is defined as before and the parameters ?1,?,???1 ?[0,1] and ???(0,1].   
Using the properties of the thinning operation, it is shown by Br?nn?s and Hall 
(2001) that: 
?(??) =??(1 +? ??
 ?
 ?=1
 ) 
Equation  3-37 
var????=??
 2 +? [??
 2??
 2 +????(1???)]
 ?
 ?=1
  
Equation  3-38 
As for an INMA(2) process, there are two approaches based on the thinning 
mechanisms. The ACF of the INMA(q)-AA process is given by: 
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??=?
 ? [??(?????+?)??
 ???
 ?=0 +????+???
 2]
 ??? ??(1???)
 ?
 ?=1 +??
 2? ??
 2?
 ?=0
 for ?= 1,?,?
 0 for ?>?
 ? 
Equation  3-39 
On the other hand, the ACF of the INMA(q)-MK process is: 
??=?
 ? ????+?
 ???
 ?=0
 ? ??
 ?
 ?=0
 for ?= 1,?,?
 0 for ?>?
 ? 
Equation  3-40  
It can be seen that the autocorrelation function of an INMA(q) process is analogous 
to than of the classical MA(q) process. The difference is that all autocorrelations are 
positive (Br?nn?s and Hall, 2001). 
 
3.3.7 INARMA(1,1) Model    
Having introduced INAR and INMA processes, Alzaid and Al-Osh (1990) suggested 
that these two processes can be mixed in a manner similar to that of the standard 
ARMA processes to provide the mixed integer autoregressive moving average class 
of models. There are two approaches regarding the modelling of this kind of 
processes.  
The first approach was introduced by McKenzie (1988) for INARMA processes with 
Poisson marginal distributions. He suggests the mixed process should be constructed 
by coupling the two AR and MA processes and a common innovation process. 
According to this viewpoint, the AR component of the INARMA(1,1) process is 
given by: 
??=?????1 +?? 
Equation  3-41 
and the MA component is: 
??=???1 +???? 
Equation  3-42 
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where all the thinning operations are independent, ?,??[0,1] and {??} is a 
sequence of i.i.d. Poisson variables.  
The second approach suggested by Neal and Rao (2007) is what we follow because it 
is similar to the Gaussian ARMA process. A discrete time stochastic process, {??}, is 
called an INARMA(1,1) process if it satisfies the equation: 
??=?????1 +??+?????1 
Equation ?3-43 
where ?,??[0,1] and {??} is a sequence of i.i.d. non-negative integer-valued 
random variables, independent of ?? with mean ?? and finite variance ??
 2. Here, the 
two thinning operations are independent of each other and also of the corresponding 
operations at previous times, and are defined as follows:  
???=? ??
 ?
 ?=1
  
Equation  3-44 
???=? ??
 ?
 ?=1
  
Equation  3-45 
To ensure the stationarity and invertibility of the above INARMA(1,1) process given 
by Equation  3-43, the two conditions of ?< 1 and ?< 1 must hold.  
The unconditional first and second moments of this process are: 
?(??) =?
 1 +?
 1??
 ??? 
Equation  3-46 
var(??) =
 1
 1??2
 ???+??+???2???+ (1 +?
 2 + 2??)??
 2? 
Equation  3-47 
The autocorrelation function (ACF) of this process is given by (see Appendix 3.A for 
the proof):  
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??
 INARMA ?1,1?= 
?
 ??2 +?2?+?????2???+ (?+??
 2 +?2?+?)??
 2
 ??+??+???2???+ (1 +?2 + 2??)??
 2 for ?= 1
 ????1 for ?> 1
 ? 
Equation  3-48 
It can be seen that the ACF of an INARMA(1,1) dies exponentially, which is 
analogous to the ACF of the Gaussian ARMA(1,1) which is as follows (for ??= 0 
and ??
 2 = 1): 
??
 ARMA (1,1)
 =?
 ?+?+?2?+??2
 1 +?2 + 2??
 for ?= 1
 ????1 for ?> 1
 ? 
Equation  3-49 
 
3.3.8 INARMA(p,q) Model    
The INARMA(p,q) process is given by the following difference equation: 
??=? ???????
 ?
 ?=1
 +??+? ???????
 ?
 ?=1
  
Equation  3-50 
where ??,???[0,1] and {??} is as before and thinning operations are performed 
independently of each other and also of the corresponding operations at previous 
times.  
The stationarity conditions of this process are the same as those of an INAR(p) 
process: to ensure that the above process is stationary, it is required that 
(?1,?2,?,??) are such that the roots of the p-order polynomial ?
 ???1?
 ??1???
 ???1????= 0 lie inside the unit circle.  
Neal and Rao (2007) discuss the invertibility conditions for an INARMA(p,q) 
process for the moving average parameters (?1,?2,?,??). They assume that these 
conditions are the same as the those of an MA(q) process. However, they have not 
provided any proof in this regard and left it as an open question to investigate if this 
condition is sufficient for an INARMA(p,q) process to be invertible. 
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3.3.8.1 First and Second Unconditional Moments 
As mentioned before, the stochastic properties, including the autocorrelation 
function, of the general INARMA(p,q) process have not been found in the literature. 
Therefore, to answer the first research question ?How can the appropriate integer 
autoregressive moving average (INARMA) model be identified for a time series of 
counts??, here we investigate these properties.  
Obtaining the first unconditional moment of the INARMA process of Equation  3-50 
is straightforward. It is given by: 
?(??) =?
 1 +? ??
 ?
 ?=1
 1?? ??
 ?
 ?=1
 ??? 
Equation  3-51 
However, the derivation of the second unconditional moment is more challenging. 
We have found the unconditional variance of the INARMA process of Equation  3-50 
as follows (see Appendix 3.B for the proof): 
var????=
 ??
 1?? ??
 2?
 ?=1
 ?
 1 +? ??
 ?
 ?=1
 1?? ??
 ?
 ?=1
 ? ??1???
 ?
 ?=1
 +? ??1???
 ?
 ?=1
 ? 
+
 ??
 2
 1?? ??
 2?
 ?=1
 ?1 +? ??
 2
 ?
 ?=1
 + 2 ? ???
 min (?,?)
 ?=1
  
+
 2? ? ???+???
 ???
 ?=1
 ??1
 ?=1 + 2? ? ???????
 ???
 ?=?+1
 min (?,?)
 ?=1
 1?? ??
 2?
 ?=1
  
Equation  3-52 
where ??
 ?? is the cross-covariance function derived in Appendix 3.C and ?? is the 
autocovariance at lag ? which can be expressed in terms of ?0 (or var????) from the 
equations obtained in the next section.  
It can be seen that if ?= 0, for an INAR(p) process, the unconditional variance 
would be: 
var????=
 1
 1?? ??
 2?
 ?=1
 ??
 ? ??1???
 ?
 ?=1
 1?? ??
 ?
 ?=1
 ???+??
 2 + 2? ? ???+???
 ???
 ?=1
 ??1
 ?=1
 ? 
        Equation  3-53 
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In the above equation, ?? can be expressed in terms of ?0 based on the Yule-Walker 
equations of Equation  4-12. For example, for an INAR(2) process we have: 
?1 =?1?0 +?2?1  
and as a result: 
?1 =
 ?1
 1??2
 ?0 
The unconditional variance of an INAR(2) process can then be found from Equation 
 3-53 to be: 
var????=
 ??1??1
 2 +?2?2?2
 2??1?2 +?1
 2?2 +?2
 3???+ (1??1?2?2 +?1?2 +?2
 2)??
 2
 1??1??1
 2 +?1
 3?2?2 + 2?2
 3??2
 4 +?1?2 +?1?2
 2??1?2
 3 +?1
 2?2
  
It can be seen from Equation  3-53 that the unconditional mean and variance of a 
PoINAR(p) process are not equal when the distribution of the innovations is Poisson. 
This has been also confirmed in the literature (Bu and McCabe, 2008).   
Also, when ?= 0, for an INMA(q) process, the variance would be: 
var????=?? ??1???
 ?
 ?=1
 ???+?1 +? ??
 2
 ?
 ?=1
 ???
 2 
Equation  3-54  
which agrees with the result found by Br?nn?s and Hall (2001) (Equation  3-38). 
Equation  3-52 is the first new result found in this PhD study.  
 
3.3.8.2 Autocorrelation Function (ACF) 
The next step is finding the autocorrelation function of an INARMA(p,q) process. In 
order to do so, first, we need to find the covariance of this process. The covariance of 
INARMA(p,q) at lag ? is:  
??= cov(??,????) 
According to the relation between ? and ? and ?, there are four cases: 
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? ???, ??? 
? ???, ?>? 
? ?>?, ??? 
? ?>?, ?>? 
Each of these cases will be considered in sequence. 
1. If ???, ??? (? can be only equal to either ? or ? if ???)    
 
Figure ?3-1 The covariance at lag , , when 
qkpk ?? ,
  
 
??= cov???,????? 
= cov???1????1 +?+???????+??+?1????1 +?+????????,????? 
= cov???1????1?,?????+?+ cov??????????,????? 
+cov??????????,?????+ cov????+1??????1?,?????+?
 + cov?????1?????+1?,?????+ cov??????????,????? 
??=?1???1 +?+???1?1 +??var??????+??+1?1 +?+?????? 
+???0
 ??+??+1?1
 ??+?+???1????1???
 ?? +??????
 ??  
where ??
 ?? is the cross-covariance between ? and ? at lag ? (see Appendix 3.C). 
Then, the above equation can be written as: 
k
 k?
 ? ?????
 ??1
 ?=1   ? ?????
 ?
 ?=?+1   
??var(????) 
? ? 0 
? ? 0 
? ???????
 2?
 ?=?+1   
????
 2  
? 
? 
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??= ? ?????
 ??1
 ?=1
 +??var??????+ ? ????
 ?
 ?=?+1
 +???Z
 2 + ? ??????
 ??
 ?
 ?=?+1
  
Note that if 2???, there will be a ?? in ? ????
 ?
 ?=?+1  which has to be considered. This 
is because when ?= 2?, we have ?2??2???=?2???.  
 
2. If ???, ?>? 
 
Figure ?3-2 The covariance at lag at lag , , when 
qk pk ?? ,
  
 
??= cov???,????? 
= cov???1????1 +?+???????+??+?1????1 +?+????????,????? 
=?1???1 +?2???2 +?+???1?1 +??var??????+??+1?1 +??+2?2 +?+?????? 
Therefore, for the second case, the autocovariance at lag ? can be obtained from: 
??= ? ?????
 ??1
 ?=1
 +??var??????+ ? ????
 ?
 ?=?+1
  
Again, if 2???, there will be a ?? in ? ????
 ?
 ?=?+1  which has to be considered. 
 
 
k
 k?
 ? ?????
 ??1
 ?=1   ? ?????
 ?
 ?=?+1   
? ? 0 
??var(????) 
? ? 0 
? 
? 
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3. If ?>?, ??? 
 
Figure ?3-3 The covariance at lag , , when 
qk pk ?? ,
  
??= cov???,????? 
= cov???1????1 +?+???????+??+?1????1 +?+????????,????? 
=?1???1 +?2???2 +?+??????+???0
 ??+??+1?1
 ??+?+???1????1???
 ?? +??????
 ??  
Therefore, the autocovariance at lag ? for the third case can be obtained from:  
??=? ?????
 ?
 ?=1
 +???Z
 2 + ? ??????
 ??
 ?
 ?=?+1
  
 
4. If ?>?, ?>? 
 
Figure ?3-4 The covariance at lag , , when 
qkpk ?? ,
  
k
 k?
 k
 k?
 ? ? 0 
? 
0 ? ? 
? ?????
 ?
 ?=1   
? 
0 ? ? 
? ?????
 ?
 ?=1   
? ? 0 
? ???????
 2?
 ?=?+1   
????
 2  
? 
? 
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??= cov???,????? 
= cov???1????1 +?+???????+??+?1????1 +?+????????,????? 
=?1???1 +?2???2 +?+??????=? ?????
 ?
 ?=1
  
Finally, the autocovariance at lag ? for the fourth case is given by: 
??=? ?????
 ?
 ?=1
  
Therefore, we can write the autocorrelation function of an INARMA(p,q) process as 
follows: 
??
 =
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ? ?????
 ??1
 ?=1 +?????+? ?????
 2??1
 ?=?+1 +? ?????
 ?
 ?=2?+1 +????
 2 +? ?????
 ???
 ?=?+1
 ?1??2?????
 for 2???
 ? ?????
 ??1
 ?=1 +?????+? ?????
 ?
 ?=?+1 +????
 2 +? ?????
 ???
 ?=?+1
 ???
 for 2?>?
 ????,???
 ?
 ?
 ?
 ? ?????
 ??1
 ?=1 +?????+? ?????
 2??1
 ?=?+1 +? ?????
 ?
 ?=2?+1
 ?1??2?????
 for 2???
 ? ?????
 ??1
 ?=1 +?????+? ?????
 ?
 ?=?+1
 ???
 for 2?>?
 ? ???,?>?
 ? 
Equation  3-55 
where ??? is the second unconditional moment of the process given by the Equation 
 3-52 and ??
 ?? is the cross-covariance given by the Equation 3.C-1 (see Appendix 
3.C). The other two cases of ?>?,??? and ?>?,?>? are special cases of the 
above expressions.  
The above equation can be simply written as: 
??=?
 ?1???1 +?2???2 +?+??????+???0
 ??+??+1?1
 ??+?+??????
 ??
 ?0
 ???
 ?1???1 +?2???2 +?+?????? ?>?
 ? 
Equation  3-56 
Equation  3-56 is another new result of this research. Identification of the order of an 
INARMA(p,q) process requires both the autocorrelation function (ACF) and the 
partial autocorrelation function (PACF) of the process. The structure of the PACF of 
an INARMA(p,q) process will be discussed in chapter 4. 
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In order to test the Equation  3-56, we check if it results in the correct ACF for 
INAR(p) and INMA(q) processes. When ?= 0, i.e. for an INAR(p) process, it can 
be seen that the ACF based on the Equation  3-56 will be: 
??=?1???1 +?2???2 +?+?????? 
which agrees with the result found by Du and Li (1991). 
When ?= 0, i.e. for an INMA(q) process, it can be seen that the ACF based on 
Equation  3-56 will be: 
??=?
 ????
 2 +? ?????
 ???
 ?=?+1
 ?0
 ???
 0 ?>?
 ? 
where ???=?? ??(1???)
 ?
 ?=1 ???+?1 +? ??
 2?
 ?=1 ???
 2. For an INMA(q) process 
with Poisson marginal distribution (??=??
 2 =?), the variance is given by:  
 ???=?1 +? ??
 ?
 ?=1
 ?? 
It can be seen from Equation 3.C-1 that for an INMA(q) process ??
 ??=??? for 
0????, so we have: 
??=?
 ??+? ?????
 ?
 ?=?+1
 1 +? ??
 ?
 ?=1
 ???
 0 ?>?
 ? 
which agrees with the result in the literature (Br?nn?s and Hall, 2001). 
 
3.3.9 Applications of INARMA Models    
Applications of INAR processes in the medical sciences can be found in, for 
example, Franke and Seligmann (1993) and Cardinal et al. (1999); and applications 
to economics in, for example, B?ckenholt (1999), Berglund and Br?nn?s (2001), 
Br?nn?s and Hellstr?m (2001), Rudholm (2001) and Freeland and McCabe (2004b).  
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Br?nn?s (1995) studies the consequences and required adaptations when explanatory 
variables are included in the INAR(1) model. He obtains new conditional least 
squares (CLS) and generalized method of moments estimators for the model 
containing explanatory variables and applies the INAR(1) model with Poisson 
marginal distribution to the number of Swedish mechanical paper and pulp mills 
during 1921-1981.  
INAR(1) models also have applications in inventory control. Aggoun et al. (1997) 
use an INAR(1) inventory model for perishable items, i.e. each item in the stock 
perishes in a given time period with an unknown probability. The sequence of these 
probabilities is assumed to be a homogeneous Markov chain and the paper finds the 
conditional probability distribution of this sequence and estimates the transition 
probabilities of the Markov chain. However, the model is not applied to real-world 
data.  
Cardinal et al. (1999) represent infectious disease incidence time series by INAR 
models. They state that real-valued time series models have been used in the analysis 
of infectious disease surveillance data, but argue that these models are not suitable in 
some cases such as the analysis of a rare disease. Meningococcal infection is 
considered as a rare disease in their study and the integer-valued INAR(5) model is 
fitted to the data set.  
B?ckenholt (1999) introduces the application of INAR models in investigating 
regularity and predictability of purchase behaviour over time. He uses a PoINAR(1) 
model for the analysis of longitudinal purchase data because there is a notion that 
purchase behaviour of nondurable goods is well-described by a Poisson process. The 
population of consumers is then divided to an unknown number of mutually 
exclusive and exhaustive segments, and within each a PoINAR(1) process is used to 
model the counts. The mixed PoINAR(1) model is finally applied to a powder 
detergent purchase data set of about 5000 households.  
Another straightforward application of INAR models can be found in a paper by 
Berglund and Br?nn?s (2001) in which they study the entry and exit of plants in 
Swedish municipalities as an INAR(1) process. In their model, they incorporate the 
variables affecting survival and entry and employ generalized method of moments 
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for estimation.   
Br?nn?s and Hellstr?m (2001) apply the INAR(1) model to the number of Swedish 
mechanical paper and pulp mills. They consider the number of firms in a region at a 
certain time to be equal to the number of firms surviving from the previous time 
period plus the number of new firms. They assume that the survival of a firm 
depends on the survival of other firms (dependent exits) and there is dependence 
between the survival of a firm and entry of a new firm (dependent entry and exit). 
The results for the set of data show that the correlation between exits is not 
significant, but that of entry and exit is significant. In another Swedish application, 
Rudholm (2001) analyses the factors affecting entry into the Swedish 
pharmaceuticals market using an INAR(1) model.  
Br?nn?s et al. (2002) find another application of INAR models in forecasting hotel 
guest nights which conventionally is based on economic demand models, pure time 
series analytical models, or on a mixture of them. They suggest that the daily number 
of guest nights for a specific hotel follows an INAR(1) process, and then proceed by 
cross-sectional and temporal aggregation of the model. The former means 
aggregation over more than two hotels which yields an INAR(1) model, and the 
latter means aggregation over time that results in an INARMA(1,1) model, later 
simplified as an INMA(1) model. 
Karlis (2002) introduces an INAR(1) model with a general mixed Poisson 
distribution for the innovation term which allows for overdispersion. The model is 
then applied to the number of forest fires in Greece in a two-month period (daily 
observations). 
Blundell et al. (2002) apply a Linear Feedback Model (LFM), which is derived from 
the INAR process, to the panel data of Hall et al. (1986). In their model, the 
technological output of a firm is a function of the corresponding R&D investment in 
current and previous periods, some unknown technology parameters, and the firm-
 specific propensity to patent. As another application, Gourieroux and Jasiak (2004) 
use an INAR(1) model to update premiums in car insurance and compare it to the 
standard negative binomial approach.  
Freeland and McCabe (2004b) use a PoINAR model for a monthly count data set of 
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claimants for wage loss benefit. They propose a method for producing coherent 
forecasts based on the conditional median rather than the conventional conditional 
mean. It is also argued that when the counts are low, the median should be 
accompanied by estimates of the probabilities associated with the point masses of the 
?-step-ahead conditional distribution. A method for calculating confidence intervals 
for these probabilities is also presented. 
Quddus (2008) uses a PoINAR(1) model for analysis of traffic accidents in Great 
Britain. The results of his study show that an ARIMA model performs better than 
INAR(1) for geographically and temporally aggregated time series. However, as 
expected, the reverse is true for disaggregated low count time series (see section 
 3.3.10 for aggregation in INARMA models). 
It can be seen that INARMA models have been generally used for time series of 
counts (counts of objects, events, or individuals). Although this application area is 
based on the direct physical interpretation of the INARMA models, as suggested in 
the literature (McKenzie, 2003), this should not restrict these models to only such 
applications. This research is an attempt to use INARMA models beyond their direct 
interpretation to model intermittent demand.  
 
3.3.10 Aggregation in INARMA Models       
Time series aggregation is a widely discussed subject for continuous-valued time 
series. It goes back over 50 years (Quenouille, 1958) and since then many papers 
have considered different aspects of aggregation in continuous-valued time series 
(see for example: Amemiya and Wu (1972), Brewer (1973), Harvey and Pierse 
(1984), Nijman and Palm (1990), Drost and Nijman (1993), Marcellino (1999), Teles 
and Wei (2002), and Man (2004)).  
Three types of aggregation have been identified in the literature which can be 
classified as: 
a. temporal aggregation 
b. cross-sectional aggregation 
c. over a forecast horizon aggregation 
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Temporal aggregation, also called flow scheme, refers to aggregation in which a low 
frequency time series (e.g. annual) is achieved from a high frequency time series 
(e.g. quarterly or monthly). It means that the low frequency variable is the sum of k 
consecutive periods of the high frequency variable. For example, the annual 
observations are the sum of the monthly observations every twelve periods. For 
Gaussian models, it has been proved that the aggregation of an AR(p) process 
produces an ARMA(p,q) process where ?<? (Amemiya and Wu, 1972). It means 
that not only the data is aggregated, but also the model is aggregated. In other words, 
the aggregate model can be inferred from the disaggregate model, i.e. the parameters 
of the aggregate model can be estimated based on the disaggregate data. The 
practical application of this is that as soon as new disaggregate observations are 
available the aggregate parameters can be inferred. This is a very useful tool for 
situations where decisions are taken, say, annually, but information is available, for 
instance, monthly. Here there is no need to wait till the end of the year to update the 
parameters of the aggregate series, but the annual model can be updated as soon as 
monthly observations become available.  
The second class of aggregation is cross-sectional or contemporaneous aggregation. 
This scheme of aggregation is conducted through individuals rather than time. For 
example, in demand forecasting of many products with a short demand history, 
similar products are grouped in a product family and the demand forecast is built for 
the family rather than individuals, which may produce more reliable forecasts than 
the forecasts for individual items.  
Finally, over a forecast horizon aggregation refers to the case in which a forecast is 
needed for some periods of time ahead. For example, in demand forecasting in a 
supply chain, when there is a lead time between ordering by a manufacturer and 
receiving the order from a supplier, the demand over that lead time has to be 
forecasted in order to prevent shortage during the lead time period (see for example 
Lee et al., 2000).  
Although many papers examine different types of aggregation in continuous-valued 
time series, the same is not true for time series of counts. It might be due to the 
complicated probabilistic structure of these models that only a few papers address 
this issue. Br?nn?s et al. (2002) first studied temporal and cross-sectional aggregation 
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of an INAR(1) process. In the following sections we review the work by Br?nn?s et 
al. (2002) for the first class of aggregation and provide the results of aggregation of 
an INAR(1) process over ? periods. The third class of aggregation will be discussed 
in detail for an INARMA(p,q) process in chapter 6 when we study the lead time 
aggregation of this process.  
 
3.3.10.1 Overlapping Temporal Aggregation  
In this section we look at the properties of aggregating the INAR(1) process over two 
periods with overlap, so that if ??=?????1 +??, the new sequence {??,2} is defined 
as:  
??,2 =??+??+1 
??+1,2 =??+1 +??+2 
? 
??+?,2 =??+?+??+?+1 
The aggregated innovations are also presented by: 
??,2 =??+??+1 
??+1,2 =??+1 +??+2 
? 
??+?,2 =??+?+??+?+1 
Now, if we add each two subsequent terms in the sequence {??} with overlap, we 
have: 
??+1,2 =??+1 +??+2 =????+??+1 +????+1 +??+2 
Equation  3-57  
But, we know that ????+????+1     ??(??+??+1). Now, from the Equation  3-57 
we have: 
??+1,2 =?????+??+1?+???+1 +??+2?=????,2 +??+1,2 
d 
=
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Therefore, ??,2 is also an INAR(1) process.  
The same argument can be used to show that the overlapping aggregation of an 
INAR(1) process over (?+ 1) periods also results in an INAR(1) process. 
??,?+1 =??+?+??+? 
??,?+1 =??+?+??+? 
??+1,?+1 =??+1 +?+??+?+1 =????,?+1 +??+1,?+1 
which is an INAR(1) process with the same autoregressive parameter and, for a Po-
 INAR(1) model, the innovation parameter is (?+ 1)?. 
 
3.3.10.2 Non-overlapping Temporal Aggregation  
In this section, we investigate the non-overlapping temporal aggregation of an 
INAR(1) model. Br?nn?s et al. (2002) suggest that aggregation of INAR(1) models 
produces an INARMA(1,1) model which is analogous to AR(1) models.  
Let ?? for ?= 0,1,? be a high frequency or disaggregate time series observed at time 
? which follows an INAR(1) process (??=?????1 +??). The low frequency or 
aggregate variable is assumed to be available only every kth period (?, 2?, 3?,?), 
where ? is an integer value larger that one. Note that the aggregated series is not 
overlapped. For example, one year does not overlap with the next one. Therefore, to 
show the aggregate series we define another time scale ? that runs in ?? periods. So 
that ?= 0,1,? while ?= 0,?, 2?,?. We show the aggregate series by ??
 ?. This is 
shown in Figure  3-5 for aggregating a monthly time series to an annual one. 
??+1 =????+??+1 
??+2 =????+1 +??+2 =???????+??+1?+??+2 =?
 2???+????+1 +??+2 
Repeated use of the above equation yields: 
??+?=?
 ????+? ?
 ??????+?
 ?
 ?=1       
Equation  3-58 
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Figure ?3-5 Non-overlapping temporal aggregation for   
 
For example, for aggregation over two periods (?1 +?2,?3 +?4,?) the aggregate 
series (?,???1,??,??+1,?) can be written as:  
??=???1 +??=?????2 +???1 +?????1 +?? 
=????????3 +???2?+???1 +????????2 +???1?+?? 
=?2????3 +?????2 +???1 +?
 2????2 +?????1 +?? 
=?2?????3 +???2?+????1 +???+??????1 +???2?
 =?2????1 +??+?????1 
But we have: 
???1 =???3 +???2 =?????4 +???3 +?????3 +???2 
=????????5 +???4?+???3 +????????4 +???3?+???2 
=?2????5 +?????4 +???3 +?
 2????4 +?????3 +???2 
=?2?????5 +???4?+????2 +???3?+??????3 +???4? 
=?2????2 +???1 +?????2 
Br?nn?s et al. (2002) state that this is an INARMA(1,1) model where the INAR(1) 
parameter (?2) is the square of the original INAR(1) parameter, ?, and the INMA(1) 
parameter is ?. It is also mentioned that in the INMA-part, ?? and ???1 are correlated 
which makes the INMA-part unconventional, but with interpretable parameters.  
They also mention that the ?? term of the ?? expression is different from the ?? term 
of the ??+1 expression because the temporal aggregation is non-overlapping. These 
should be distinguished by different indexing as ??
 ?,??1 and ??
 ?+1,? respectively.  
12?k
 0 
??
 ?=? ????
 11
 ?=0   ??+1
 ? =? ????
 11
 ?=0   
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 ?  ??+1
 ?   ??+2
 ?   
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???1 =???3 +???2 =?
 2????2 +???1
 ??3,??2 +?????2
 ??4,??3 
??=???1 +??=?
 2????1 +??
 ??1,?+?????1
 ??2,??1 
??+1 =??+1 +??+2 =?
 2???+??+1
 ?+1,?+2 +????
 ?,?+1 
This is shown in  Figure  3-6.  
 
 Figure ?3-6 The correlation between the INMA parts of the non-overlapping temporal aggregation of 
INAR(1) process over two periods 
 
If it is assumed that ??=????1 +???+??????1 +???2? and ??=??+?????1, 
Br?nn?s et al. (2002) find the first and second moments of ?? and ?? for a 
PoINAR(1) process. They also analyze covariance properties, as summarized below.  
?(??) = 2?+ 2?? 
var(??) = var????1 +???+ var???????1 +???2??+ 2cov????1,?????1? 
= 2?+ 2?2?+ 2??1????+ 2??= 2?+ 4?? 
cov???,???2? 
= cov??????1 +???+??????1 +???2??,?????3 +???2?+?
 ?????3 +???4??? 
= cov??????2,???2?=?? 
and for ?? we have 
?(??) = 2?+ 2?? 
var????= var????+ var??????1?+ 2cov???,?????1? 
= 2?+ 2?2?+ 2??1????+ 2??= 2?+ 4?? 
??+1
 ?+1,?+2 ??
 ?,?+1 ??
 ??1,? ???2
 ??4,??3 ???1
 ??3,??2 ???1
 ??2,??1 
???4 ???3 ???2 ???1 ?? ??+1 ??+2 
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cov???,???1?= cov????+?????1?,????1 +?????2??= cov??????1,???1? 
= cov???????1 +???2?,????2 +???3??=?? 
which can be seen to be equal to the first and second moments and covariance of ??. 
However, having two versions of ??, (??
 ??1,?,??
 ?,?+1), will result in: 
cov(??
 ??1,?,??
 ?,?+1) = cov?????1 +???,???+??+1??= var????=? 
corr(??
 ??1,?,??
 ?,?+1) =
 ?
 2?
 =
 1
 2
  
Therefore, the covariance and correlation are halved due to this dependency. 
Br?nn?s et al. (2002) also suggest that the non-overlapping temporal aggregation of 
an INAR(1) process over more than two periods (h periods) result in an 
INARMA(1,1) with the form of:  
??=?
 ?????1 +??+?? ?
 ?
 ??1
 ?=1
 ?????1 
Equation  3-59 
and assume that ? ????1?=1 =?.  
The ?? ????1?=1 ?????1 term in the Equation  3-59 comes from the expression ??
 ???1 +?
 2????1 +?+?
 ??1????1 again with the same assumptions for ??s as 
discussed before (see Appendix A of Br?nn?s et al., 2002).  
However, here another problem arises regarding the properties of the thinning 
operation. The problem is that ???+???=??(?+?), but ???+????
 (?+?)??. Therefore, finding the result of non-overlapping temporal aggregation 
over ? periods also remains unsolved. This line of research will not be taken forward 
in this thesis, but remains for further research (see chapter 10).  
 
3.3.10.3 Cross-sectional Aggregation  
As mentioned earlier, cross-sectional aggregation is over individual series. We start 
again by the simplest case of adding two INAR(1) processes. Suppose that ?? and ?? 
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are two PoINAR(1) processes:   
??=?????1 +?? 
??=?????1 +?? 
where ?? and ?? are uncorrelated for all ?, and ?????= var????=?? and ?????=
 var????=??.  
From the above equations it can be found that: 
???1 =?????2 +???1 
??????1 =????????2 +???1?=??????2 +?????1 
???1 =?????2 +???1 
??????1 =????????2 +???1?=??????2 +?????1 
so we have: 
?????????1?=??????1 +????(??????2 +?????1) 
?????????1?=??????1 +????(??????2 +?????1) 
therefore, 
??=?????1 +?????1 +?????????2??????1 
??=?????1 +?????1 +?????????2??????1 
The cross-sectionally aggregated ?? is found as:  
??=??+?? 
=?????1 +?????1 +?????1 +?????1???????2???????2 
+????????1 +????????1
 =?????1 +?????1???????2 +????????1 +????????1 
The conditional expected value of this process is given by:   
?(?????1,???2?=????1 +????1??????2 +??????+?????? 
=??+?????1 +????????2 +??????+?????? 
M.Mohammadipour, 2009, Chapter 3  78 
 
Which is equal to the expected value of an INARMA(2,1) process of:   
??=?1????1 +?2????2 +??+????1 
where ?1 = (?+?) and ?2 =??? and ? is to be found. The AR part is a CLAR(2) 
in which:  
?(?????1,???2?=?1???1 +?2???2 +?? 
Now, we want to find what is the MA part in sum of two INAR(1) processes. First, 
we show that sum of the conditional expected values of two INMA(1) processes is 
equal to the conditional expected value of an INMA(1) process. Then we obtain the 
parameters of the aggregated process (??) in terms of the parameters of ?? and ??. 
 
Sum of two INMA(1) processes  
Consider the case of adding two Gaussian MA(1) processes: 
??=??+????1 
??=??+????1 
The aggregated series is shown by ??:  
??=??+??=??+????1 +??+????1 
We know (by Hamilton, 1994) that this is an MA(1) process.  
Now, if we compare it with the MA-terms in the conditional expected value of the 
cross-sectionally aggregated process (??): 
???????1,???2?=??+?????1 +????????2 +??????+?????? 
It can be seen that this is the same as the conditional expected value of sum of two 
MA(1) processes which is an MA(1) process. Therefore, the sum of the conditional 
expected values of two INMA(1) processes is equal to the conditional expected value 
of an INMA(1) process.   
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Finding the parameters of the aggregated process 
Consider the case of adding two independent INMA(1) processes ??+??. ?? has 
the following stochastic characteristics:  
??=??+?????1 
?????= var????= (1 +?)?? and ?????????=??? 
and ?? has stochastic properties as follows: 
??=??+?????1 
?????= var????= (1 +?)?? and ?????????=??? 
Now, if we assume that ?? ???=??+??? is in fact an INMA(1) process, we have: 
??=??+??=??+?????1 
where ?? has Poisson distribution with mean ??. Therefore, we have: 
?????=?????+?????=?1 +????+ (1 +?)?? 
The RHS of the above equation should be equal to ?1 +????.  
Now, the autocovariance of ?? is obtained by:  
?????????=?????+????????+??????=?????????+????????? 
=???+??? 
which should be equal to ???. So, we have the following two equations: 
?
 ?1 +????+?1 +????=?1 +????
 ???+???=???
 ? 
Solving the above set of equations provides us with a unique value for the parameter 
of the aggregated series, ??, in terms of parameters of the original series, ?? and ??. 
?=
 ???+???
 ??+??
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Therefore, we have obtained the parameters of ?? process in terms of those of the ?? 
and ?? processes.     
 
3.3.10.4 Over a Forecast Horizon Aggregation  
Consider the case in which demand follows a PoINAR(1) process of Equation  3-9. 
The demand over lead time is therefore given by:  
? ??+?
 ?+1
 ?=1
 =?????+?
 2???+?+?
 ?+1???? 
+???+1 +????+1 +?+?
 ????+1?
 +???+2 +????+2 +?+?
 ??1???+2?+?+???+?+????+? +??+?+1 
The conditional mean and variance of lead time demand (LTD) are as follows (see 
Appendix 3.D for the proof) 
??? ??+?
 ?+1
 ?=1
 |???=
 ?(1???+1)
 1??
 ??+
 ?
 1??
 ???+ 1??? ??
 ?+1
 ?=1
 ? 
Equation  3-60 
var?? ??+?
 ?+1
 ?=1
 |???=??? ?
 ??1????
 ?+1
 ?=1
 +
 ?
 1??
 ???+ 1??? ??
 ?+1
 ?=1
 ? 
+
 2?
 1??
 ? ?2??1?????+ 1??
 ?(1?????+1)
 1??
 ?
 ?
 ?=1
  
Equation  3-61 
Here, we want to know the properties of the lead time demand (? ??+?
 ?+1
 ?=1 ). We start 
with the simplest case of ?= 1: 
??
 ?=? ??+?
 2
 ?=1
 =??+1 +??+2 
and 
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??+1
 ? =? ??+?+1
 2
 ?=1
 =??+2 +??+3 
This means that we have overlap and, as stated before, the result of adding two 
INAR(1) processes with overlap will be an INAR(1) process. The aggregation of an 
INARMA(p,q) over a lead time, ?, will be discussed in Chapter 6. The results of lead 
time forecasting of INARMA processes are compared to those of benchmark 
methods (Croston's method, SBA, and SBJ) for synthetic and empirical data (see 
Chapters 8 and 9).  
  
3.4 Summary of Literature Review 
Having reviewed the literature in earlier sections, this section aims to draw together 
conclusions and to organise them meaningfully. Table  3-2 provides a summary of the 
reviewed literature on integer autoregressive moving average models.  
Reviewing literature on INARMA models reveals the need for working on stochastic 
characteristics, diagnosis, estimation of parameters and forecasting for 
INARMA(p,q) models. This is partly done in this chapter as the unconditional 
second moment and the autocorrelation function of the process have been found. The 
partial autocorrelation structure of INARMA(p,q) models has also been found and 
will be presented in the next chapter.  
The aggregation of Guassian ARIMA processes has been discussed in many papers. 
However, the same is not true for INARMA processes. The work by Br?nn?s et al. 
(2002) on temporal aggregation of INAR processes is criticized in this research. 
Some new results have been found for cross-sectional aggregation. The results of 
aggregation of an INARMA(p,q) process over a lead time and the conditional first 
moment of the aggregated process will be presented in chapter 6.  
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Table ?3-2 Literature survey on Integer Autoregressive Moving Average models 
 INAR(1) INAR(2) INAR(p) INMA(1) INMA(2) INMA(q) INARMA(p,q) 
St
 o
 ch
 a
 st
 ic C
 h
 a
 ra
 ct
 eristic
 s 
McKenzie 1985   
McKenzie 1986  
Al-Osh & Alzaid 
1987 
Alzaid and Al-Osh, 
1988 
McKenzie 1988  
Alzaid and Al-Osh, 
1993 
Br?nn?s, 1995 
Br?nn?s and 
Hellstr?m, 2001 
Br?nn?s et al., 2002 
Jung and Tremayne, 
2003 
Silva and Oliveira, 
2004 
Silva et al., 2005 
Jung and Tremayne, 
2006b 
Zheng et al., 2007 
Wei?, 2008c 
Jung and Tremayne, 
2003 
Jung and Tremayne, 
2006a 
Alzaid and Al-Osh, 
1990 
Du and Li, 1991 
Latour, 1998 
Silva and Oliveira, 
2005 
Aly and Bouzar, 2005 
Zheng et al., 2006 
Kim and Park, 2008 
Bu and McCabe, 
2008 
Bu et al., 2008 
Drost et al., 2008 
Wei?, 2008a 
McKenzie 1988   
Al-Osh and Alzaid, 
1988  
Alzaid and Al-Osh, 
1993 
Aly and Bouzar, 1994 
Br?nn?s et al., 2002 
Jung and Tremayne, 
2003 
Jung and Tremayne, 
2006a 
McKenzie 1988 
Al-Osh and Alzaid, 
1988 
Alzaid and Al-Osh, 
1993 
Aly and Bouzar, 1994 
Br?nn?s and Hall, 
2001 
Br?nn?s and 
Quoreshi, 2004 
Wei?, 2008b 
McKenzie 1988 
PoINARMA(1,q) 
Alzaid and Al-Osh, 
1993 (INARMA(p,p-1) 
with quasi binomial 
thinning) 
Aly and Bouzar, 1994 
(INARMA(1,q) with a 
general thinning) 
Neal and Rao, 2007 
(likelihood of 
INARMA(p,q) via 
MCMC) 
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Table 3-2 contd.  
 INAR(1) INAR(2) INAR(p) INMA(1) INMA(2) INMA(q) INARMA(p,q) 
Ident
 ific
 a
 ti
 o
 n
  Testing for independence: Jung and Tremayne, 2003; 2006b  
Freeland and 
McCabe, 2004a 
 Bu and McCabe, 
2008 
  Br?nn?s and 
Quoreshi, 2004 
Enciso-Mora et al., 2008 
(Reverse Jump MCMC 
algorithm for order 
selection) 
E
 st
 im
 a
 ti
 o
 n
  
Al-Osh & Alzaid 
1987 (YW, CLS, 
CML) 
Franke and 
Seligmann, 1993 
(CML) 
Franke and Subba 
Rao, 1995 (CML) 
Br?nn?s, 1994 (CLS, 
ML, GMM) 
Br?nn?s, 1995 (CLS, 
weighted CLS, and 
GMM)  
Park and Oh, 1997 
(YW and CLS) 
Br?nn?s and 
Hellstr?m, 2001 
(CLS, Weighted CLS, 
GMM) 
Br?nn?s et al., 2002 
(CLS) 
Silva and Oliveira, 
2004 (Whittle 
criterion and CML) 
Jung and Tremayne, 
2006a (YW) 
Jung and Tremayne, 
2006b (YW) 
Du and Li, 1991 
(YW, CLS) 
Latour, 1998 (YW 
and CLS) 
Silva and Oliveira, 
2005 (Whittle 
criterion) 
Zheng et al., 2006 
(ML, CLS, MQL and 
GMM for 
RCINAR(p)) 
Kim and Park, 2008 
(YW, CLS) 
Bu et al., 2008 (CLS, 
CML) 
Drost et al., 2008 
(asymptotically 
efficient estimator for 
parametric INAR(p) 
models) 
Jung and Tremayne, 
2006a (YW) 
Jung and Tremayne, 
2006a (YW) 
Br?nn?s and Hall, 
2001 (YW, CLS, 
GMM based on pgf) 
Br?nn?s and 
Quoreshi, 2004 (CLS, 
FGLS, GMM) 
Neal and Rao, 2007  
(ML via MCMC) 
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Table 3-2 contd.  
 INAR(1) INAR(2) INAR(p) INMA(1) INMA(2) INMA(q) INARMA(p,q) 
E
 st
 im
 a
 ti
 o
 n
  
Silva et al., 2005 
Replicated INAR(1) 
processes (YW, CLS, 
IWCLS, CML, 
Whittle, Bayesian) 
Silva & Oliveira 2005 
(Whittle criterion) 
Freeland and 
McCabe, 2005 (CLS) 
Jung and Tremayne, 
2006b (YW, CLS, 
ML) 
Zheng et al., 2007 
(ML, CLS and 
modified quasi-
 likelihood (MQL) for 
RCINAR(1) model) 
      
F
 o
 rec
 a
 st
 in
 g
  
Freeland and McCabe, 
2004b (Coherent 
forecasting using the 
median of the h-step 
ahead conditional 
distribution)  
McCabe & Martin 
2005 (Coherent 
forecasts with 
Bayesian 
methodology) 
Jung and Tremayne, 
2006b (Coherent 
forecasting using 
bootstrap) 
Du and Li, 1991 
(MMSE forecasts) 
Kim and Park, 2008 
(Coherent forecasting 
using bootstrap) 
Bu and McCabe, 
2008 (Coherent 
forecasting using a 
Markov Chain 
approach) 
Br?nn?s et al., 2002 
(MMSE forecasts) 
 Br?nn?s and Hall, 
2001 (MMSE 
forecasts) 
Br?nn?s and 
Quoreshi, 2004 
(MMSE forecasts) 
Neal and Rao, 2007 (h-
 step ahead prediction 
distribution of  
INARMA(p,q) via 
MCMC) 
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3.5 Conclusions  
The literature on intermittent demand forecasting supports the need for a model-
 based method. Time series models for count data provide such methods but not all 
these models have practical properties for IDF. As an example of such models, 
discrete autoregressive moving average (DARMA) models have been reviewed. 
These models have their main application in the hydrological literature because a 
realization of a DARMA process contains many runs of a constant value. 
Another class of count data time series models are called integer autoregressive 
moving average (INARMA) models. These models do not have the problem of 
DARMA models and have interesting properties such as having the same correlation 
structure as ARMA models.    
Different INARMA models have been introduced and some of their statistical 
properties have been reviewed. For higher order integer autoregressive and moving 
average models there are two approaches regarding the thinning mechanisms. In this 
study we follow the approach that assumes independence of thinning operations of 
each other and all the previous corresponding operations.   
It has been found that the statistical properties of the general INARMA(p,q) model 
(e.g. the autocorrelation function) have not been looked at in the literature. The 
unconditional variance and the ACF of an INARMA(p,q) process have been found in 
this chapter.  
INARMA models have had applications in different areas such as medical science 
and economics. Although all of these applications focus on the direct physical 
interpretation of these processes as a birth and death process, these models should 
not only be restricted to such situations. Our study suggests a new practical area for 
INARMA processes in modelling and forecasting intermittent demand.  
Finally, different schemes of aggregation of an INAR(1) process have been 
discussed, namely temporal, cross-sectional, and lead time aggregation. The results 
of aggregation of an INAR(1) process over lead time have been presented. Similar 
results for an INARMA(p,q) process will be presented in chapter 6. 
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Chapter 4 IDENTIFICATION IN INARMA 
MODELS 
 
 
 
 
 
 
 
 
4.1 Introduction 
This chapter reviews methods for identification of the autoregressive and moving 
average order of an INARMA model. Different tests suggested for investigating 
serial dependence in time series of counts are reviewed in section  4.2. The 
autocorrelation function (ACF) and partial autocorrelation function (PACF) can be 
used to select the appropriate INARMA models, similar to ARMA models. The ACF 
and PACF structures of INARMA models are reviewed in section  4.3. The residual 
analysis to check the model adequacy is discussed in section  4.4. The Akaike 
information criterion (AIC) is an easily automated method of identification and is 
introduced in section  4.5. The identification procedures undertaken in this research 
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are discussed in section  4.6. Finally, the conclusions are summarized in section  4.7.   
 
4.2 Testing Serial Dependence    
Jung and Tremayne (2003) argue that when analyzing any time series of counts, the 
first natural step is to investigate if the data exhibit significant serial dependence. 
This is because if the data do not show such dependence, there is no need for 
INARMA methods. In such cases, methods for independent data should be used.  
In this section, methods of testing for independence in a time series of counts are 
presented. Several methods have been suggested in the literature, which we briefly 
review. 
 
4.2.1 Runs Test 
In this test, the original series is dichotomized on the basis of some criterion. The 
median is often recommended for this test, and the observations that are identical to 
the sample median are discarded. However, in stationary time series of low value 
counts one can expect to see the median value very frequently; therefore many 
observations would have to be eliminated and this affects the power of the test. 
Instead, Jung and Tremayne (2003) use the sample mean as they argue that it will 
rarely be integer valued.  
Under the null hypothesis (?0) of no serial dependence, the distribution of the 
number of runs of a time series (?1,?2,?,??) is tested by the following statistic 
(Jung and Tremayne, 2006a): 
?=
 ??1??2?1????1??/?
 ?
 2?1????1??2?1????1????
 ??2???1??
 ?
 1/2
  
Equation  4-1 
where ? is the number of runs and ?1 is the number of positive runs. Wald and 
Wolfowitz (1940) show that ?
 ?
 ??(0,1) under the null hypothesis, where 
?
 ? 
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indicates convergence in ditrubution. Therefore, the null hypothesis is rejected if 
?<??, where ?? is the relevant quantile of the standard normal distribution and ? is 
the type I error. The test is one-sided because INARMA models only have positive 
autocorrelations.   
 
4.2.2 The Score Test 
The score test of Freeland (1998) is another approach of testing for independence in 
a time series of counts. Under the null hypothesis (?0) of the underlying time series 
?? being i.i.d. Poisson variables, Freeland (1998) shows that the test statistic is:  
?=
 1
 ???
 ? ????1???(
 ?
 ?=2
 ????) 
Equation  4-2 
where ? is the sample mean (?=
 1
 ?
 ? ??
 ?
 ?=1 ) and ? is the number of observations. 
The above statistic can be approximated by the standard normal distribution, 
?
 ?
 ??(0,1) and the null hypothesis is rejected if ?>??.  
Jung and Tremayne (2003) provide a modified statistic based on the mean-variance 
equality property of the Poisson distribution. The modified statistic is given by: 
 ??=??
 ? ????1???(????)
 ?
 ?=2
 ? (????)2
 ?
 ?=1
  
Equation  4-3 
which is asymptotically equivalent to the S-statistic under the null hypothesis. Here, 
again the null hypothesis is rejected if ??>??.  
 
4.2.3 Portmanteau-type Tests 
Jung and Tremayne (2003) use two portmanteau-type tests originally designed by 
Venkataraman (1982) and Mills and Seneta (1989) to measure the goodness-of-fit in 
branching processes as tests for independence in a time series of counts. 
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Under the null hypothesis (?0) of no serial dependence or i.i.d. random variables, the 
modified version of the statistic presented by Venkataraman (1982) is:  
???????=
 ? ??+1
 2?
 ?=1 ?? (????)
 2?
 ?=1 ?
 2
 ? ??????2(?????1??)2
 ?
 ?=?+2
  
Equation  4-4 
where ??=? ??????(??????)
 ?
 ?=?+1 /? (????)
 2?
 ?=1  and ??1 is an arbitrary 
integer (in their Monte-Carlo study, Jung and Tremayne (2003) use ?= 1, 5, 10). 
Under the null hypothesis of i.i.d. Poisson variables {??}, ????(?)
 ?
 ??2(?) as 
???. 
The second test is an adapted version of the test presented by Mills and Seneta 
(1989) with the statistic:         
????????=
 ? ??+1
 2?
 ?=1 ?? (????)
 2?
 ?=1 ?
 2
 ? ??????2(?????1??)2
 ?
 ?=?+2
  
Equation  4-5 
It can be easily seen that this is exactly the same as ????(?) except that ??+1 is 
replaced by ??+1. Here, ?? is the kth order sample partial autocorrelation and ? is as 
defined before. Similarly, ?????(?)
 ?
 ??2(?) as ???. 
It should be noted that the first-order lag sample correlations are ignored in both 
statistics. These two tests can be used to distinguish between INAR(1) and INMA(1) 
structures. 
Two portmanteau tests used in the ARMA literature to find if the data has any serial 
dependence are the Box-Pierce and the Ljung-Box tests. The latter is an enhancement 
of the former to improve the performance of the test for small sample sizes (Ljung 
and Box, 1978). The Ljung-Box statistic is given by: 
??=???+ 2??
 ??
 2
 ???
 ?
 ?=1
  
Equation  4-6 
where ? is the number of observations and ?? is the sample autocorrelation at lag ?. 
A large value of ?? indicates that the model is inadequate.  
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4.3 Identification based on ACF and PACF 
The sample autocorrelation function (SACF) and sample partial autocorrelation 
function (SPACF) have been widely used in the literature for identification of the 
autoregressive and moving average order of the INARMA models (Latour, 1998; 
Jung and Tremayne, 2006a; Zheng et al., 2006; Zhu and Joe, 2006; Bu and McCabe, 
2008). In this section, we review these functions for different INARMA models. 
 
4.3.1 Autocorrelation Function (ACF) 
The Autocorrelation Function (ACF) is defined as a plot of the autocorrelations at lag 
? versus the lag ?. In this section, we investigate the autocorrelation function of an 
INARMA(p,q) process. First, we recall that the ACF of an INAR(p) process of: 
??=?1????1 +?2????2 +?+???????+??     
is determined by Du and Li (1991) as:  
??=?1???1 +?2???2 +?+?????? 
Equation  4-7 
It can be seen that the correlation structures of INAR(p) and AR(p) processes are the 
same. For an INMA(q) process of: 
??=??+?1????1 +?2????2 +?+???????  
it is shown by Br?nn?s and Hall (2001) that the ACF for an INMA(q) process with 
Poisson marginal distribution is given by:    
??=?
 ? ????+?
 ???
 ?=0
 ? ??
 ?
 ?=0
 for ?= 1,?,?
 0 for ?>?
 ?       
Equation  4-8 
Again, it can be seen that this is analogous to the ACF of an MA(q) process.  
In chapter 3, we showed that the autocorrelation function of an INARMA(p,q) 
process is as follows: 
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??=?
 ?1???1 +?2???2 +?+??????+???0
 ??+??+1?1
 ??+?+??????
 ??
 ?0
 ???
 ?1???1 +?2???2 +?+?????? ?>?
 ? 
Equation  4-9 
When ???+ 1, the autocorrelation is: 
??=?1???1 +?2???2 +?+?????? for ???+ 1    
Equation  4-10 
Therefore, the ACF of an INARMA(p,q) process is analogous to that of an 
ARMA(p,q) process and it can be used in identifying the integer-valued time series. 
 
4.3.2 Partial Correlation Function (PACF) 
The correlation between two variables can be used as a measure of interdependence. 
However, when a variable is correlated with a second variable, this may be due to the 
fact that they both are correlated with another variable(s). Therefore, it may be of 
interest to examine the correlations between variables when other variables are held 
constant. These are called partial correlations (Hamilton, 1994). 
PACF is a device to identify the autoregressive order of a stationary time series. It 
has been shown that, although an AR(p) process has an infinite ACF, it can be 
described in terms of p non-zero functions of the autocorrelations (Box et al., 1994).  
In this section, we examine the partial autocorrelation function of INARMA 
processes. The section is organized as follows. First the PACF of an INAR(p) 
process is studied. The PACF of INMA(q) and INARMA(p,q) processes are then 
discussed. 
 
4.3.2.1 PACF of an INAR(p) Model  
In this section, we examine the partial autocorrelation function of INAR processes. 
The INAR(p) process is defined by the recursion: 
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??=?1????1 +?2????2 +?+???????+??      
Here we assume that ?? has a Poisson distribution with parameter ?. Multiplying the 
above equation by ???? produces: 
??????=????(?1????1) +????(?2????2) +?+????(???????) +?????? 
  
Equation  4-11 
but we know that: 
?(??) =?1?(???1) +?2?(???2) +?+???(????) +?(??) 
?=???1 +?2 +?+???+? 
So, if we take the expected value of Equation  4-11 and subtract ?(??)?(????) from 
it, we have: 
??=?1???1 +?2???2 +?+??????+ cov(????,??) ??0    
Equation  4-12 
considering the fact that ????????????????=???(????????) (Silva and Oliveira, 
2004). The last term in the RHS is zero because ???? can only involve innovation 
terms up to time ??? and therefore is uncorrelated with ??. Dividing the Equation 
 4-12 by ?0 yields: 
??=?1???1 +?2???2 +?+?????? ??0 
     
Equation  4-13 
which is analogous to the difference equation for Gaussian AR processes. The Yule-
 Walker equations are: 
?1 = ?1 + ?2?1 + ? + ?????1
 ?2 = ?1?1 + ?2 + ? + ?????2
 ? ? ? ? ?
 ?? = ?1???1 + ?2???2 + ? + ??
  
 
Equation  4-14 
The autocorrelation function of an INAR(p) process can be described in terms of ? 
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nonzero functions of the autocorrelations.  
In an integer autoregressive process of order ?: 
??=??1???1 +??2???2 +?+??(??1)????+1 +???????  for ?= 1,2,?,?
   
Equation  4-15 
where ??? is the ?th coefficient in an integer autoregressive representation of order ?. 
Therefore ??? is the last coefficient and ???= 0 for ?>?. 
The Equation  4-15 leads to the Yule-Walker equations which may be written as: 
?
 1 ?1 ?2 ? ???1
 ?1 1 ?1 ? ???2
 ? ? ? ? ?
 ???1 ???2 ???3 ? 1
 ??
 ??1
 ??2
 ?
 ???
 ?=?
 ?1
 ?2
 ?
 ??
 ? 
     Equation  4-16 
As defined by Hamilton (1994), the ?th population partial autocorrelation (denoted 
by ???) is the last coefficient in a linear (for Gaussian ARMA processes) projection 
of ? on its ? most recent values. In the case of integer autoregressive models, it can 
be stated as: 
??=??1????1 +??2????2 +?+???????? 
Equation  4-17 
which results in the same sets of difference equations based on autocorrelations. The 
justification for using partial autocorrelations is that, if data really were generated by 
an INAR(p) process, only the ? most recent values of ? would be useful for 
forecasting and the coefficients on ?'s more than ? periods in the past are equal to 
zero, which means that: 
???= 0 for ?=?+ 1,?+ 2,? 
We can express the INAR(p) process as follows: 
??=????1????1??2????2??????????=???? ???????
 ?
 ?=1    
It can be seen that the series in the RHS of the above equation is finite. Therefore, the 
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PACF of an INAR (p) process is finite.  
Although an INAR(p) process differs from the AR(p) process due to the thinning 
operations, these two processes share some properties including the ACF and PACF 
structure. Therefore, using the sample partial autocorrelation function (SPACF) may 
help us in identifying the autoregressive order of an INAR time series. 
 
4.3.2.2 PACF of an INMA(q) Model  
This section focuses on finding the partial autocorrelation function of an INMA 
process. The INMA(q) process has the following form: 
??=??+?1????1 +?2????2 +?+??????? 
We again assume that ?? has a Poisson distribution with parameter ?. Using the same 
argument as for an INAR(p) process, it can be seen that the autocovariance function 
of an INMA(q) process is: 
??=?[(??+?1????1 +?2????2 +?+???????). 
(????+?1??????1 +?2??????2 +?+?????????)] 
so 
??=?
 (??+?1??+1 +?2??+2 +?+??????)??
 2 ?= 1,2,?,?
 0 ?>?
 ? 
    Equation  4-18 
Thus, the autocorrelation function (ACF) is given by:  
??=?
 ??+?1??+1 +?2??+2 +?+??????
 1 +?1 +?+??
 ?= 1,2,?,?
 0 ?>?
 ? 
Equation  4-19 
It can be seen that the autocorrelation function of an INMA(q) process is zero, 
beyond the order ? of the process. 
As discussed earlier in section  4.3.2.1, if the data were generated by an INAR(p) 
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process, only the ? most recent values of ? would be useful for forecasting and 
therefore the PACF cuts off after lag ?. However, if the data were generated by an 
INMA(q) process with ??1, then the partial autocorrelation ??? asymptotically 
approaches zero instead of cutting off abruptly. 
The PACF of the process (???) can be obtained by solving the set of equations given 
by Equation  4-15 using the ACF of the process. For example, Al-Osh and Alzaid 
(1988) find the first and second partial autocorrelations of an INMA(1) process as:  
?11 =?1 
?22 =
 ?2??1
 2
 1??1
 2 =
 ??2
 1 + 2?
  
which can be seen is the same as that of a MA(1) process.  
 
4.3.2.3 PACF of an INARMA(p,q) Model  
The partial autocorrelation function of an INARMA(p,q) process is examined in this 
section. This process satisfies the difference equation: 
??=? ???????
 ?
 ?=1 +??+? ???????
 ?
 ?=1   
An INARMA(p,q) process can be written in form of (see Appendix 4.A): 
??=???? ? ???????
 ??
 ?=1
 ?
 ?=1
  
Equation  4-20 
where ??=?
 ?? ????
 ?
 ?=1 + 1 0 <???
 ? ????
 ?
 ?=1 ?>?
 ?.  
The values of ?? can be found by repeated multiplications of the parameters of 
INARMA(p,q) process.   
It can be seen that the series in the RHS of the Equation  4-20 is infinite. Therefore, 
the PACF of an INARMA(p,q) process, similar to an INMA(q) process, is infinite.  
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As shown in section  4.3.1, the structure of the autocorrelation function of the 
INARMA(p,q) process is analogous to that of an ARMA process. The structure of 
the partial autocorrelation function of this process is also similar to that of an ARMA 
process, i.e. the PACF of a mixed integer autoregressive moving average process is 
infinite and it has the same shape as the PACF of a pure integer moving average 
process. 
 
4.4 Residual Analysis  
The residuals of the INARMA models can provide a check of model adequacy (Jung 
and Tremayne, 2006b). After identification of the appropriate model using ACF and 
PACF and estimation of the parameters of the identified model, the residuals should 
be examined to check for any serial dependence. Any dependence in the residuals 
would suggest that a different model should be used. The ACF and PACF of the 
residuals should be plotted for this reason.  
Freeland and McCabe (2004a) define two sets of residuals: one for the arrivals 
component and another for the continuation process of a PoINAR(p) process. The 
residuals for the continuation component are given by: 
?1?=?????????????? for ?=?+ 1,?,? 
Equation  4-21 
The residuals for the arrivals component are: 
?2?=???? 
Equation  4-22 
However, as they mention, these definitions are not practical because ??????? and 
?? cannot be observed and should be replaced with their conditional expected values. 
Adding the new components then results in the usual definition of residuals for a 
PoINAR(p) process: 
??=???? ?????
 ?
 ?=1
 ?? 
Equation  4-23 
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Bu and McCabe (2008) suggest that in order to check the adequacy of the selected 
model, checking the traditional residual of the Equation  4-23 is not enough and the 
components residuals (?1? and ?2?) should also be tested to examine the suitability of 
each component in the model. The expected value of ??????? and ?? are provided 
in terms of the conditional probabilities. This resolves the impracticality issue 
mentioned in Freeland and McCabe (2004a). 
The residuals of an INMA(q) process are given by (Br?nn?s and Hall, 2001): 
??=?????? ?????
 ?
 ?=1
  
Equation  4-24 
Based on Equation  4-23 and Equation  4-24, the residuals of an INARMA(p,q) model 
can be obtained from: 
??=???? ?????
 ?
 ?=1
 ???? ?????
 ?
 ?=1
  
Equation  4-25 
It will be explained in section  4.5 that the identification methods used in this PhD 
thesis are not based on ACF and PACF. However, as an example, here we show what 
the ACF and PACF of one INAR(1) series look like. The series is selected from 
those of the 16,000 series data set of chapter 9. The time series plot for all 72 periods 
is provided in Figure  4-1. The sample ACF and sample PACF of the above series are 
presented in Figure  4-2. The sample PACFs suggest that an INAR(1) model is 
appropriate. 
The parameters of the identified INAR(1) model are then estimated using the Yule-
 Walker (YW) estimation method (see section  5.3.1) to be ?= 0.5581 and ?=
 0.0552. 
The next step is to check the model?s adequacy using the residual analysis. The 
residuals of the INAR(1) model are defined as: 
??=?????????1???? 
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Figure ?4-1 Time series plot of one demand series among 16,000 series 
 
Figure ?4-2 Correlograms of the selected series among 16,000 series 
 
where ??? and ??? are the Yule-Walker estimates of parameters in the INAR(1) 
model.  
If any dependence structure exists in the residuals, a different model specification 
example would be considered. In order to check if such dependence exists in our 
example, the SACFs and SPACFs of the residuals of the estimated INAR(1) model 
are depicted in Figure  4-3. The figure suggests that there is no obvious dependence 
structure left in the residuals. 
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Figure ?4-3 Correlograms of the residuals of the INAR(1) model 
 
4.5 Identification based on Penalty Functions 
It has been argued that distinguishing between autoregressive moving average 
models based on the Box-Jenkins procedure is difficult (Chatfield and Prothero, 
1973; Newbold and Granger, 1974). This is because the ACF and PACF plots cannot 
easily identify mixed ARMA models. Moreover, the identification of ARMA models 
usually involves subjective judgment. The same is true for identification of 
INARMA models using ACF and PACF. 
The Kullback-Leibler information (Kullback and Leibler, 1951) is used to measure 
the difference between two probability density functions ?(?) and ?(?): 
???,??=?????log?
 ?(?)
 ?(?|?)
 ??? 
      Equation  4-26 
In the above equation, ???,?? denotes the information lost when ? is used to 
approximate ?. ? is considered to be fixed and ? varies over ?. 
Akaike (1973) introduces the Akaike information criterion (AIC) as an approximately 
unbiased estimate of Kullback-Leibler information. The AIC is given by: 
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AIC =??2?log?maximum likelihood?+ 2? 
Equation  4-27 
where ? is the number of estimable parameters in the approximating model. Ozaki 
(1977) shows that the AIC of the ARMA(p,q) model is given by:  
AIC??log??
 2 + 2? 
Equation  4-28 
where ??
 2 is the residual variance and ?=?+?+ 1. When the sample size is small 
(?/?< 40), the above expression is biased and the following bias correction is 
necessary (Hurvich and Tsai, 1989; Hurvich and Tsai, 1995): 
AICC ??log??
 2 + 2?+ 2?(?+ 1)/(????1) 
Equation  4-29 
AIC has also been used in the INARMA literature (see for example: B?ckenholt, 
1999; Brandt et al., 2000; Zhu and Joe, 2006). However, the complexity of the 
likelihood function of these models has led to some limitations in the use of AIC.  
The likelihood function of an INAR(p) process with Poisson innovations is given by 
(Bu, 2006): 
???1,?,??,??= ? ?(??|???1,?,????)
 ?
 ?=?+1
  
Equation  4-30 
where the conditional probability function ???????1,?,????? is: 
???????1,?,?????= ? ?
 ???1
 ?1
 ??1
 ?1?1??1?
 ???1??1
 min????1 ,???
 ?1=0
  
? ?
 ???2
 ?2
 ??2
 ?1?1??2?
 ???2??2
 min????2 ,????1?
 ?2=0
  ? 
? ?
 ????
 ??
 ???
 ??(1???)
 ???????
 ?????????1+?+???1?
 ??????1 +?+???1??!
 min [????,?????1+?+???1?]
 ??=0
  
Equation  4-31 
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It can be seen that the logarithm of Equation  4-31 cannot be simplified as in ARMA 
models. It should also be mentioned that the likelihood function of the 
INARMA(p,q) process is not established yet.  
 
4.6 The Identification Procedure  
For the simulation experiment, we need an automated method for identification that 
can be used for thousands of replications. Because the likelihood function of an 
INARMA(p,q) process is not yet found and even the likelihood function of an 
INAR(p) process is very complicated, the penalty functions for these models are not 
easy to find. It has been shown in chapter 3 that an INAR process is analogous to an 
AR process in autocorrelation structure and also forecasting. Therefore, it has been 
suggested that the standard programmes for AR processes, which are mainly based 
on AIC or BIC, could also be used for INAR processes (Latour, 1998). The same is 
true for an INMA process regarding the ACF structure and the conditional expected 
value.  
As mentioned in the previous section, the use of AIC in the INARMA literature is 
limited to those processes for which likelihood functions have been derived. This 
excludes the INMA and mixed models. Based on the above argument by Latour 
(1998) we test the performance of AIC of Equation  4-28 (or where applicable, AICC 
of Equation  4-29) for INARMA models.  
As discussed in section  4.2, Jung and Tremayne (2003) suggest that in analysing the 
time series of counts, any serial dependence should first be detected. If no such 
dependence is found, the complicated INARMA methods can be replaced with easier 
methods for independent data. Based on the above argument, we use two 
identification procedures in this thesis: a two-stage and a one-stage method.  
In the two-stage method, the first stage distinguishes between the INARMA(0,0) and 
the other INARMA models. The Ljung-Box statistic of Equation  4-6 is used for this 
reason. This is because it is a standard test used for conventional ARMA models. 
Therefore, it is included in most software packages (including MATLAB which is 
used in this thesis) and, based on the argument by Latour (1998), it can be used for 
M.Mohammadipour, 2009, Chapter 4   102 
 
INARMA models as well. It will be shown in chapter 8 that the rejection percentages 
under the null hypothesis of i.i.d. Poisson are comparable to the results of the tests 
suggested by Jung and Tremayne (2003).     
The AIC of Equation  4-28 is then used for identification among the other INARMA 
models. This is again based on the argument of Latour (1998) to use the standard 
programmes for ARMA models for INARMA models. It should also be mentioned 
that the AIC of ARMA models has been used in the INARMA literature (e.g. 
Br?nn?s and Quoreshi, 2004). The reliability of this identification procedure will be 
tested in the simulation chapter. To our knowledge, this has not been done in the 
literature before. The impact of misidentification on the forecast accuracy will also 
be checked. The one-stage method only uses the AIC of Equation  4-28 (or AICC of 
Equation  4-29) to identify the most appropriate model.  
The performance of these two methods will be compared. This will be done in terms 
of the percentage of time that the correct model is identified and also the accuracy of 
forecasts based on each method.   
  
4.7 Conclusions  
In this chapter, the methods of identification of the autoregressive and moving 
average orders of an INARMA process have been reviewed. It has been shown that 
the autocorrelation and partial autocorrelation functions of an INAR(p) process have 
the same structure as those of an AR(p) process. The same is true for INMA(q) and 
INARMA(p,q) processes. Therefore, the estimates of the functions (SACF and 
SPACF) can identify the moving average and autoregressive orders, respectively. 
The residuals of the estimated INARMA process then need to be checked for any 
remaining correlations.  
Two identification procedures will be used in this thesis. A two-stage method is 
based on first using the Ljung-Box statistic to identify any correlation in the data 
series. The next step involves using the AIC of ARMA models to select from the 
other possible INARMA models. The performance of this procedure in terms of the 
percentage of time that the model is identified correctly and also the effect of 
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misidentification on forecast accuracy will be tested in chapter 8. To our knowledge, 
this has not been done in INARMA literature. The two stage method will then be 
compared to a one-stage identification method based on using the AIC to select 
among the INARMA models including INARMA(0,0). 
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Chapter 5 ESTIMATION IN INARMA MODELS 
 
 
 
 
 
 
 
 
5.1 Introduction 
Having identified the appropriate INARMA model, we then need to estimate the 
parameters of the selected model. Different estimation methods have been used in the 
literature to estimate the parameters of INAR(p) and INMA(q) models, namely:  
? Yule-Walker (YW)  
? Conditional least squares (CLS)  
? Maximum likelihood (ML)  
? Generalized method of moments (GMM)  
Each of these methods is briefly reviewed. Table  5-1 lists the main studies on 
estimation of parameters of INARMA models. 
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Table ?5-1 Research papers on estimation of parameters of INARMA models 
Model YW CLS ML GMM 
INAR(1) Al-Osh and 
Alzaid, 1987 
Al-Osh and 
Alzaid, 1987 
Al-Osh and 
Alzaid, 1987 
Br?nn?s, 1994 
Br?nn?s and 
Hellstr?m, 2001 
INAR(p) Du and Li, 1991 
Jung and 
Tremayne, 2006b 
for INAR(2) 
 
Du and Li, 1991 
 
Bu et al., 2008  
INMA(1) Br?nn?s and Hall, 
2001 
Br?nn?s and Hall, 
2001 
 Br?nn?s and Hall, 
2001 
INMA(q) Br?nn?s and Hall, 
2001 for INMA(2) 
Br?nn?s and Hall, 
2001 
 Br?nn?s and Hall, 
2001 
 
The YW method is based on using the Yule-Walker equations of: 
?1 = ?1 + ?2?1 + ? + ?????1
 ?2 = ?1?1 + ?2 + ? + ?????2
 ? ? ? ? ?
 ?? = ?1???1 + ?2???2 + ? + ??
  
and replacing the theoretical autocorrelations ?? by the sample autocorrelations, ?? 
(Box et al., 1994): 
??=
 ? ??????(??????)
 ?
 ?=?+1
 ? ??????2
 ?
 ?=1
  
Equation  5-1 
Lawrence et al. (1978) develop the CLS estimation procedure for stochastic 
processes based on the minimization of a sum of squared deviations about 
conditional expectation. 
Maximum likelihood estimation method, as the name suggests, finds the parameters 
that maximize the likelihood of the sample data. The likelihood of the sample data is 
the probability of obtaining that particular set of data, given the specific probability 
distribution.  
In the generalized method of moments, a set of population moment conditions is first 
derived based on the assumptions of the model. Then the GMM estimates of the 
parameters are obtained such that these moment conditions are satisfied for the 
M.Mohammadipour, 2009, Chapter 5   106 
 
sample data.  
This chapter is organized as follows. The estimate of the parameter of a Poisson 
INARMA(0,0) process is provided in section  5.2. The YW, CLS, CML, and GMM 
estimates for the parameters of INAR(1) and INAR(p) processes are reviewed in 
sections  5.3 and  5.4 (GMM only for INAR(1) process). The corresponding 
estimation methods for INMA(1) and INMA(q) processes are reviewed in sections 
 5.5 and  5.6. The YW and CLS estimates of the parameters of an INARMA(1,1) 
process are derived in section  5.7. Finding the ACF of an INARMA(p,q) model in 
chapter 3 enables us to find the YW estimates of these models. As an example, the 
YW estimates of an INARMA(2,2) model are derived in section  5.8. The conclusions 
are given in section  5.9. 
As will be discussed in chapter 7, four INARMA models are selected for simulation 
and empirical analysis to compete against the benchmark methods. These models 
are: INARMA(0,0), INAR(1), INMA(1), and INARMA(1,1). The estimation 
methods used in this thesis for these models are CLS and YW for the last three and 
also CML for INAR(1). Therefore, these estimates are specifically given in this 
section. It will be discussed in section  5.2 that the CLS and ML estimation methods 
result in the same estimate for a Poisson INARMA(0,0) process.  
  
5.2 Estimation in an INARMA(0,0) Model  
The INARMA(0,0) process with Poisson marginal distribution is simply an i.i.d. 
Poisson process of: 
??=?? 
Equation  5-2 
where ?? are i.i.d. Poisson random variables. The conditional expected value of ?? 
given ???1 is therefore given by:  
???????1?=? 
Equation  5-3 
where ? is the only parameter to be estimated. The conditional least squares estimate 
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of ? is obtained by minimizing the function: 
?????=? [??????????1?]
 2
 ?
 ?=1
 =? (????)
 2
 ?
 ?=1
  
Equation  5-4 
with respect to ? for a sample of {?1,?2,?,??}.  
?=
 ? ??
 ?
 ?=1
 ?
  
Equation  5-5 
The likelihood function of a sample of ? observations of an INARMA(0,0) process 
can be written as: 
????=?
 ??????
 ????!
 ?
 ?=1
  
Equation  5-6 
The ML estimator of ? can be obtained by maximizing the log of the likelihood 
function in Equation  5-6. It can be seen that this results in the same estimator as that 
of CLS (Equation  5-5).  
 
5.3 Estimation in an INAR(1) Model  
5.3.1 YW for INAR(1) 
The Yule-Walker estimator for ? in an INAR(1) model was found by Al-Osh and 
Alzaid (1987) to be as follows: 
?=
 ? ??????(??+1??)
 ??1
 ?=0
 ? ??????2
 ?
 ?=0
  
Equation  5-7 
where ? is the sample mean. Since ?? is assumed to have a Poisson distribution with 
parameter ?, the estimator for ? is: 
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???=
 ? ??
 ?
 ?=1
 ?
  
Equation  5-8 
where ??=???????1.  
Jung and Tremayne (2006b) propose the same estimator for ?, but a slightly different 
estimator for ?, which is indicated by ???. They argue that, as the first order moment 
of the INAR(1) model is ?????=
 ?
 1??
  , ?  can be estimated from: 
???= (1??)
 ? ??
 ?
 ?=1
 ?
  
Equation  5-9 
In this thesis we use the Equation  5-7 and Equation  5-9 to obtain the YW estimates 
of an INAR(1) process. This is because the Equation  5-9 is based on observed data 
and not estimates of the innovations as in Equation  5-8.  
 
5.3.2 CLS for INAR(1) 
It can be easily seen that in the INAR(1) model, ?? given ???1 is still a random 
variable due to the definition of the thinning operation. The conditional mean of ?? 
given ???1, which is the best one-step-ahead predictor (Br?nn?s and Hall, 2001), is: 
???????1?=????1 +?=?(?,???1) 
Equation  5-10 
where ?= (?,?)? is the vector of parameters to be estimated. Al-Osh and Alzaid 
(1987) employ a procedure developed by Klimko and Nelson (1978) and derive the 
estimators for ? and ? as follows: 
?=
 ? ?????1
 ?
 ?=1 ?(? ??
 ?
 ?=1 ? ???1
 ?
 ?=1 )/?
 ? ???1
 2?
 ?=1 ?(? ???1
 ?
 ?=1 )
 2/?
  
Equation  5-11 
and  
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?=?? ??
 ?
 ?=1
 ??? ???1
 ?
 ?=1
 ?/? 
Equation  5-12 
It can be easily verified that ?, ??/??, ??/??, ?2?/???? satisfy the regularity 
conditions proposed by Klimko and Nelson (1978). It follows that the CLS 
estimators are strongly consistent and asymptotically normally distributed as: 
??????0?~?(?,??1??) 
where ?0 = (?0,?0)? denotes the true values of the parameters and: 
??=??
 ??(?0,???1)
 ???
 .
 ??(?0,???1)
 ???
 ?                        ?,?= 1,2 
??=????
 2(?0)
 ??(?0,???1)
 ???
 .
 ??(?0,???1)
 ???
 ?          ?,?= 1,2 
with ????
 0?= ????(?
 0,???1).  
Freeland and McCabe (2005) show that the distributions of the CLS and YW 
estimators of a PoINAR(1) process are asymptotically equivalent.  
  
5.3.3 CML for INAR(1) 
The Conditional Maximum Likelihood (CML) and Maximum Likelihood (ML) 
estimators for the PoINAR(1) process are provided by Al-Osh and Alzaid (1987). 
The likelihood function of a sample of ? observations from an INAR(1) process can 
be written as:  
???,??=?(?1)? ?(??|???1)
 ?
 ?=2
  
Equation  5-13 
where ?(??|???1) is given by: 
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???????1?= ? ?
 ???1
 ?
 ???(1??)???1??
 ????????
 ??????!
 min (???1 ,??)
 ?=0
  
Equation  5-14 
Because the marginal distribution of the PoINAR(1) process is Poisson with mean 
?/(1??), the unconditional likelihood function is: 
???,??=
 ???/(1??)[
 ?
 1??]
 ?1
 ??1?!
 ? ? ? ?
 ???1
 ?
 ???(1??)???1??
 ????????
 ??????!
 min (???1 ,??)
 ?=0
 ?
 ?
 ?=2
  
Equation  5-15 
In order to find the conditional maximum likelihood estimation (CML), ?1 is 
assumed to be given and the conditional likelihood function is reduced to: 
???,??=? ? ? ?
 ???1
 ?
 ???(1??)???1??
 ????????
 ??????!
 min (???1 ,??)
 ?=0
 ?
 ?
 ?=2
  
Equation  5-16 
Then, the unconditional and conditional maximum likelihood estimators can be 
derived by maximizing the logarithm of the likelihood functions of Equation  5-15 
and Equation  5-16, respectively. 
Al-Osh and Alzaid (1987) used the procedure of Sprott (1983) to eliminate one of the 
parameters in the derivatives of the log-likelihood function.  
?log[???,??]
 ??
 =? ?(?)
 ?
 ?=2
 ????1?= 0 
Equation  5-17 
?log[???,??]
 ??
 =?
 ????????1????(?)
 ?(1??)
 ?
 ?=2
 = 0 
Equation  5-18 
where ????=?????1?/?????. The Equation  5-18 results in: 
?=
 ? ??
 ?
 ?=2 ??? ???1
 ?
 ?=2
 ??1
  
Equation  5-19 
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The Equation  5-19 can then be used in Equation  5-17 to find ?. The ML estimators 
of ? and ? have the following asymptotic distribution: 
???
 ???
 ???
 ?~?(?,??1) 
where the matrix ? is the Fisher information (Bu, 2006). 
Al-Osh and Alzaid (1987) compare the performance of YW, CLS and CML 
estimates in terms of bias and MSE in a simulation study. Their results suggest that, 
in general, CML is worth the extra effort because it has the least bias and MSE of all. 
However, for small sample sizes (??75) and small autoregressive parameter 
??= 0.1?, because the sample contains many zero values, CML is not as good as 
YW in terms of bias and MSE. It is worth mentioning that their study only compares 
the accuracy of estimates and not their impact on forecast accuracy, which is done in 
this PhD thesis (see section  8.4).  
 
5.3.4 Conditional GMM for INAR(1) 
Br?nn?s (1994) uses the conditional GMM estimation method of Hansen (1982) to 
estimate the parameters of a PoINAR(1) process. It is called a conditional GMM 
since the moment restrictions used are conditional. The GMM estimator is based on 
minimization of the function: 
?=?(?)???1?(?) 
Equation  5-20 
where ?= (?,?)? is the vector of the unknown parameters to be estimated and ?(?) 
is the vector of moment restrictions. When ? is the asymptotic covariance of ?(?), 
the GMM estimator is efficient. ? is first minimized based on using an identity 
matrix ? for ?. Then the estimates ? are used to from ?. 
The moment restrictions used are: 
1
 ?
 ? ??
 ?
 ?=2
 = 0 
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1
 ?
 ? ?(???1??)
 ?
 ?=2
 = 0 
where ?? is the one-step ahead prediction error, ??=????( ??|???1).  
Although the above moments are unconditional, they are equal to the conditional 
ones (Br?nn?s, 1994). It can be seen that when ? =?2, the GMM and the CLS are 
the same.   
Br?nn?s (1994) then compares the performance of CLS, ML, and GMM. The results 
show that for large values of ?, the GMM estimates have smaller MSE than CLS. In 
general, for large values of ?, ?GMM  is close to ?ML  in terms of MSE. But for small 
values of ?, ?ML  outperforms ?GMM . Moreover, ?ML  always has smaller MSE than 
?GMM , although when ? increases this difference decreases. The results do not show 
any conclusive advantage by using GMM over ML in terms of bias.  
To conclude, we do not see any benefit in using GMM for an INAR(1) process, 
considering the fact that it does not outperform the maximum likelihood method, 
which is used in this research, in terms of MSE.    
 
5.4 Estimation in an INAR(p) Model  
5.4.1 YW for INAR(p) 
Du and Li (1991) generalize the Yule-Walker estimation method to estimate the 
parameters of an INAR(p) process. The Yule-Walker equations are: 
??=? 
Equation  5-21 
where ?= [?????]???, ?= (?1,?2 ,?,??)?, and ?= (?1,?2 ,?,??)?.  Replacing the 
theoretical autocorrelations ?? by the sample autocorrelations ?? results in the YW 
estimate of ?.  
Then, ? can be estimated from the expected value of the INAR(p) process: 
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?= (1??1?????)? 
Equation  5-22 
These estimators are strongly consistent and asymptotically normally distributed 
(Silva and Silva, 2006). Also, for a large number of observations, YW estimators are 
very close to the CLS estimators (Du and Li, 1991).  
 
5.4.2 CLS for INAR(p) 
The CLS estimators of an INAR(p) process are also derived by Du and Li (1991). 
The conditional expected value of the process is: 
???????1,?,?2,?1?=?1???1 +?+??????+? 
Equation  5-23 
The least squares criterion to be minimized is then: 
?????= ? [??????????1,?,?2,?1?]
 2
 ?
 ?=?+1
  
Equation  5-24 
where ?= (?1,?2,?,??,?) 
is the vector of parameters to be estimated. ? can be 
found by setting the partial derivatives to zero. 
??????
 ???
 = 0                    (?= 1,2,?,?) 
??????
 ??
 = 0 
Du and Li (1991) suggest that, for large samples, the CLS estimators for INAR(p) 
process are very close to Yule-Walker estimators. They also are strongly consistent 
and asymptotically normal. 
 
5.4.3 CML for INAR(p) 
Bu et al. (2008) study the maximum likelihood estimators of a general INAR(p) 
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process. The conditional likelihood function of an INAR(p) process is: 
???1,?2,?,??,??= ? ?(??|???1,?,????)
 ?
 ?=?+1
  
Equation  5-25 
where the conditional probabilities are: 
???????1,?,?????= ? ?
 ???1
 ?1
 ??1
 ?1?1??1?
 ???1??1
 min????1 ,???
 ?1=0
 ? 
? ?
 ???2
 ?2
 ??2
 ?1?1??2?
 ???2??2
 min????2 ,????1?
 ?2=0
  ??? 
? ?
 ????
 ??
 ???
 ??(1???)
 ???????
 ?????????1+?+???1?
 ??????1 +?+???1??!
 min [????,?????1+?+???1?]
 ??=0
  
Equation  5-26 
The asymptotic distribution of the maximum likelihood estimator is Normal: 
???????~?(?,??1) 
where ?= (?1,?,??,?)? is the parameter vector and the matrix ? is the Fisher 
information.  
Bu et al. (2008) investigate the asymptotic benefit of ML over CLS for a PoINAR(2) 
process using the asymptotic relative efficiency (ARE) ratio between the two 
estimators, i.e. the ratio of their asymptotic variances. Their results show that for 
persistent processes (high values of ?1, ?2 or both), the ML estimates are 
asymptotically more efficient than the CLS estimates. For low values of ?1 and ?2 and 
also for high values of ?2 and low values of ?1, the benefit of ML over CLS is slight.  
They also compare the performance of ML and CLS in a simulation study for 
?= 100 and ?= 500. The results suggest that there is a gain in terms of MSE in 
using ML for larger samples. For smaller samples, when ?1 and ?2 are small, CLS 
has lower MSE than ML.  
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5.5 Estimation in an INMA(1) Model  
5.5.1 YW for INMA(1) 
The Yule-Walker estimator for ? in a PoINMA(1) process (??=??+?????1) is as 
follows: 
?=
 ?1
 1??1
  
Equation  5-27 
where ?1 is the lag one sample autocorrelation given by the Equation  5-1. Then, ? 
can be estimated from the expected value of the process: 
?=
 1
 1 +?
 ? ??
 ?
 ?=1
 ?
  
Equation  5-28 
Note that ? can also be estimated form the unconditional variance of the INMA(1) 
(Equation  3-28), but the estimator based on the unconditional mean has smaller 
variance (Br?nn?s and Hall, 2001). 
 
5.5.2 CLS for INMA(1) 
The conditional expected value of ?? given ???1 for an INMA(1) process is given by: 
???????1?=????1 +? 
Equation  5-29 
The prediction error is: 
??=???????1?? 
Equation  5-30 
The CLS estimates of ? and ? can then obtained by minimizing the following 
function: 
?????=? [???(????1 +?)]
 2
 ?
 ?=1
  
Equation  5-31 
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with respect to ?, where ?= (?,?)? is the parameter vector to be estimated. The 
CLS estimates for ? and ? are: 
?=
 ? ?????1
 ?
 ?=1 ?(? ??
 ?
 ?=1 ? ???1
 ?
 ?=1 )/?
 ? ???1
 2?
 ?=1 ?(? ???1
 ?
 ?=1 )
 2/?
  
Equation  5-32 
?=?? ??
 ?
 ?=1
 ??? ???1
 ?
 ?=1
 ?/? 
Equation  5-33 
 
5.6 Estimation in an INMA(q) Model  
5.6.1 YW for INMA(q) 
The autocorrelation function of an INMA(q) process of ??=??+?1????1 +?+
 ??????q  is given by the Equation  3-40. The ACF can be used to find the YW 
estimates of (?1,?,??).  
Once these parameters have been estimated, ? can be estimated from the expected 
value of the process: 
?=
 1
 1 +? ??
 ?
 ?=1
 ? ??
 ?
 ?=1
 ?
  
Equation  5-34 
When the order of the INMA model increases, the equations to be solved become 
more complex. This is shown in Table  5-2.  
Table ?5-2 The relationship between the order of the model and the type of YW equation 
Model Equation 
INMA(1) Linear 
INMA(2) quadratic (2) 
INMA(3) quartic (4) 
INMA(4) sextic (6) 
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The results of Table  5-2 can be found by direct expansion of expressions in the Yule-
 Walker equations. As can be seen from the above table, for INMA processes with 
order higher than two, it becomes more complex to find the estimators and although 
such equations can be solved numerically, it is computationally expensive to find the 
Yule-Walker estimators for such processes. 
 
5.6.2 CLS for INMA(q) 
The conditional first moment of the INMA(q) process is: 
???????1?= ?+? ?????j
 ?
 ?=1
  
Equation  5-35 
Hence, the forecast error is: 
??=?????? ??????
 ?
 ?=1
  
Equation  5-36 
The least squares criterion is then: 
?????= ? ??????? ??????
 ?
 ?=1
 ?
 2
 ?
 ?=?+1
  
Equation  5-37 
The corresponding parameter vector ?= (?1,?,??,?)? for the minimum ????? can 
be obtained.  
 
5.6.3 GMM based on Probability Generation Functions for INMA(q) 
In this estimation method, the probability generation functions (pgf) ?(?) and 
??(?1,?2) are evaluated at any ?. Based on the law of large numbers: 
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? (1???)
 ???
 ?=1
 ?
 ?
 ??(??) 
? (1???)
 ??(1???)
 ?????
 ?=?+1
 ???
 ?
 ???(??,??) 
where 
?
 ? denotes convergence in probability. Therefore, the moment conditions are 
formed as: 
?1?=
 ? (1???)
 ???
 ?=1
 ?
 ??(??) 
?2?,??=
 ? (1???)
 ??(1???)
 ?????
 ?=?+1
 ???
 ???(??,??) 
The GMM criterion to be minimized is then: 
?=?? ?1? 
where ? is the vector of moment restrictions and ? is the covariance matrix of ?. 
Similar to section ?5.3.4, first it is assumed that ? is equal to the identity matrix. This 
results in a consistent and asymptotically normal estimator. However, if ? is known 
or a consistent estimator of ? is used, the GMM estimators would be more efficient 
than if ? is equal to ?. 
For a PoINMA(1) process, GMM estimators provided by Br?nn?s and Hall (2001) 
are as follows: 
?=
 ?ln????ln?????1?ln????2
 ?ln????ln?????1?ln????2(1??1)
  
Equation  5-38 
?=?
 ln(?)
 ?1(1 +?)
  
Equation  5-39 
where ? and ? are the sample moments corresponding to ?(?1) and ?1(?1,?2), 
respectively. 
Br?nn?s and Hall (2001) compare the performance of YW, CLS and GMM for an 
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INMA(2) process. The results for the case that ?1 =?2 = 0.9 (note that the process 
is not invertible) suggest that GMM has the smallest bias and MSE among all 
estimators except for small sample sizes where CLS is the best. For all ?2 values 
except ?2 = 0.9, CLS is better than GMM in terms of MSE.  
Although they mention that for other values of ?1 and ?2 GMM has smaller bias and 
MSE in most cases, they did not present any results for further comparisons.     
Br?nn?s and Hall (2001) explain that the performance of the GMM estimator 
depends highly on the selection of ?-values. Finally, because of the better overall 
performance and its simplicity, they advocate the use of CLS instead of GMM.   
 
5.7  Estimation in an INARMA(1,1) Model  
In this section, the YW and CLS estimators for the parameters of an INARMA(1,1) 
process, derived in this PhD research, are presented. 
 
5.7.1 YW for INARMA(1,1) 
The ACF of an INARMA(1,1) process of ??=?????1 +??+?????1 is given by 
Equation  3-48. When the distribution of the innovations {??} is Poisson, the ACF is: 
??=?
 ?+?+??+?2 + 2?2?
 1 +?+?+ 3??
 for ?= 1
 ????1 for ?> 1
 ? 
Equation  5-40 
Hence, ? and ? can be estimated from: 
?=
 ?2
 ?1
 =
 ? ??????(???2??)
 ?
 ?=3
 ? ??????(???1??)
 ?
 ?=2
  
Equation  5-41 
?=
 ?1 +??(???1)
 ?1?1 + 3???1???2?2
  
Equation  5-42 
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Then, ? can be estimated using the expected value of an INARMA(1,1) process: 
?=
 1??
 1 +?
 ? ??
 ?
 ?=1
 ?
  
Equation  5-43 
 
5.7.2 CLS for INARMA(1,1) 
The conditional expected value of an INARMA(1,1) process is: 
?(??|???1) =????1 +?+????1 
Equation  5-44 
The conditional least squares criterion is therefore: 
?????=? [????????1 +?+????1?]
 2
 ?
 ?=1
  
Equation  5-45 
with ?= (?,?,?)? is the parameter vector to be estimated. The estimators for ?, ?, 
and ? can then be obtained by minimizing the above function with respect to ?. 
?=
 ?
 ?2??????1????1
 2 ?????????1????1
 2 ????????1?????1?
 2 +?????1????1??????1
 ??2??????1????1???1 +????????1????1???1
 ?
 ?2????1
 2 ????1
 2 ???????1?2????1
 2 ??????1
 2 ?????1?2 + 2?????1????1????1???1??2?????1???1?2
  
Equation  5-46 
?=
 ???????1???????1???1????????1 +?????1????1
 ?????1
 2 ??????1?2
  
Equation  5-47 
?=
 ?????????1??????1
 ?
  
Equation  5-48 
where all the summations are from 1 to ? (see Appendix 5.A for the proof). 
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5.8 YW Estimators of an INARMA(2,2) Model  
The YW estimators of an INARMA(2,2) model can be obtained from the ACF of an 
INARMA(p,q) model derived in chapter 3. The INARMA(2,2) model has the form: 
??=?1????1 +?2????2 +??+?1????1 +?2????2 
Equation  5-49 
From the Equation  3-52, the variance of the above process, when the innovations are 
Poisson distributed, the variance of an INARMA(2,2) process can be found as (see 
Appendix 5.B): 
var????=
 ?
 (1??1
 2??2
 2)(1??2)?2?1
 2?2
 ? 
??1??2??
 1 +?1 +?2
 1??1??2
 ??1??1
 2 +?2??2
 2?+ 1 +?1 +?2 + 2?1?1
 + 2?2?2?+ 2?1?2?1 + 2?1
 2?2 + 2?1?1?2? 
Equation  5-50 
The autocorrelation function of an INARMA(2,2) process can be found from the 
Equation  3-55 as:  
??=
 ?
 ?
 ?
 ?
 ?
 ?1?0 +?2?1 +?1?+?2(?1 +?1)?
 ?0
 ??? ?= 1
 ?1?1 +?2?0 +?2?
 ?0
 ??? ?= 2
 ?1???1 +?2???2 ??? ?> 2
 ? 
Equation  5-51 
Based on the Equation  5-51, the autocorrelation of lags one to four can be used to 
estimate ?1, ?2, ?1, and ?2.  
?1 =?1 +?2?1 +
 ?1?+?2(?1 +?1)?
 ?0
  
Equation  5-52 
?2 =?1?1 +?2 +
 ?2?
 ?0
  
Equation  5-53 
?3 =?1?2 +?2?1 
Equation  5-54 
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?4 =?1?3 +?2?2 
Equation  5-55 
The last two equations can be used to find ?1 and ?2. 
?1 =
 ?1?4??2?3
 ?1?3??2
 2  
Equation  5-56 
?2 =
 ?3??1?2
 ?1
  
Equation  5-57 
where ?? is the sample autocorrelation at lag ? given by the Equation  5-1. Then, ?1 
and ?2 can be found from Equation  5-52 and Equation  5-53.  
Finally, the expected value of the process can be used to estimate ?. 
?=?
 1??1??2
 1 +?1 +?2
 ?? 
Equation  5-58 
where ?=
 ? ??
 ?
 ?=1
 ?
 . 
 
5.9 Conclusions  
Different methods for estimating the parameters of INARMA models provided in the 
literature have been reviewed in this chapter. This includes YW, CLS, CML, and 
GMM. Not all these methods have been developed for all INARMA models. For 
example, the maximum likelihood function and therefore the CML estimators have 
been developed only for INAR(p) models.  
The performance of these estimators has been compared in some studies (Al-Osh and 
Alzaid, 1987; Br?nn?s, 1994; Br?nn?s, 1995; Br?nn?s and Hall, 2001; Bu et al., 
2008). The results generally suggest that the CML is worth the extra effort especially 
for high values of ? (and ?1 for an INAR(2) process) and reasonably large samples. 
For lower values of ? and smaller samples, the CLS has lower MSE than ML.  
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The YW and CLS estimates for an INARMA(1,1) process are provided for the first 
time. The YW results are based on the ACF of an INARMA(p,q) model of Equation 
 3-55. These results along with YW, CLS, CML for INAR(1) process and YW and 
CLS for INMA(1) process will be used in simulation and empirical analyses of this 
PhD research (chapters 8 and 9).  
Finding the ACF of an INARMA(p,q) process in chapter 3 has enabled us to derive 
the YW estimators for these processes. As a further example, these estimators are 
obtained for an INARMA(2,2) process.  
We have decided not to follow the GMM method. This is because, for an INAR(1) 
process, it does not outperform the maximum likelihood estimator, which is covered 
by this study, in terms of MSE. For the INMA(1) process, no comparison has been 
done in the literature and the one that compared CLS and GMM for INMA(2) 
(Br?nn?s and Hall, 2001) does not provide results for all parameter sets.  
It is worth mentioning that all of the above-mentioned studies only compared the bias 
and MSE of the estimates and not their impact on forecast accuracy. This will be 
done in our simulation experiment (see section  8.4). 
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Chapter 6 FORECASTING IN INARMA 
MODELS 
 
 
 
 
 
 
 
 
6.1 Introduction 
Having discussed some stochastic properties of INARMA models, and identification 
and estimation of the parameters of these models, we now investigate how these 
models can be used in forecasting future values of an observed time series. This 
section is organized as follows. The minimum mean square error (MMSE) forecasts 
for INAR(p), INMA(q) and INARMA(p,q) processes are reviewed in section  6.2. 
The lead time aggregation and forecasting of INARMA processes is then discussed 
in section  6.3. Results on lead time aggregation and forecasting for INAR(1), 
INMA(1), and INARMA(1,1) processes are presented. The conclusions are given in 
section  6.4.  
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6.2 MMSE Forecasts  
The most common forecasting procedure discussed in the time series literature is 
using the conditional expectation (Freeland and McCabe, 2004b). The main 
advantage of this method, apart from being simple, is that it produces forecasts with 
minimum mean square error (MMSE).  
Freeland and McCabe (2004b) argue that this method does not produce coherent 
forecasts for INARMA models. Coherency means that forecasts should comply with 
time series restrictions, in this case being integers. Freeland and McCabe (2004b) 
suggest the median of the distribution and use the ?-step-ahead conditional 
distribution to produce coherent forecasts for the PoINAR(1) model. Bu and McCabe 
(2008) present a procedure to produce h-step-ahead distribution forecasts for the 
PoINAR(p) process using the transition probability function of the process. Jung and 
Tremayne (2006b) introduce a Monte Carlo procedure to estimate the ?-step-ahead 
forecast distribution for INAR(1) and INAR(2) processes. 
This PhD research tries to apply INARMA models for intermittent demand 
forecasting. We are especially interested in comparing the accuracy of forecasts 
produced by INARMA methods to non-optimal smoothing-based methods (the last 
research question, p.7). For this reason, we compare the point forecasts of all 
methods using the accuracy measures suggested in section  2.4.3 (including MSE). 
We focus on the conditional expectation since it provides the MMSE forecasts for 
INARMA methods. It will be discussed in chapter 10 that forecasting the whole 
distribution can be considered as a further research avenue.   
 
6.2.1 MMSE Forecasts for an INAR(p) Model   
Minimum mean square error (MMSE) forecasts are used to find ??+?, ?= 1,2,?,? 
of the process ?? based on the observed series of {?1,?,??}. The MMSE forecast of 
the process is given by: 
??+?=????+???,?,?1? 
Equation ?6-1 
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As indicated by its title, this method yields forecasts with minimum MSE. For an 
INAR(p) model of Equation  3-19, we have: 
??+?=?1??+??1 +?2??+??2 +?+????+???+? 
Equation  6-2 
where the ? values on the RHS of Equation  6-2 may be either actual or forecast 
values (Du and Li, 1991; Jung and Tremayne, 2006b). This is shown in Figure  6-1 
for the case where ???.  
 
 
 
Figure ?6-1 h-step-ahead forecast for an INAR(p) model when 
ph ?
  
 
This is called using a single model for all horizons. For example, for an INAR(2) 
process, the h-step ahead forecast is given by:  
??+?=?1??+??1 +?2??+??2 +? 
Equation  6-3 
This implies that for large ?, the forecasts converge to the unconditional mean of the 
INAR(2) process that is:  
??+??
 ?
 1??1??2
  
Some authors suggested that using different models for different horizons can 
improve forecast accuracy (Cox, 1961; Tiao and Xu, 1993; Kang, 2003). For an 
AR(p) model, this is: 
??+?=?1,???+?2,????1 +?+??(?),????????+1 +??,? 
Equation  6-4 
??+? 
??+??1 ??+1 ? ?? ???1 ??+??? ? 
??1 non-observed terms ???+ 1 observed terms 
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It can be seen from Equation  6-4 that even the order of the AR model depends on the 
forecast horizon ?.  
 
6.2.2 MMSE Forecasts for an INMA(q) Model   
As studied by Br?nn?s and Hall (2001), for an INMA(q) process of Equation  3-36, 
the MMSE one-step ahead forecast can be obtained from: 
??+1 =?1??+?2???1 +?+??????+1 +? 
Equation  6-5 
The forecast error variance is: 
var(??) =??1 +? ??(1???)
 ?
 ?=1
 ? 
Note that when ? is a random variable, var?????=?2var???+??1????(?), 
but when ? is given as in the above case, var?????=??1????(?). 
The h-step ahead forecast when ??? is given by: 
??+?=????+?+????+???+?(1 +?1 +?+???1) 
Equation  6-6 
This is shown in Figure  6-2. In the above equation, the ? values on the RHS can be 
estimated from the previous estimated ?s and observed ?s based on Equation  3-36.  
 
 
 
Figure ?6-2 h-step-ahead forecast for an INMA(q) model when  
qh ?
 ??+? 
?(??+??1) =? ?(??+1) =? ? ?? ???1 ??+??? ? 
??1 non-observed terms ???+ 1 observed terms 
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The forecast error variance for ??? is: 
var(??) =??1 +? ??
 ??1
 ?=1
 +? ??(1???)
 ?
 ?=?
 ? 
When ?>?, the ?-step ahead forecast becomes: 
??+?=??1 +? ??
 ?
 ?=1
 ? 
Equation  6-7 
with the forecast error variance of var(??) =??1 +? ??
 ?
 ?=1 ?. 
 
6.2.3 MMSE Forecasts for an INARMA(p,q) Model   
The above results can be generalized for an INARMA(p,q) process. The MMSE one-
 step-ahead forecast is then: 
??+1 =?1??+?+??????+1 +?+?1??+?+??????+1 
Equation  6-8 
The h-step ahead forecast when ??? will be:  
??+?=?1??+??1 +?+????+???+?+????+?+????+???+?(?1 +?+???1) 
Equation  6-9 
where ? values on the RHS of Equation  6-9 may be either actual or forecast values. 
When ?>?, the h-step ahead forecast becomes: 
??+?=?1??+??1 +?+????+???+?? ??
 ?
 ?=0
  
Equation  6-10 
where again ? values on the RHS of the above equation may be either actual or 
forecast values and ?0 = 1.  
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6.3 Forecasting over Lead Time 
In this section, forecasting over a lead time is discussed. Lead time forecasting has 
applications in many areas, particularly in an inventory management context, where 
forecasts are needed over the period that it takes from placing an order to receiving it 
from the supplier. 
It can be easily seen that for an INARMA(0,0) process, the lead time aggregated 
process is: 
? ??+?
 ?+1
 ?=1
 =??+1 +??+2 +?+??+?+1 =? ??+?
 ?+1
 ?=1
  
Therefore, the conditional expected value and variance of the above equation are: 
??? ??+?
 ?+1
 ?=1
 |???= var?? ??+?
 ?+1
 ?=1
 |???= (?+ 1)? 
which is expected as the aggregated process is the sum of (?+ 1) independent Poisson 
random variables which is in fact a Poisson variable with parameter (?+ 1)?. 
This section is organized as follows. First, the results of over-lead time aggregation 
and forecasting of INAR(1) and INMA(1) processes are presented. These results, 
along with similar results for INAR(2) and INARMA(1,2) processes in Appendices 
6.A and 6.B, will then help us to find the over-lead time aggregation of the 
INARMA(p,q) process. The corresponding results for an INARMA(1,1) process are 
also provided, which will be used in chapters 8 and 9.  
 
6.3.1 Lead Time Forecasting for an INAR(1) Model   
For the INAR(1) process of ??=?????1 +??, the cumulative ? over lead time ? is 
given by:  
? ??+?
 ?+1
 ?=1
 =??+1 +??+2 +?+??+?+1 
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=?????+??+1?+??
 2???+????+1 +??+2? 
+?+???+1???+?
 ????+1 +?
 ??1???+2 +?+??+?+1? 
Equation  6-11 
Because ???+????(?+?)??, the above equation can be written as: 
? ??+?
 ?+1
 ?=1
 =? ? ??
 1 ???
 ??
 1
 ?=1
 ?+1
 ?=1
 +? ? ??
 2 ???+??
 ??
 2
 ?=1
 ?+1
 ?=1
  
Equation  6-12 
where ??
 1 is the number of ?? terms in each of {??+?}?=1
 ?+1  in Equation  6-11, ??
 1  is the 
corresponding coefficient for each ??, ??
 2 is the number of ??+?? terms in each of 
{??+?}?=1
 ?+1  in Equation  6-11, and ??
 2  is the corresponding coefficient for each ??+??. 
All of these terms are explained below.  
It can be seen that because the process is an integer autoregressive of order one, each 
of {??+?}?=1
 ?+1   yields only one ?? in Equation  6-11; therefore, ??
 1 = 1. The 
corresponding coefficient for ?? in each of {??+?}?=1
 ?+1  (say ??+2) is obtained from ? 
thinned the coefficient of ?? in the previous term (in this case ??+1). As a result, 
??
 1 =??. These coefficients are shown in Table  6-1. 
Table ?6-1 Coefficients of in each of  for an INAR(1) model 
?= 1,?= 1  ?11
 1 =? 
?= 2,?= 1  ?12
 1 =?2 
? ? 
?=?+ 1,?= 1  
?1(?+1)
 1 =??+1
  
 
It can be seen from Equation  6-11 that due to the repeated substitution of ??+?, the 
number of ??+?? increases in each of {??+?}?=1
 ?+1 . This number, shown by ??
 2, can be 
obtained from ???1
 2 + 1. This means that each of {??+?}?=1
 ?+1  (say ??+2) has one more ? 
compared to the previous one (which is ??+1 in this case). The corresponding 
coefficient for each ??+??, shown by ??
 2 , is ? thinned the corresponding coefficient 
in the previous term (???????1?
 2 ). ?+?? is the subscript of innovation terms in 
tY 11
 ?
 ??
 l
 jjtY }{
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each of {??+?}?=1
 ?+1  and from Equation  6-11 it can be easily seen that ?? is given by 
Equation  6-13. All of these terms are shown in Table  6-2. 
??=?
 ??(??1) for 1??????1
 2  
? for ???1
 2 <????
 2
 ?          for ?= 1,?,?+ 1 
Equation  6-13 
Table ?6-2 Coefficients of in each of  for an INAR(1) model 
?= 1  
?= 1,?,?1
 2  
where ?1
 2 = 1 
?11
 2 = 1  ?11 = 1  
?= 2  
?= 1,?,?2
 2  
where ?2
 2 = 2 
?12
 2 =?  
?22
 2 = 1  
?12 = 1  
?22 = 2  
?  ?  ?  
?=?+ 1  
?= 1,?,??+1
 2   
where ??+1
 2 =?+ 1 
?1(?+1)
 2 =??  
?  
???+1?(?+1)
 2 = 1
   
?1(?+1) = 1  
?  
???+1?(?+1) =?+ 1  
 
Based on Equation  6-12, the conditional expected value of the aggregated process is: 
??? ??+?
 ?+1
 ?=1
 |???=?? ? ??
 1
 ??
 1
 ?=1
 ?+1
 ?=1
 ???+?? ? ??
 2
 ??
 2
 ?=1
 ?+1
 ?=1
 ??=
 ?(1???+1)
 1??
 ?? 
+?? ? ???1
 ?
 ?=1
 ?+1
 ?=1
 ??=
 ?(1???+1)
 1??
 ??+
 ?
 1??
 ???+ 1??? ??
 ?+1
 ?=1
 ? 
Equation  6-14 
which is the same as Equation  3-60.  
Therefore at time ?, when ?? is observed, the lead time forecast can be obtained 
from: 
??? ??+?
 ?+1
 ?=1
 |???=
 ?(1???+1)
 1??
 ??+
 ?
 1??
 ???+ 1??? ??
 ?+1
 ?=1
 ? 
Equation  6-15 
 
ijkt
 Z ?
 1
 1
 ?
 ??
 l
 jjtY }{
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6.3.2 Lead Time Forecasting for an INMA(1) Model  
For the INMA(1) process of ??=?????1 +??, the cumulative ? over lead time ? is 
given by:  
? ??+?
 ?+1
 ?=1
 =??+1 +??+2 +?+??+?+1 =?????+??+1?+?????+1 +??+2? 
+?+?????+?+??+?+1? 
Equation  6-16 
The above equation can be written as: 
? ??+?
 ?+1
 ?=1
 =? ? ?????+??
 ??
 ?=1
 ?+1
 ?=1
  
Equation  6-17 
where ?? is the number of ??+?? terms in each of {??+?}?=1
 ?+1  and ?? is the 
corresponding coefficient for each ??+??.  
It can be seen from Equation  6-16 that because the process is an integer moving 
average of order one, each of {??+?}?=1
 ?+1  only has two ??+?? and therefore ??= 2. 
The corresponding coefficient for each ??+??, shown by ??, is {?1?=?,?2?= 1}. 
?+?? is the subscript of innovation terms in each of {??+?}?=1
 ?+1 . From Equation  6-16 
it can be seen that {?1?=??1,?2?=?}. Therefore, 
??=?
 ??1 for ?= 1 
? for ?= 2
 ?          for ?= 1,?,?+ 1 
Equation  6-18 
All of these terms are shown in Table  6-3. 
Based on Equation  6-17, the conditional expected value of the aggregated process is: 
??? ??+?
 ?+1
 ?=1
 |???=?? ? ??
 2
 ?=1
 ?+1
 ?=1
 ??=?? (1 +?)
 ?+1
 ?=1
 ??=??+ 1?(1 +?)? 
Equation  6-19 
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Table ?6-3 Coefficients of in each of  for an INMA(1) model  
?= 1  
?= 1,?,?1  
where ?1 = 2 
?11 = 1  
?21 =?  
?11 = 1  
?21 = 0  
?= 2  
?= 1,?,?2  
where ?2 = 2 
?12 = 1  
?22 =?  
?12 = 2  
?22 = 1  
?  ?  ?  
?=?+ 1  
?= 1,?,??+1  
where ??+1 = 2 
?1(?+1) = 1  
?2(?+1) =?  
?1(?+1) =?+ 1  
?2(?+1) =?  
 
6.3.3 Lead Time Forecasting for an INARMA(1,1) Model  
In this section, the lead time forecast of an INARMA(1,1) process is derived. The 
results will be used in chapters 8 and 9. The aggregated process over lead time is: 
? ??+?
 ?+1
 ?=1
 =??+1 +??+2 +?+??+?+1 =?????+??+1 +????? 
+??????1 +??+2 +????+1?+?+?????+?+??+?+1 +????+? 
Equation  6-20 
The above equation can be written as: 
? ??+?
 ?+1
 ?=1
 =?????+?
 2???+?+?
 ?+1????+???+1 +????+1 +?+?
 ????+1? 
+???+2 +????+2 +?+?
 ?1???+2?+?+???+?+????+?+??+?+1 
+?????+?????+?+?
 ?????? 
+?????+1 +?????+1 +?+?
 ??1????+1?+? 
+?????+??1 +?????+??1?+????+? 
Equation  6-21 
The above result can be simplified to: 
? ??+?
 ?+1
 ?=1
 =? ?????
 ?+1
 ?=1
 +? ? ?????+?
 ?+1??
 ?=0
 ?+1
 ?=1
 +? ? ??????+??1
 ?+1??
 ?=0
 ?+1
 ?=1
  
Equation  6-22 
Then, the conditional expected value of the Equation  6-21 is: 
ijkt
 Z ?
 1
 1
 ?
 ??
 l
 jjtY }{
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??? ??+?
 ?+1
 ?=1
 |???=
 ?(1???+1)
 1??
 ??+
 ?(1 +?)
 1??
 ???+ 1??? ??
 ?+1
 ?=1
 ? 
Equation  6-23 
 
6.3.4 Lead Time Forecasting for an INARMA(p,q) Model   
The results of lead time forecasting have been illustrated for INAR(1), INMA(1), 
INAR(2) and INARMA(1,2) processes (the last two are given in appendices 6.A and 
6.B). This section investigates the lead time aggregation of an INARMA(p,q) 
process. 
Proposition 1. Aggregation of an INARMA(p,q) process over a lead time results in 
an INARMA(p,q) process. 
Proof. 
For an INARMA(p,q) process of ??=? ???????
 ?
 ?=1 +??+? ???????
 ?
 ?=1 , the 
aggregated process over lead time can be written as: 
? ??+?
 ?+1
 ?=1
 =? ??? ?????+???
 ?
 ?=1
 +??+?+?? ?????+???
 ?
 ?=1
 ?
 ?+1
 ?=1
 = 
? ????? ??+???
 ?+1
 ?=1
 ?
 ?=1
 +? ??+?
 ?+1
 ?=1
 +? ????? ??+???
 ?+1
 ?=1
 ?
 ?=1
  
Equation  6-24 
Now, if we assume that ? ??+?
 ?+1
 ?=1 =?? and ? ??+?
 ?+1
 ?=1 =??, Equation  6-24 can be 
written as: 
??=? ???????
 ?
 ?=1
 +??+? ???????
 ?
 ?=1
  
Equation  6-25 
which is also an INARMA(p,q) process. Therefore, aggregation of an INARMA(p,q) 
process over a lead time results in an INARMA(p,q) process with the same INAR 
and INMA parameters but with a different innovation parameter. Here, ?? is the sum 
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of (?+ 1) independent Poisson variables, thus ??~???(??+ 1??). 
Proposition 2. The over-lead-time-aggregated INARMA(p,q) process can be written 
in terms of the last ? observations as follows: 
? ??+?
 ?+1
 ?=1
 =? ? ??
 1 ???
 ??
 1
 ?=1
 ?+1
 ?=1
 +? ? ???
 2 ????1
 ??
 2
 ?=1
 ?+1
 ?=1
 +? 
+? ? ??
 ??????+1
 ??
 ?
 ?=1
 ?+1
 ?=1
 +? ? ??
 ?+1???+??
 ??
 ?+1
 ?=1
 ?+1
 ?=1
  
Equation  6-26 
with the parameters as shown in Table  6-4 (see Appendix 6.C for the proof). 
Table ?6-4 Parameters of the over-lead-time-aggregated INARMA(p,q) model 
fo
 r 
?
 =
 1
 ,?
 ,?
  
??
 ?=?
 ?? ????
 ??
 ?=1 + 1 ????(??1)
 ? ????
 ??
 ?=1 ?>??(??1)
 ?  ??
 ?=
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ????(???)
 ? ?= 1,?,????
 ?
 ? ?
 ?1??(??1)
 ? ?=???2
 ? + 1,?,???2
 ? +???1
 ?
 ??+(??1) ?=???1
 ? + 1
 ?????(??1)
 ?
 ????(???)
 ? ?= 1,?,????
 ?
 ? ?
 ?1??(??1)
 ? ?=???2
 ? + 1,?,???2
 ? +???1
 ?
 ??>??(??1)
 ?  
 ??
 ?+1 =?? ????
 ?+1?
 ?=1 ?+ (?+ 1)  
??
 ?+1 =
 ?
 ?
 ?
 ?
 ?
 ????(???)
 ?+1 ?= 1,?,????
 ?+1
 ? ?
 ?1??(??1)
 ?+1 ?=???2
 ?+1 + 1,?,???2
 ?+1 +???1
 ?+1
 ??,?,?1 , 1 ?=???1
 ?+1 + 1,?,???1
 ?+1 +??
 ?+1
 ?  
 
??=
 ?
 ?
 ?
 ?
 ?
 {??(???)} ?= 1,?,????
 ?+1
 ? ?
 {??(??1)} ?=? ????
 ?+1?
 ?=2 + 1,?, (? ????
 ?+1?
 ?=2 ) +???1
 ?+1
 ???,?,??1,? ?=? ????
 ?+1?
 ?=1 + 1,?,??
 ?+1
 ?  
 
 
Now, in order to find the forecast over lead time, we need to calculate the expected 
value of the aggregated process given the p-previous observations.  
??? ??+?
 ?+1
 ?=1
 |????+1,?,???1 ,???=?? ? ??
 1
 ??
 1
 ?=1
 ?+1
 ?=1
 ???+?? ? ??
 2
 ??
 2
 ?=1
 ?+1
 ?=1
 ????1 +? 
+?? ? ??
 ?
 ??
 ?
 ?=1
 ?+1
 ?=1
 ?????+1 +?? ? ??
 ?+1
 ??
 ?+1
 ?=1
 ?+1
 ?=1
 ?? 
Equation  6-27 
M.Mohammadipour, 2009, Chapter 6   136 
 
6.4 Conclusions   
Forecasting with an INARMA process is discussed in this chapter. The minimum 
mean square error (MMSE) forecasts for INAR(p), INMA(q) and INARMA(p,q) 
processes are reviewed. This includes both one-step and h-step ahead forecasts. 
These forecasts are based on the conditional expected value of the process and, as 
argued by McCabe and Martin (2005), these are not coherent forecasts. This means 
that the results are not necessarily integers. However, using the conventional 
forecasting method of conditional expectations is the most widely used approach in 
the literature even for count series.  
It is shown in this chapter that the aggregation of an INARMA(p,q) process with 
Poisson innovations (with mean ?) over a lead time ? results in an INARMA(p,q) 
process with the same autoregressive and moving average parameters and the 
innovation parameter of (?+ 1)?. The lead time aggregation and forecasting for the 
INARMA(p,q) process is obtained. In order to understand the implications of the 
results, some examples including a range of autoregressive and moving average 
processes are provided.  
It will be discussed in chapter 7 that four INARMA models will be used in 
simulation and empirical analysis of this thesis. These models are INARMA(0,0), 
INAR(1), INMA(1), and INARMA(1,1). Therefore, the lead time forecast for the last 
three processes are presented in this chapter. The lead time forecast of an 
INARMA(0,0) can simply be obtained from ??+ 1??. 
  
M.Mohammadipour, 2009, Chapter 7   137 
 
 
 
 
 
 
 
Chapter 7 SIMULATION DESIGN 
 
 
 
 
 
 
 
 
7.1 Introduction 
This chapter addresses a simulation experiment based on theoretically generated 
data. A model-based simulation shows the evolution through time of a stochastic 
process, represented by a mathematical model through multiple realizations of the 
process. In this research, simulation is used for various reasons including: 
? to assess the effects of the approximations made for the mathematical model 
? to test the performance of identification methods  
? to measure the accuracy of estimates of the model?s parameters 
? to assess the sensitivity of forecast accuracy to control parameters such as the 
number of observations and the sparsity of data (based on the INARMA 
parameters)   
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? to compare the forecasts of the mathematical model with other benchmark 
methods. 
The chapter is organized as follows. The reasons for conducting simulation are 
discussed in section  7.2. The simulation design is defined in section  7.3, including 
the range of INARMA models to be used in the simulation, the control parameters 
and the performance metrics. Verification of the simulation is discussed in section 
 7.4 and, finally, section  7.5 provides the conclusions.     
 
7.2 Rationale for Simulation  
In chapter 4, two identification methods were discussed, namely the two-stage and 
the one-stage methods. Simulation enables us to find the percentage of theoretically 
generated INARMA time series that can be identified correctly by each of these 
methods. A further application of the simulation model is to investigate the effect of 
identifying an incorrect model for a specific series, or misidentification, on the 
accuracy of forecasts.  
The next step in the INARMA methodology is estimating the parameters of the 
identified model. As explained in detail in chapter 5, Conditional Least Squares 
(CLS) and Yule-Walker (YW) are the two estimation methods used (CML will also 
be used for the INAR(1) process). The role of simulation is to compare the results of 
these methods in terms of: (i) how close are the estimates to the real parameters, 
which are known when theoretically generated data are being used, and (ii) which 
estimation method results in better forecasts.  
The simulation model will be based on the assumption that the distribution of the 
innovations is Poisson. Although other distributions have been proposed in the 
literature including compound Poisson (McKenzie, 2003), negative Binomial 
(McKenzie, 1985; Al-Osh and Alzaid, 1987; Br?nn?s and Hall, 2001) and the 
Geometric (McKenzie, 1986; Alzaid and Al-Osh, 1988), this research only focuses 
on the Poisson. The sensitivity of the results to the distributional assumption can be 
analyzed but this will not be covered in this thesis. Other marginal distributions are 
beyond this research?s scope. The Poisson distribution is probably the most 
commonly used distribution in modelling counting processes (Alzaid and Al-Osh, 
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1990). It is the only distribution among the class of discrete self-decomposable1 
distributions which has a finite mean (Silva and Oliveira, 2004). Another property of 
interest is that in the INAR(1) and INMA(q) processes, the Poisson distribution plays 
a role similar to that of the Gaussian distribution in the AR(1) process. However, 
Jung and Tremayne (2006b) argued that only an INAR(2)-AA process with Poisson 
innovations results in a process with Poisson marginal distribution and the same is 
not true for an INAR(2)-DL process. Another advantage of the Poisson over other 
distributions is that it has only one parameter to estimate. 
One of the main concerns in forecasting intermittent series is the length of available 
data history. This is because in practice we may be limited by short length of history. 
For example, the 3,000 series that we use in empirical analysis (see chapter 9) only 
has 24 periods of monthly data. Simulation enables us to check the sensitivity of the 
identification, estimation, and forecasting results to the length of the series.  
Once the forecasting results have been established, simulation can be used to 
compare these results with benchmark methods, Croston, SBA, and SBJ methods 
(see chapter 2 for detailed discussion on benchmark methods). This includes one-step 
ahead, ?-step ahead, and lead time forecasts.  
In a nutshell, simulation is conducted to analyze the sensitivity of results to: the 
sparsity of data, the length of history, the parameters? ranges, the estimation methods, 
and the effect of misidentification. It also enables us to compare the INARMA 
forecasts with those of benchmark methods using different accuracy measures.  
    
7.3 Simulation Design 
7.3.1 The Range of Series  
Different integer autoregressive moving average processes will be used to test the 
                                                 
1 A distribution with probability generating function (p.g.f) ? is called discrete self-decomposable if:  
????=??1??+?????(?) |?|?1  ??(0,1)  
where ?? is a p.g.f. The above equation can also be written in the form of: 
?=????+?? 
where ???? and ?? are independent and ?
 ? is distributed as ? (Sueutel, F. W. and K. van Harn 
(1979). Discrete analogues of self-decomposability and stability. Annals of Probability 7(5): 893-
 899.). 
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mathematical findings. We consider an INAR process, an INMA process and a 
mixed INARMA process. In order to test the performance of the benchmark 
methods, the special case of INARMA(0,0) (or simply an i.i.d. Poisson process) is 
also used. Therefore, the following four processes are assumed for this study:  
INARMA(0,0), INARMA(1,0), INARMA(0,1), INARMA(1,1).  
An extension to this study would be to examine higher order INARMA processes. 
However, as shown in a later chapter, the simpler models ((0,0) and (1,0)) perform 
very well on empirical data. Using the above models also has the benefit of having 
few parameters to be estimated.   
 
7.3.2 Producing INARMA(p,q) Series    
Since it has been assumed that the innovations are Poisson distributed (??~???(?)), 
we first need to generate i.i.d. Poisson random numbers.  
The simulation code is written in MATLAB 6.1. Hence, we use the poissrnd function 
from MATLAB?s statistics toolbox. The performance of this function is tested by the 
Poisson dispersion and the score tests (see section  4.2.2) and the results confirm the 
accuracy of the function.     
Next, by assuming the values of autoregressive parameters {??}?=1
 ?
  and moving 
average parameters {??}?=1
 ?
 , the autoregressive and moving average components are 
generated using a Binomial random number generator. This is because, based on the 
properties of binomial thinning discussed in chapter 3, ??? given ? has a binomial 
distribution with parameters (?,?). Therefore, for example in an INAR(1) model 
(??=?????1 +??), ?????1 is obtained from generating a random Binomial 
number with parameters (???1,?). The Binomial numbers are generated using the 
binornd function from the MATLAB?s statistics toolbox as a sum of Bernoulli 
random variables. The performance of this function is also tested by the score test 
and a built-in goodness-of-fit test (based on chi-square). The results, again, support 
the use of this function.  
Then, the INARMA series is generated from the model: 
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??=? ???????
 ?
 ?=1
 +??+? ???????
 ?
 ?=1
  
Equation  7-1 
In order to obtain a stationary series, the series is initialized with the expected value 
of each process (Al-Osh and Alzaid, 1987; Br?nn?s, 1994). The expected value of 
the above process is given by: 
?????=
 ??1 +? ??
 ?
 ?=1 ?
 1?? ??
 ?
 ?=1
  
Equation  7-2 
   
7.3.3 Control Parameters  
The control parameters of the simulation are: the mean of the Poisson innovations 
(?), autoregressive and moving average parameters ({??}?=1
 ? , {??}?=1
 ? ), the length of 
the series (?), the forecast horizon (?), the length of the lead time (?), and the 
benchmark methods? parameters. In this section, the ranges of these control 
parameters are reviewed.    
 
7.3.3.1 INARMA Parameters 
From the definition of the thinning operation it is obvious that the autoregressive and 
moving average parameters represent the chance of surviving for elements of the 
process at time ??1 (????s and ????s, respectively). Therefore, these parameters are 
probabilities and can only take values in the range [0,1].  
Other restrictions have to be applied on the autoregressive and moving average 
parameters in order to assure the stationarity and invertibility of the process. Table 
 7-1 reviews the range of values that these parameters can take for the INARMA 
processes selected in section  7.3.1 (see section  3.3.8 for stationarity and invertibility 
conditions of an INARMA(p,q) process). 
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Table ?7-1 Range of autoregressive and moving average parameters 
INARMA(p,q) models 
Range of autoregressive 
parameters 
Range of moving average 
parameters 
INARMA(0,0)  - - 
INARMA(1,0) 
0??< 1  
stationarity condition: ??1 
- 
INARMA(0,1) - 
0??< 1  
invertibility condition: ??1 
INARMA(1,1) 
0??< 1  
stationarity condition: ??1 
0??< 1  
invertibility condition:
  
??1 
 
The range of parameters for some simulation studies reported in the literature are 
reviewed in Table  7-2. 
Table ?7-2 Range of INARMA parameters studied in the literature 
Study 
Number of observations 
?  
AR or MA parameter 
? or ? 
Innovation 
parameter 
?  
Number of 
replications 
Al-Osh and Alzaid (1987) ?= 50, 75, 100, 200  ?= 0.1, 0.2, 0.9  ?= 1 ?0.5?, 3  200  
Br?nn?s and Hall (2001) ?= 10 ?10?, 100 ?100?, 500  ??= 0.1, 0.5, 0.9  ?= 5  1000  
Br?nn?s and Hellstr?m 
(2001) 
?= 50 , 100 , 200  ?= 0.5, 0.7, 0.9  ?= 5, 10  1000  
Silva and Oliveira (2004) ?= 64, 128, 512, 1024  ?= 0.1, 0.5, 0.9  ?= 1, 3  200  
Silva et al. (2005) ?= 25, 50, 100  ?= 0.1, 0.3, 0.7, 0.9  ?= 1, 3   
Bu et al. (2008) ?= 100, 500  ??= 0.1, 0.3, 0.5, 0.7  ?= 1  1000 
 
Based on the constraints of Table  7-1, and taking into account previous experiments 
(Table  7-2), the parameter space for the four selected INARMA models used in this 
thesis is shown in Table  7-3. 
If the discrete variates are large numbers, they can be approximated by continuous 
variates. It is when they are relatively small integers that using integer autoregressive 
moving average models becomes justifiable (McKenzie, 2003). Therefore, the 
innovation term (?) has to be defined to assure the observations are small integers. 
As can be seen from Table  7-3, we assume a range of ?= [0.5,5] for most models. 
For INARMA(0,0) we consider two other values of ?= 0.3 and ?= 20. This is to 
test the Croston-SBA categorization for highly intermittent and barely intermittent 
series. 
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Table ?7-3 Parameter space for the selected INARMA models 
INARMA(p,q) 
models 
Parameters 
INARMA(0,0)  ?= 0.3, 0.5, 0.7, 1, 3, 5, 20  
INARMA(1,0) 
?= 0.1,?= 0.5  
?= 0.5,?= 0.5  
?= 0.9,?= 0.5  
?= 0.1,?= 1  
?= 0.5,?= 1  
?= 0.9,?= 1  
?= 0.1,?= 3  
?= 0.5,?= 3  
?= 0.9,?= 3  
?= 0.1,?= 5  
?= 0.5,?= 5  
?= 0.9,?= 5  
INARMA(0,1) 
?= 0.1,?= 0.5  
?= 0.5,?= 0.5  
?= 0.9,?= 0.5  
?= 0.1,?= 1  
?= 0.5,?= 1  
?= 0.9,?= 1  
?= 0.1,?= 3  
?= 0.5,?= 3  
?= 0.9,?= 3  
?= 0.1,?= 5  
?= 0.5,?= 5  
?= 0.9,?= 5  
INARMA(1,1) 
?= 0.1,?= 0.1,?= 0.5  
?= 0.1,?= 0.9,?= 0.5  
?= 0.5,?= 0.5,?= 0.5  
?= 0.9,?= 0.1,?= 0.5  
?= 0.1,?= 0.1,?= 1  
?= 0.1,?= 0.9,?= 1  
?= 0.5,?= 0.5,?= 1  
?= 0.9,?= 0.1,?= 1  
?= 0.1,?= 0.1,?= 5  
?= 0.1,?= 0.9,?= 5  
?= 0.5,?= 0.5,?= 5  
?= 0.9,?= 0.1,?= 5  
  
7.3.3.2 Length of Series 
Different lengths of series are considered in order to test the sensitivity of results 
(identification, estimation, and forecasts accuracy) to the length of history. Because 
in real cases, we are often restricted by the short lengths of history (as will be seen in 
empirical analysis of this thesis) we use ?= 24, 36, 48, 96. Only for investigating 
the accuracy of estimates in terms of bias and MSE (section  8.3), ?= 500  is also 
added to the above cases.  
The first half of the observations is assigned for identification and estimation, and is 
referred to as the estimation period. This also includes the benchmark methods of 
Croston, SBA and SBJ. The second half is left for forecasting and is called the 
performance period.  
  
7.3.3.3 Forecast Horizon and Lead Time 
Three-step and six-step ahead forecasts are calculated in addition to one-step ahead 
forecasts. The lead times considered are also three and six periods. 
The number of replications is set to 1000. However, for the INARMA(0,0) model 
with very small mean (??1) more replications are used to reduce the sampling 
M.Mohammadipour, 2009, Chapter 7   144 
 
error. Therefore, the number of replications for ?= 0.3, 0.5 is 30,000 and for 
?= 0.7, 1 is 10,000.  
 
7.3.3.4 Benchmark Methods??Parameters 
As discussed in chapter 2, three methods of forecasting intermittent demand are 
selected to compete against the INARMA method. These methods are: Croston 
(Croston, 1972), SBA (Syntetos and Boylan, 2005) and SBJ (Shale et al., 2006).  
All of these methods are based on separate smoothing of demand sizes and on the 
interval between positive demands using a common smoothing parameter for size 
and interval. Therefore a smoothing constant needs to be selected. It has been 
suggested in the literature (e.g. Brown, 1959; Croston, 1972) that, especially when 
the length of history is short, it is best to use fixed values of the smoothing 
parameter.  
We choose two arbitrary values for smoothing parameter:  ?= 0.2 and ?= 0.5. The 
first value is selected because in intermittent demand context low smoothing constant 
values are suggested (Syntetos and Boylan, 2005). However, as can be seen from 
Table  7-3, some generated series have high autocorrelation; therefore ?= 0.5 is also 
used.  
For initialization of the methods, the first inter-demand interval is used as the first 
smoothed inter-demand interval. For the first smoothed size, the average of the first 
two positive demands is used. If fewer than two positive demands is observed in the 
estimation period, the estimation period for that particular replication is extended 
until two non-zero demands are observed.  
 
7.3.4 Identification Procedure  
As argued in chapter 4, the sample autocorrelation function (SACF) and partial 
autocorrelation function (SPACF) of INARMA models have the same structure as 
those of ARMA models and therefore can be used in identifying the moving average 
M.Mohammadipour, 2009, Chapter 7   145 
 
and autoregressive orders of the model. However, as argued in section  4.6, for 
simulation purposes automated methods such as penalty functions should be used.  
Jung and Tremayne (2003) argue that the first step in analysing time series of counts 
is to investigate if the data exhibit any serial dependence. If such dependence does 
not exist, standard methods for independent data should be used. Based on this 
argument, two identification procedures were suggested in chapter 4, namely, two-
 stage and one-stage methods.   
In the two-stage identification method, a Ljung-Box test of Equation  4-6 is first used 
to test if data has serial dependence. The reasons for the selection of this test were 
discussed in section  4.6. The second step involves using the AIC of Equation  4-28 
(or where applicable, AICC of Equation  4-29) to select the appropriate model among 
the three possible INARMA models (see section  4.6 for discussion on the application 
of AIC of ARMA models for INARMA series).  
In the one-stage identification method, the first step of the previous method is 
ignored. This means that the AIC is used to select among all possible INARMA 
models (INARMA(0,0), INAR(1), INMA(1), and INARMA(1,1)).  
The results of these two methods will be compared in terms of the percentage of 
series for which the model is identified correctly. This can be done in simulation 
because the correct model from which the series is produced is known. Another 
aspect that can be tested is the accuracy of forecasts obtained from each 
identification method (the accuracy measures are reviewed in section  7.3.7).   
No identification method can guarantee that the correct model is identified at all 
times. In such cases, the effect of misidentification on the accuracy of forecasts is of 
interest. This will also be tested in the next chapter.  
 
7.3.5 Estimation of Parameters  
As discussed in chapter 5, Yule-Walker (YW) and conditional least squares (CLS) 
methods are used for estimation of parameters of INAR(1), INMA(1), and 
INARMA(1,1) processes. Because the conditional maximum likelihood (CML) 
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estimation has been established only for INAR(p) processes, we can use it only for 
an INAR(1) process. For an INARMA(0,0) process, the three estimation methods 
result in the same estimator. All of these estimators are given in chapter 5. 
The performance of these estimators has been tested in the literature (Al-Osh and 
Alzaid, 1987; Br?nn?s, 1994; Bu, 2006). However, this has been done for sample 
sizes greater than 50. Because we also use smaller numbers of observations, we 
compare the performance of these estimators. Since the true values of the parameters 
are known in simulation, we compare the bias and the MSE of the estimates. The 
impact of estimates on forecast accuracy is also an important issue that has not been 
looked at before and is covered in this thesis.   
 
7.3.6 Forecasting Method  
This thesis focuses on comparing the accuracy of forecasts produced by INARMA 
and benchmark methods. The accuracy measures include MSE and MASE (see 
section  7.3.7). We use the conditional expected value which yields minimum mean 
square error (MMSE) forecasts. It has been argued in the literature that this method is 
not coherent in that it does not produce integer-valued forecasts (Freeland and 
McCabe, 2004b). Other methods such as conditional median, Markov Chains, and 
bootstrapping have been suggested to tackle this problem (Cardinal et al., 1999; 
Freeland and McCabe, 2004b; Jung and Tremayne, 2006b; Bu and McCabe, 2008). 
However, none of these methods produces MMSE forecasts. Also, those methods 
that produce the distribution forecast instead of point forecasts are not used for our 
comparison. Such methods are definitely useful for competing against bootstrap 
methods for intermittent demand forecasting such as Willemain?s bootstrap 
(Willemain et al., 2004) and can be considered as a future line of study.   
The ?-step ahead forecasts and lead time forecasts for INARMA models are 
discussed in chapter 6 in detail. The Croston, SBA and SBJ forecasts are given in 
chapter 2. For these methods, the ?-step ahead forecasts are the same as the one-step 
ahead forecasts and the lead time forecast is simply the one-step ahead forecast 
multiplied by the length of lead time.  
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Finally, two cases regarding the forecast timing are considered: all points in time or 
focusing on those periods immediately after a positive demand is occurred (issue 
points). This is because Croston?s method is designed to outperform the SES for issue 
points and it is of interest to test the performance of the INARMA method for issue 
points.   
 
7.3.7 Performance Metrics  
In this section, the performance measures to be used in the simulation are reviewed. 
In the identification stage, where we want to examine the capability of the two 
identification procedures, the percentage of correctly identified models is calculated. 
The accuracy of the forecasts produced by each identification method is also 
compared.  
In order to compare the estimation methods (YW, CLS and CML only for INAR(1)), 
the bias (using Mean Error) and Mean Square Error (MSE) of parameters? estimates 
are calculated. The performance of the estimates is also compared in terms of their 
impact on forecast accuracy.  
Finally, selecting the appropriate forecasting accuracy measure is an important issue 
for intermittent processes. As discussed in section  2.4, the fact that intermittent 
demand series include zeros, makes some of the conventional measures 
inappropriate. The following accuracy measures are used in this thesis: Mean Error 
(ME), Mean Square Error (MSE), Mean Absolute Scaled Error (MASE) for 
simulation, along with Percentage Better (PB) of MASE and Relative Geometric 
Root-Mean-Square Error (RGRMSE) for empirical analysis (see section  2.4.3 for 
more details).  
  
7.4 Verification 
Verification is the process to make sure that no programming error has been made 
(Kleijnen and Groenendaal, 1992). This can be done by calculating some intermediate 
results manually and comparing them with the results obtained by the program. This 
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is called tracing (Kleijnen and Groenendaal, 1992). Eyeballing or reading through the 
code and looking for bugs is another way of verification (Kleijnen and Groenendaal, 
1992). The following steps have been done in order to verify the simulation model: 
? The MATLAB code has been read through to make sure that the correct logic 
and functions have been used.  
? The intermediate and also the final results have been compared for a limited 
number of replications (e.g. 20 replications) with MS Excel.  
? The average and standard deviation of the generated INARMA series is 
calculated and compared to the theoretical mean and standard deviation of the 
process to test the generated data. 
The selection of parameters was made to make sure that both highly-intermittent and 
less-intermittent data are considered. Inter-arrival times are also obtained for each 
time series.  
 
7.5 Conclusions 
In this chapter, a simulation experiment was developed to assess the accuracy of 
approximations made for the mathematical analysis, to measure the accuracy of 
estimates, to assess the sensitivity of forecast accuracy to control parameters, and to 
compare the INARMA forecasts with those of benchmark methods.  
Four integer autoregressive moving average models have been selected for the 
purpose of simulation (models with ?,??1). The marginal distribution is assumed 
to be Poisson. The control parameters used are: autoregressive and moving average 
parameters, innovation parameter, forecast horizon, the length of lead time, and the 
smoothing parameter for the benchmark methods.  
As previously discussed in section  2.4.3, different accuracy measures are needed to 
assess the accuracy of estimates and forecasts. The accuracy of estimates is measured 
using ME and MSE. Demand being intermittent makes some forecast accuracy 
measures not applicable. We have selected ME, MSE, and MASE for simulation. The 
PB of MASE and RGRMSE will be added to the above measures for empirical 
analysis.  
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Chapter 8 SIMULATION RESULTS 
 
 
 
 
 
 
 
 
8.1 Introduction 
The simulation results are presented in this chapter. As discussed in chapter 7, the 
main objective of simulation is to test whether using an INARMA model results in 
better forecasts compared to benchmark methods of Croston, Syntetos-Boylan 
Approximation (SBA) and Shale-Boylan-Johnston (SBJ). This is discussed in section 
 8.6. The simulation experiment also enables us to test the applicability of the 
Croston-SBA categorization (Syntetos et al., 2005) when demand is an INARMA 
process.  
As discussed in section  7.3.1, four processes are simulated: INARMA(0,0), 
INAR(1), INMA(1), and INARMA(1,1). Based on the arguments in section  2.4, the 
ME, MSE and MASE of the forecasts are compared to those of Croston, SBA and 
M.Mohammadipour, 2009, Chapter 8   150 
 
SBJ methods. A range of INARMA parameters and different lengths of history are 
used (see section  7.3.3). 
The estimation methods used in this study are YW and CLS for INAR(1), INMA(1) 
and INARMA(1,1) processes and CML for INAR(1) (see Chapter 5 for detailed 
discussion). As another objective of simulation, the accuracy of parameters? estimates 
needs to be tested. The performance of the estimators can be tested not only by 
comparing the accuracy of the estimates, but also by comparing their impact on the 
forecast accuracy. The former has been undertaken by comparing the ME and MSE of 
the parameters? estimates (see section  8.3 and Appendix 8.A).  The latter, the results 
of which are presented in section  8.4, has been accomplished by comparing the ME, 
MSE and MASE of forecasts obtained using each estimation method.    
The chapter is structured as follows. Details of the simulation design are reviewed in 
section  8.2. Sections  8.3 and  8.4 compare the accuracy of different estimates of the 
parameters of INARMA processes. The Croston-SBA categorization (Syntetos et al., 
2005) for data produced by INARMA models is validated in section  8.5. The 
INARMA forecasts are then compared to the benchmark methods in section  8.6. It is 
first assumed that the order of the INARMA model is known. The results for the case 
where the order needs to be identified are presented in section  8.6.2. The lead-time 
forecasts are compared in section  8.6.3 and the conclusions are provided in section 
 8.7.  
 
8.2 Details of Simulation 
As mentioned in chapter 7, the number of replications is set to 1000. However, in 
order to reduce the sampling error for the case of INARMA(0,0) process with small 
parameters, (?= 0.3, 0.5) and (?= 0.7, 1), 30,000 and 10,000 replications are used, 
respectively.  
It has been suggested in the literature that, especially with short length of history, it is 
best to use fixed values of smoothing parameters (Brown, 1959; Croston, 1972). 
Because with intermittent demand, data history is short in most cases, we use two 
arbitrary values for the smoothing parameter for Croston, SBA and SBJ (?= 0.2 and 
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?= 0.5).   
As summarized in chapter 7, the initialization for Croston, SBA and SBJ is based on 
using the first inter-demand interval as the first smoothed inter-demand interval and 
the average of the first two non-zero observations as the first smoothed size. The 
observations are divided into two categories: estimation period and performance 
period. Initialization and estimation of parameters are conducted in the estimation 
period and the estimates? accuracy and forecasting accuracy are assessed in the 
performance period. If at least two non-zero demands are observed in the estimation 
period, the first half of the observations is assigned for the estimation period and the 
other half for the performance period. However, if fewer than two non-zero demands 
are observed in the estimation period, this period will be extended until the second 
non-zero demand is observed.  
In order to obtain a stationary series, we initialize the INARMA methods with the 
expected value of each model. As discussed in chapter 7, the forecasting accuracy is 
obtained for both cases of all points in time and issue points (i.e. after a positive 
demand is observed). Finally, if there is no nonzero observation in the performance 
period, the error measures for issue points are excluded (only for the corresponding 
replication). If the in-sample MAE is zero, the MASE for that replication is 
excluded.  
 
8.3 Accuracy of INARMA Parameter Estimates 
As previously discussed in chapter 5, two methods (YW and CLS) have been used to 
estimate the parameters of all four INARMA processes. In this section, the accuracy 
of these parameter estimates is evaluated using MSE. Out of the four INARMA 
processes of this study, only three are included for comparison of estimation 
methods: INAR(1), INMA(1) and INARMA(1,1). The YW, CLS and CML estimates 
for INARMA(0,0) are the same (see section  5.2). 
As previously mentioned, CML is also used in addition to YW and CLS in order to 
estimate the parameters of an INAR(1) process. The reason for excluding CML for 
other processes is that the maximum likelihood functions for INMA(1) and 
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INARMA(1,1) processes have not been developed in the literature (see Chapter 5).   
The parameters may fall out of the region [0,1]. In order to tackle this issue, the 
parameters are set equal to their closest boundary value in each case (Br?nn?s and 
Hall, 2001).  
The accuracy of YW, CLS and CML estimates of the parameters of an INAR(1) 
process for the case of ?= 24 are compared in Table ?8-1. For high values of ? and 
also when the mean of the process, ?/(1??), is high, the CML becomes 
computationally expensive.  
Table  8-1 MSE of YW, CLS and CML estimates for INAR(1) series when  
Parameters  
?  ?  
YW CLS CML YW CLS CML 
?= 0.1,?= 0.5  0.0203 0.0238 0.0337 0.0391 0.0394 0.0447 
?= 0.5,?= 0.5  0.0772 0.0762 0.0734 0.1381 0.1337 0.1043 
?= 0.9,?= 0.5  0.1436 0.1056 0.0042 3.9057 2.8683 0.0891 
?= 0.1,?= 1  0.0196 0.0226 0.0364 0.0877 0.0910 0.1104 
?= 0.5,?= 1  0.0723 0.0704 0.0631 0.4136 0.3950 0.3125 
?= 0.9,?= 1  0.1429 0.1067 0.0028 14.7487 11.0440 0.2526 
?= 0.1,?= 3  0.0188 0.0215 0.0419 0.4225 0.4509 0.6832 
?= 0.5,?= 3  0.0716 0.0684 0.0658 2.9762 2.8352 2.6277 
?= 0.9,?= 3  0.1462 0.1124 0.0024 134.0715 102.9696 2.0292 
?= 0.1,?= 5  0.0197 0.0227 0.0390 0.9650 1.0462 1.6005 
?= 0.5,?= 5  0.0710 0.0686 0.0606 7.6814 7.4755 6.4135 
 
The results confirm that, as suggested by Al-Osh and Alzaid (1987), the MSE of 
estimates produced by CML is generally less than that of YW and CLS (with the 
exception of the cases where ?= 0.1). However, it will be seen in a later section that 
the results of CML in terms of its effect on forecast accuracy are not very far from 
those by YW and CLS. This is also true for those cases in Table ?8-1 that the MSE of 
CML is much less than that of the other methods (e.g. ?= 0.9 and ?= 3).  
The results of comparing the MSE of YW and CLS estimates of the parameters of 
INAR(1), INMA(1) and INARMA(1,1) processes are shown in Table ?8-2, Table ?8-3, 
and Table ?8-4, respectively.  
Al-Osh and Alzaid (1987) suggest that the accuracy of YW and CLS estimates for 
parameters of an INAR(1) process are close. The results of Table ?8-2 confirm this 
24?n
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when the number of observations is high. However, for fewer observations, the 
difference is high when the autoregressive parameter is high. 
Table  8-2 Accuracy of YW and CLS estimates for INAR(1) series  
Parameters 
MSE(???)/MSE(????)  MSE(???)/MSE(????)  
?= 24  ?= 36  ?= 48  ?= 96  ?= 500  ?= 24  ?= 36  ?= 48  ?= 96  
?=
 500  
?= 0.1,?= 0.5  0.8402 0.8978 0.9351 0.9700 1.0000 0.9868 0.9918 0.9890 1.0000 1.0000 
?= 0.5,?= 0.5  1.0291 1.0291 1.0199 1.0248 1.0000 1.0408 1.0289 1.0194 1.0182 1.0000 
?= 0.9,?= 0.5  1.3036 1.3487 1.3063 1.2404 1.1250 1.3089 1.3355 1.2935 1.2440 1.0874 
?= 0.1,?= 1  0.8522 0.9222 0.9388 0.9691 1.0000 0.9655 0.9728 0.9762 0.9891 1.0000 
?= 0.5,?= 1  1.0255 1.0227 1.0278 1.0286 1.0000 1.0213 1.0348 1.0227 1.0230 1.0000 
?= 0.9,?= 1  1.3502 1.2990 1.3029 1.2294 1.1429 1.3550 1.3101 1.3004 1.2291 1.0957 
?= 0.1,?= 3  0.8610 0.9102 0.9379 0.9655 1.0000 0.9228 0.9422 0.9644 0.9806 0.9946 
?= 0.5,?= 3  1.0319 1.0349 1.0224 1.0148 1.0000 1.0317 1.0336 1.0307 1.0185 1.0024 
?= 0.9,?= 3  1.3285 1.3063 1.3038 1.2526 1.1429 1.3273 1.3012 1.3010 1.2485 1.0954 
?= 0.1,?= 5  0.8649 0.9118 0.9416 0.9670 1.0000 0.9094 0.9370 0.9565 0.9776 0.9959 
?= 0.5,?= 5  1.0290 1.0396 1.0224 1.0216 1.0000 1.0355 1.0400 1.0240 1.0204 1.0068 
?= 0.9,?= 5  1.3288 1.2945 1.3123 1.2376 1.1429 1.3236 1.2904 1.3110 1.2391 1.0960 
 
The results show that for an INAR(1) process, when the number of observations is 
small, for high values of ?, CLS produces much better estimates for both ? and ? in 
terms of MSE (up to 35 percent improvement in MSE). On the other hand, for small 
values of ?, YW results in better estimates (up to 16 percent improvement in MSE). 
The results of section  8.4 show that this is also true for the accuracy of forecasts 
produced by these estimates.  
The MSE of ? for both YW and CLS estimates increases with an increase in ? but 
this is not necessarily the case for the MSE of ? (see Appendix 8.A). This confirms 
the argument by Al-Osh and Alzaid (1987).  
The results of Table ?8-3 show that for an INMA(1) series, for a small number of 
observations, CLS has smaller MSE than YW except for the case of ?= 0.9. When 
the number of observations increases, for high values of ?, the MSE of YW 
estimates decreases with a greater pace compared to CLS. However, as will be 
discussed in section  8.4, it does not have a great effect on the accuracy of forecasts 
produced by each method. The MSE of ? for both YW and CLS estimates increases 
with an increase in ? but the same is not necessarily true for the MSE of ? (see 
Appendix 8.A). 
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Table  8-3 Accuracy of YW and CLS estimates for INMA(1) series  
Parameters 
MSE(???)/MSE(????)  MSE(???)/MSE(????)  
?= 24  ?= 36  ?= 48 ?= 96  ?= 500  ?= 24  ?= 36  ?= 48  ?= 96  ?= 500  
?= 0.1,?= 0.5  2.0558 1.9491 2.0409 1.9897 1.3929 0.9838 1.0084 1.0265 1.0510 1.0500 
?= 0.5,?= 0.5  1.1761 1.2907 1.1692 1.1307 0.5213 0.9008 0.9189 0.9032 0.8563 0.6098 
?= 0.9,?= 0.5  0.8054 0.6843 0.6217 0.5340 0.2336 0.9462 0.8521 0.8112 0.7927 0.5000 
?= 0.1,?= 1  1.9449 2.0335 2.0395 1.7292 1.3793 0.9952 1.0249 1.0518 1.0909 1.0962 
?= 0.5,?= 1  1.1879 1.1665 1.2214 1.1247 0.5354 0.8940 0.9045 0.8977 0.8772 0.5968 
?= 0.9,?= 1  0.7304 0.6812 0.5904 0.4636 0.2263 0.8650 0.8296 0.8080 0.7352 0.4012 
?= 0.1,?= 3  2.2829 2.1860 2.1367 1.8646 1.4615 1.0799 1.1157 1.1649 1.2067 1.1815 
?= 0.5,?= 3  1.1216 1.1679 1.1264 1.0872 0.4928 0.8906 0.9078 0.9011 0.8400 0.5050 
?= 0.9,?= 3  0.6900 0.6048 0.5664 0.3868 0.1909 0.8005 0.7554 0.7359 0.6084 0.3300 
?= 0.1,?= 5  2.4159 2.4242 2.2715 1.8780 1.4074 1.1174 1.2171 1.2425 1.2495 1.1940 
?= 0.5,?= 5  1.0589 1.0776 1.1294 1.0726 0.4634 0.8654 0.8406 0.8873 0.8217 0.4519 
?= 0.9,?= 5  0.6060 0.5175 0.4474 0.3523 0.1727 0.7006 0.6274 0.5856 0.5120 0.2597 
 
The results of Table ?8-4 show that, for INARMA(1,1) series, CLS produces better 
estimates especially when the number of observations is small and the autoregressive 
parameter is high. This is also true for the accuracy of forecasts produced by CLS 
compared to those by YW (as shown later).  
To conclude, for INAR(1), INMA(1), and INARMA(1,1) processes, the 
autoregressive and moving average parameters and the number of observations 
determine which estimation method produces more accurate estimates. For an 
INAR(1) process, CLS outperforms YW for high values of ?. The same is generally 
true for an INMA(1) process with low values of ? and small number of observations. 
Finally, for an INARMA(1,1) process, CLS generally produces better estimates than 
YW with a few exceptions.  
 
8.4 Forecasting Accuracy of INARMA Estimation Methods 
As previously discussed in chapter 5, two methods (CLS and YW) have been used to 
estimate the parameters of all four INARMA processes. In this section, the accuracy of 
these estimates in terms of their effect on forecast accuracy is evaluated. The forecast 
accuracy is measured by ME, MSE, and MASE (see section  2.4 for detailed 
discussion). We focus on MSE in this section. MSE is specially selected because of its 
theoretical tractability. Also due to the fact that data is theoretically generated, the scale-
 dependency problem is not an issue when we average across multiple series. 
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Table  8-4 Accuracy of YW and CLS estimates for INARMA(1,1) series  
Parameters 
MSE(???)/MSE(????)  MSE(???)/MSE(????)  MSE(???)/MSE(????)  
?= 24  ?= 36  ?= 48 ?= 96  ?= 500  ?= 24  ?= 36  ?= 48 ?= 96  ?= 500  ?= 24  ?= 36  ?= 48 ?= 96  ?= 500  
?= 0.1,?= 0.1,?= 0.5  4.8614 5.4738 6.0749 7.0578 3.4853 1.7669 1.9854 1.9831 1.9153 1.6269 2.0720 2.6889 3.1239 3.9265 3.7576 
?= 0.1,?= 0.9,?= 0.5  0.8613 0.7344 0.6736 0.6839 0.9770 0.6373 0.5349 0.4602 0.3182 0.1052 1.0420 0.9860 0.9155 0.7370 0.3245 
?= 0.5,?= 0.5,?= 0.5  1.3778 1.5195 1.5427 1.4870 1.1607 1.2698 1.2589 1.3484 1.3281 0.5957 1.0321 0.9228 0.8333 0.6433 0.2514 
?= 0.9,?= 0.1,?= 0.5  2.1067 2.0306 1.8965 1.5271 1.2222 26.3171 27.4400 28.9136 20.4444 3.8571 1.2033 1.1088 1.0270 0.9594 0.8696 
?= 0.1,?= 0.1,?= 1  4.9796 6.3395 6.5819 5.9756 3.6176 2.0247 1.8398 1.7630 1.7983 1.5588 2.7496 3.5359 3.9433 4.7348 4.6538 
?= 0.1,?= 0.9,?= 1  0.8243 0.5925 0.6154 0.6291 0.8710 0.5975 0.4733 0.4273 0.2969 0.1013 1.0431 0.9933 0.9032 0.7263 0.2915 
?= 0.5,?= 0.5,?= 1  1.6988 1.7842 1.7343 1.6031 1.2157 1.0136 1.0992 1.1177 1.0436 0.5140 1.0337 0.9391 0.8374 0.6111 0.2446 
?= 0.9,?= 0.1,?= 1  2.3724 2.2172 2.0000 1.7658 1.3750 43.0375 35.2133 31.3239 19.9841 2.8772 1.1029 1.0416 0.9534 0.9135 0.8853 
?= 0.1,?= 0.1,?= 5  5.2880 6.5479 7.3636 8.0300 3.3701 2.5138 2.3421 2.1606 1.9722 1.6857 4.4277 5.6560 6.6359 8.6472 5.6930 
?= 0.1,?= 0.9,?= 5  0.5406 0.4332 0.3695 0.3471 0.4227 0.4187 0.3415 0.2803 0.1872 0.0582 1.1328 1.0459 0.9843 0.7719 0.2663 
?= 0.5,?= 0.5,?= 5  2.2217 2.3401 2.5780 2.1421 1.0517 0.8303 0.8293 0.8479 0.7495 0.4093 0.9961 0.9877 0.9281 0.7039 0.2679 
?= 0.9,?= 0.1,?= 5  2.5276 2.3845 2.2099 1.8218 1.5000 45.5789 37.9867 31.5135 17.3108 2.4211 1.0838 0.9427 0.8756 0.8296 0.8635 
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The effect of CLS and YW estimates on one-step ahead forecasts is presented in 
Table  8-5, Table  8-6, and Table  8-7. The results for three-step ahead and six-step 
ahead forecasts are presented in Table  8-8 to Table ?8-13. 
For an INAR(1) process, the results of YW and CLS are compared to those of CML 
for ?= 24. For longer length of history, the CML results become computationaly 
expensive. The results for an INAR(1) process show that when the history is short 
and data is highly autocorrelated (?= 0.9), CLS produces more accurate forecasts 
(up to 11 percent improvement in MSE) than YW. For ??0.5, YW produces better 
forecasts, but the magnitude of improvement is small (up to a maximum of 3 percent 
improvement in MSE). The results also confirm that when the number of 
observations increases, the two methods yield very similar forecast errors (Al-Osh 
and Alzaid, 1987; Bu, 2006).  
Table  8-5 One-step ahead forecast error comparison (YW, CLS and CML) for INAR(1) series  
Parameters 
MSEYW /MSECLS   MSEYW /MSECML   
?= 24  ?= 36  ?= 48 ?= 96  ?= 500  ?= 24  
?= 0.1,?= 0.5  0.9752 0.9841 0.9936 0.9978 1.0000 0.9727 
?= 0.5,?= 0.5  0.9847 0.9954 0.9974 0.9999 1.0001 0.9799 
?= 0.9,?= 0.5  1.1087 1.0957 1.0560 1.0248 1.0010 1.2084 
?= 0.1,?= 1  0.9774 0.9926 0.9956 0.9985 0.9999 0.9751 
?= 0.5,?= 1  0.9871 1.0006 0.9984 0.9995 1.0001 0.9899 
?= 0.9,?= 1  1.1268 1.0836 1.0637 1.0249 1.0012 1.2329 
?= 0.1,?= 3  0.9842 0.9935 0.9962 0.9987 0.9999 0.9694 
?= 0.5,?= 3  0.9877 1.0009 1.0019 1.0000 1.0001 0.9850 
?= 0.9,?= 3  1.0993 1.0807 1.0568 1.0228 1.0009 1.2605 
?= 0.1,?= 5  0.9849 0.9922 0.9960 0.9987 0.9999 0.9687 
?= 0.5,?= 5  0.9925 1.0000 1.0004 1.0003 1.0001 1.0019 
?= 0.9,?= 5  1.1133 1.0866 1.0647 1.0252 1.0011 - 
 
As noted previously, it is computationally expensive to calculate CML when the mean 
of the process is high. Therefore, no result is presented for the last case in Table ?8-5.  
The results also show that, except for the case where the autoregressive parameter is 
high, YW forecasts have smaller MSE than CML forecasts for ?= 24. The above 
discussion about YW and CLS suggests that for such cases CLS is better than YW, 
but the results show that CML is still better than CLS for these cases.  
The results for an INMA(1) process show that the forecast accuracy of YW and CLS 
estimates are generally close. When the history is short, CLS produces better 
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forecasts for lower values of ? (up to 1.4 percent improvement in MSE). As shown in 
Table ?8-6, for high values of ?, YW outperforms CLS (up to 3 percent improvement 
in MSE).  
Table  8-6 One-step ahead forecast error comparison (YW and CLS) for INMA(1) series  
Parameters 
MSEYW /MSECLS   
?= 24  ?= 36  ?= 48 ?= 96  ?= 500  
?= 0.1,?= 0.5  1.0000 1.0003 1.0008 1.0004 1.0000 
?= 0.5,?= 0.5  1.0065 1.0080 1.0054 1.0034 1.0008 
?= 0.9,?= 0.5  1.0137 1.0156 1.0111 1.0069 1.0013 
?= 0.1,?= 1  0.9998 1.0009 1.0005 1.0004 1.0001 
?= 0.5,?= 1  1.0058 1.0040 1.0045 1.0037 1.0031 
?= 0.9,?= 1  1.0084 1.0062 1.0075 1.0019 1.0003 
?= 0.1,?= 3  0.9985 0.9999 1.0003 1.0004 1.0000 
?= 0.5,?= 3  1.0020 1.0032 1.0006 1.0019 0.9998 
?= 0.9,?= 3  0.9930 0.9888 0.9915 0.9914 0.9944 
?= 0.1,?= 5  0.9954 0.9986 0.9992 0.9999 0.9999 
?= 0.5,?= 5  0.9972 0.9957 0.9964 0.9990 0.9989 
?= 0.9,?= 5  0.9888 0.9850 0.9857 0.9835 0.9885 
 
For an INARMA(1,1) process the results show that CLS always produces better 
forecasts than YW. As shown in Table ?8-7, when ??0.5, CLS outperforms YW by 
up to 20 percent. The difference is much greater when ?= 0.9 (up to 90 percent 
improvement in MSE). However, with an increase in the number of observations, the 
two methods become closer, especially for ?= 0.9.     
Table  8-7 One-step ahead forecast error comparison (YW and CLS) for INARMA(1,1) series  
Parameters 
MSEYW /MSECLS   
?= 24  ?= 36  ?= 48 ?= 96  ?= 500  
?= 0.1,?= 0.1,?= 0.5  1.0850 1.1076 1.1175 1.0991 1.0259 
?= 0.1,?= 0.9,?= 0.5  1.0273 1.0556 1.0551 1.0499 1.0185 
?= 0.5,?= 0.5,?= 0.5  1.0633 1.0842 1.0805 1.0467 1.0087 
?= 0.9,?= 0.1,?= 0.5  1.4006 1.2431 1.1654 1.0475 1.0032 
?= 0.1,?= 0.1,?= 1  1.0992 1.1077 1.1015 1.0874 1.0252 
?= 0.1,?= 0.9,?= 1  1.0527 1.0624 1.0700 1.0568 1.0188 
?= 0.5,?= 0.5,?= 1  1.1293 1.1172 1.1031 1.0565 1.0104 
?= 0.9,?= 0.1,?= 1  1.4797 1.2853 1.1771 1.0561 1.0031 
?= 0.1,?= 0.1,?= 5  1.1110 1.1142 1.1175 1.1074 1.0246 
?= 0.1,?= 0.9,?= 5  1.1254 1.1285 1.1397 1.1273 1.0693 
?= 0.5,?= 0.5,?= 5  1.1939 1.1694 1.1603 1.0789 1.0232 
?= 0.9,?= 0.1,?= 5  1.9098 1.4115 1.2442 1.0676 1.0042 
 
Based on the above results for one-step ahead forecasts, for INMA(1), YW and CLS 
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are close. For INAR(1), when the history is short and the autoregressive parameter is 
high, CLS is considerably better than YW. But when ??0.5, the difference is much 
smaller. For INARMA(1,1) and especially for short history, CLS estimates produce 
better results than YW.  
Although the above results are based on MSE, using MASE produces similar results 
(see Appendix 8.B). For INAR(1), CLS produces more accurate forecasts (up to 9 
percent improvement in MASE) when the history is short and the autoregressive 
parameter is high (?= 0.9). For ??0.5, YW produces better forecasts, but the 
magnitude of improvement is small (up to a maximum of 3 percent improvement in 
MASE). For an INMA(1) process, the forecasting accuracy of YW and CLS 
forecasts using MASE are very close. For an INARMA(1,1) process, CLS produces 
better forecasts than YW in most of the cases (up to 30 percent improvement in 
MASE). Finally, the results confirm that when the number of observations increases, 
the two methods become very close in terms of MASE.  
The results for three-step and six-step ahead forecasts for INAR(1) process are 
shown in Table ?8-8 and Table ?8-9. Although the three-step ahead results follow the 
same pattern as one-step ahead forecasts, both three-step and six-step ahead forecasts 
produced by YW and CLS estimates are very close. 
The results of YW and CLS three-step and six-step ahead forecasts for INMA(1) 
process are presented in Table ?8-10 and Table ?8-11. It can be seen that the two 
estimation methods result in very close forecasts. 
Table  8-8 Three-step ahead forecast error comparison (YW and CLS) for INAR(1) series  
Parameters 
MSEYW /MSECLS   
?= 24  ?= 36  ?= 48 ?= 96  
?= 0.1,?= 0.5  0.9988 0.9992 0.9997 0.9998 
?= 0.5,?= 0.5  0.9906 0.9993 1.0009 1.0013 
?= 0.9,?= 0.5  1.0081 1.0189 1.0229 1.0382 
?= 0.1,?= 1  0.9989 0.9996 0.9996 1.0000 
?= 0.5,?= 1  0.9965 0.9995 1.0001 1.0012 
?= 0.9,?= 1  1.0181 1.0210 1.0170 1.0367 
?= 0.1,?= 3  0.9982 0.9994 0.9998 0.9999 
?= 0.5,?= 3  0.9933 0.9995 1.0003 1.0014 
?= 0.9,?= 3  1.0070 1.0135 1.0245 1.0362 
?= 0.1,?= 5  0.9990 0.9998 0.9999 0.9999 
?= 0.5,?= 5  0.9938 0.9997 1.0005 1.0014 
?= 0.9,?= 5  1.0033 1.0157 1.0118 1.0352 
M.Mohammadipour, 2009, Chapter 8   159 
 
Table  8-9 Six-step ahead forecast error comparison (YW and CLS) for INAR(1) series  
Parameters 
MSEYW /MSECLS   
?= 24  ?= 36 ?= 48 ?= 96  
?= 0.1,?= 0.5  0.9986 0.9995 0.9998 1.0000 
?= 0.5,?= 0.5  0.9848 0.9938 0.9979 0.9993 
?= 0.9,?= 0.5  0.9701 0.9786 0.9936 1.0139 
?= 0.1,?= 1  0.9989 0.9997 0.9997 0.9999 
?= 0.5,?= 1  0.9833 0.9936 0.9969 0.9994 
?= 0.9,?= 1  0.9509 0.9723 0.9897 1.0138 
?= 0.1,?= 3  0.9987 0.9995 0.9998 0.9999 
?= 0.5,?= 3  0.9907 0.9918 0.9980 0.9994 
?= 0.9,?= 3  0.9576 0.9679 0.9880 1.0175 
?= 0.1,?= 5  0.9984 0.9996 0.9996 0.9999 
?= 0.5,?= 5  0.9883 0.9952 0.9960 0.9992 
?= 0.9,?= 5  0.9566 0.9738 0.9854 1.0101 
 
Table  8-10 Three-step ahead forecast error comparison (YW and CLS) for INMA(1) series  
Parameters 
MSEYW /MSECLS   
?= 24  ?= 36  ?= 48  ?= 96 
?= 0.1,?= 0.5  0.9940 0.9957 0.9980 0.9988 
?= 0.5,?= 0.5  0.9895 0.9909 0.9939 0.9967 
?= 0.9,?= 0.5  0.9811 0.9886 0.9918 0.9959 
?= 0.1,?= 1  0.9948 0.9964 0.9988 0.9984 
?= 0.5,?= 1  0.9934 0.9916 0.9929 0.9968 
?= 0.9,?= 1  0.9774 0.9851 0.9896 0.9954 
?= 0.1,?= 3  0.9947 0.9961 0.9968 0.9981 
?= 0.5,?= 3  0.9878 0.9940 0.9953 0.9963 
?= 0.9,?= 3  0.9951 0.9917 0.9932 0.9953 
?= 0.1,?= 5  0.9927 0.9957 0.9976 0.9985 
?= 0.5,?= 5  0.9940 0.9935 0.9948 0.9988 
?= 0.9,?= 5  0.9970 0.9998 0.9970 0.9978 
 
Table  8-11 Six-step ahead forecast error comparison (YW and CLS) for INMA(1) series  
Parameters 
MSEYW /MSECLS   
?= 24  ?= 36  ?= 48 ?= 96  
?= 0.1,?= 0.5  0.9927 0.9955 0.9970 0.9984 
?= 0.5,?= 0.5  0.9846 0.9946 0.9925 0.9973 
?= 0.9,?= 0.5  0.9798 0.9953 0.9942 0.9960 
?= 0.1,?= 1  0.9921 0.9970 0.9975 0.9989 
?= 0.5,?= 1  0.9907 0.9908 0.9939 0.9955 
?= 0.9,?= 1  0.9821 0.9844 0.9909 0.9945 
?= 0.1,?= 3  0.9929 0.9931 0.9968 0.9989 
?= 0.5,?= 3  0.9917 0.9911 0.9942 0.9963 
?= 0.9,?= 3  0.9919 0.9936 0.9953 0.9934 
?= 0.1,?= 5  0.9935 0.9954 0.9969 0.9980 
?= 0.5,?= 5  0.9919 0.9910 0.9967 0.9984 
?= 0.9,?= 5  1.0013 0.9958 0.9935 0.9980 
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For an INARMA(1,1) process, as can be seen from Table ?8-12 and Table  8-13, CLS 
does not always produce better forecasts than YW. For high number of observations, 
the results are close. 
Table  8-12 Three-step ahead forecast error comparison (YW and CLS) for INARMA(1,1) series  
Parameters 
MSEYW /MSECLS   
?= 24  ?= 36  ?= 48  ?= 96  
?= 0.1,?= 0.1,?= 0.5  1.0301 1.0092 1.0051 1.0020 
?= 0.1,?= 0.9,?= 0.5  0.9986 0.9928 0.9977 0.9973 
?= 0.5,?= 0.5,?= 0.5  0.9752 0.9976 0.9965 1.0009 
?= 0.9,?= 0.1,?= 0.5  0.8939 0.9184 0.9467 1.0027 
?= 0.1,?= 0.1,?= 1  1.0217 1.0082 1.0100 1.0022 
?= 0.1,?= 0.9,?= 1  0.9825 0.9949 0.9958 0.9968 
?= 0.5,?= 0.5,?= 1  0.9531 1.0014 1.0013 1.0004 
?= 0.9,?= 0.1,?= 1  0.9139 1.0007 0.9974 1.0353 
?= 0.1,?= 0.1,?= 5  1.0147 1.0143 1.0072 1.0003 
?= 0.1,?= 0.9,?= 5  0.9696 0.9956 0.9892 0.9921 
?= 0.5,?= 0.5,?= 5  0.9635 0.9725 0.9923 0.9919 
?= 0.9,?= 0.1,?= 5  1.1665 1.0307 1.0383 1.0639 
 
Table  8-13 Six-step ahead forecast error comparison (YW and CLS) for INARMA(1,1) series  
Parameters 
MSEYW /MSECLS   
?= 24 ?= 36 ?= 48 ?= 96 
?= 0.1,?= 0.1,?= 0.5  1.0094 1.0088 1.0050 1.0006 
?= 0.1,?= 0.9,?= 0.5  0.9936 0.9933 0.9977 0.9975 
?= 0.5,?= 0.5,?= 0.5  0.9720 0.9965 0.9975 0.9976 
?= 0.9,?= 0.1,?= 0.5  0.8577 0.8722 0.9262 0.9797 
?= 0.1,?= 0.1,?= 1  1.0157 1.0127 1.0047 1.0010 
?= 0.1,?= 0.9,?= 1  0.9735 0.9956 0.9964 0.9963 
?= 0.5,?= 0.5,?= 1  0.9659 0.9947 0.9939 0.9959 
?= 0.9,?= 0.1,?= 1  0.9251 0.9431 0.9648 0.9977 
?= 0.1,?= 0.1,?= 5  1.0072 1.0193 1.0027 1.0017 
?= 0.1,?= 0.9,?= 5  0.9688 0.9872 0.9930 0.9919 
?= 0.5,?= 0.5,?= 5  0.9167 0.9718 0.9769 0.9907 
?= 0.9,?= 0.1,?= 5  1.1674 1.0402 1.0173 1.0190 
 
For an INAR(1) process, the results of this section show that CLS produces better 
one-step ahead forecasts than YW for high autoregressive parameters. For lower 
autoregressive parameters, YW slightly outperform CLS. For an INMA(1) process, 
generally for high values of ?, YW is slightly better than CLS in terms of MSE of 
one-step ahead forecasts; but the opposite is true for lower values of ?. For an 
INARMA(1,1) process, CLS always produces better one-step ahead forecast than 
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YW using MSE.  
However, the results of three-step and six-step ahead forecasts show that although 
the YW and CLS results are generally very close for all of the three INARMA 
processes, YW results are slightly better in many cases.    
Therefore, based on the superior performance of CLS for one-step ahead forecasts, in 
the following sections where we compare the INARMA forecasts with those of 
benchmark methods, we use the CLS to estimate the parameters for one-step ahead 
INARMA forecasts. For three-step and six-step ahead forecasts, on the other hand, 
we use YW to estimate the parameters of the INARMA process.  
 
8.5 Croston-SBA Categorization 
Syntetos et al. (2005) compare Croston and SBA, based on MSE, to establish the 
areas that each method should be used over the other. The squared coefficient of 
variation (??2) of demand size and the average inter-demand interval (?) are used 
to identify the areas.   
The coefficient of variation is defined by ?=?/?1
 ?, where ?? is the value of the 
mean measured from some arbitrary origin. It is estimated using the formula:  
?=
 ?
 1
 ?
 ? (????1
 ?)2??=1 ?
 1/2
 1
 ?
 ? ??
 ?
 ?=1
  
Equation  8-1 
where ? is the sample size. The results show that for the smoothing parameter 
? = 0.2, when p > 1.31, SBA is superior to Croston?s method in terms of MSE. For 
p?1.31, if CV2 > 0.47 then MSECroston > MSESBA , but if CV
 2 ?0.47 then 
Croston?s method performs better in terms of MSE (Syntetos et al., 2005). This is 
shown in Figure  8-1. The cut-off values are slightly different for different smoothing 
parameters (Syntetos et al., 2005).  
The Croston-SBA categorization is based on the assumption that demand occurs as 
an i.i.d. Bernoulli process. Therefore it is worth testing if it also holds for an i.i.d. 
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Poisson process. An INARMA(0,0) process produces such data series.  
  
Figure ?8-1 Cut-off values for Croston and SBA when  (Syntetos et al., 2005) 
 
The simulation results show that the squared coefficient of variation of demand size 
(??2) is always less than the cut-off value determined by Syntetos et al. (2005) 
(0.47). This is due to the Poisson assumption of demand. The p-values, however, 
vary below and beyond the cut-off value (1.31). Therefore, the demand series 
produced by an INARMA(0,0) process could belong to either region 3 or 4 in Figure 
 8-1. 
The results of simulation confirm the Croston-SBA categorization for both cases of 
?= 0.2, 0.5. Therefore, for ??1.31 (or ??3), MSECroston < MSESBA  and for 
?> 1.31 (or ?< 3), MSESBA < MSECroston  when either all points in time or issue 
points are considered.  
Although the Croston-SBA categorization is based on MSE, the results show that it 
generally holds for MASE as well. This was expected due to the similarities between 
the two error measures. However, there are some exceptions. For the case of ?= 3 
where Croston?s method should outperform SBA, MASESBA < MASECroston  for both 
cases of ?= 0.2, 0.5. Because the corresponding ?-value and ??2 of size for these 
cases are ?= 1.0538 and ??2 = 0.2622, these exceptions can be attributed to the 
nonlinear boundaries between region 3 and others in Figure  8-1 (Syntetos, 2001; 
Kostenko and Hyndman, 2006). This is an interesting finding because MASE is a 
relatively new measure and has been suggested for intermittent demand studies 
20.??
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2 
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(Hyndman, 2006). 
The results show that when the number of observations increases, the advantage of 
SBA over Croston decreases. This is a new finding and this issue has not been 
discussed previously in the literature. It is shown is Table  8-14. 
Table  8-14 The advantage of SBA over Croston for  and all points in time 
Parameters 
MSESBA ?MSECroston   MASESBA ?MASECroston   
?= 24 ?= 36  ?= 48  ?= 96  ?= 500  ?= 24 ?= 36  ?= 48  ?= 96  ?= 500  
?= 0.3  -0.0186 -0.0085 -0.0051 -0.0025 -0.0025 -0.0507 -0.0431 -0.0392 -0.0355 -0.0342 
?= 0.5  -0.0168 -0.0084 -0.0061 -0.0051 -0.0052 -0.0245 -0.0197 -0.0176 -0.0175 -0.0174 
?= 0.7
   
-0.0173 -0.0100 -0.0082 -0.0079 -0.0077 -0.0116 -0.0076 -0.0067 -0.0069 -0.0063 
?= 1  -0.0173 -0.0118 -0.0111 -0.0107 -0.0102 -0.0152 -0.0131 -0.0134 -0.0130 -0.0131 
 
Table  8-15 The advantage of SBA over Croston for  and all points in time 
Parameters 
MSESBA ?MSECroston   MASESBA ?MASECroston   
?= 24 ?= 36  ?= 48  ?= 96  ?= 500  ?= 24 ?= 36  ?= 48  ?= 96  ?= 500  
?= 0.3  -0.0407 -0.0266 -0.0229 -0.0209 -0.0215 -0.1285 -0.1168 -0.1102 -0.1043 -0.1000 
?= 0.5  -0.0495 -0.0430 -0.0403 -0.0407 -0.0390 -0.0733 -0.0673 -0.0629 -0.0624 -0.0612 
?= 0.7  -0.0623 -0.0595 -0.0547 -0.0562 -0.0558 -0.0486 -0.0473 -0.0438 -0.0461 -0.0439 
?= 1  -0.0780 -0.0743 -0.0761 -0.0715 -0.0696 -0.0442 -0.0427 -0.0441 -0.0415 -0.0416 
 
It can be seen from Table ?8-14 that the advantage of SBA over Croston decreases 
when ? increases. 
The MSE of one step ahead forecast for a stationary mean model is:  
MSE = var?Estimates?+ Bias2 + var(Actual Demand) 
Equation  8-2 
Syntetos (2001) assumes an infinite history for SES estimates:  
??= ? ?(1??)
 ?????
 ?
 ?=0
  
Equation  8-3 
and, therefore, Brown?s expression for the variance of estimates is independent of the 
length of demand history, ?: 
 
20.??
 50.??
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var(??) =
 ?
 2??
 var(??) 
Equation  8-4 
However, when this assumption is relaxed, the finite representation of SES becomes 
(Graves, 1999):  
??=????1 +??1??????2 +?+??1???
 ??1????+1 +?1???
 ????? 
Equation  8-5 
Therefore, the variance of the estimates produced by SES with a finite history is: 
var????=
 ?+ 2(1??)2?+1
 2??
 var???? 
Equation  8-6 
The variances of the exponentially smoothed size of demand and inter-demand 
interval with finite observations are then: 
var???
 ? =
 ?+ 2(1??)2?+1
 2??
 var???? 
Equation  8-7 
var???
 ? =
 ?+ 2(1??)2?+1
 2??
 var???? 
Equation  8-8 
where var????=?
 2 and var????=?(??1), since the inter-demand interval 
follows the geometric distribution. The variance of the estimates produced by 
Croston?s method is:  
var???
 ? = var?
 ??
 ?
 ??
 ?  
Equation  8-9 
The variance of the ratio of two independent variables is given by (Stuart and Ord, 
1994): 
var?
 ?
 ?
 ?=?
 ????
 ????
 ?
 2
 ?
 var(?)
 [????]2
 +
 var(?)
 [????]2
 ? 
Equation  8-10 
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The variance of the estimates produced by Croston?s method with finite sample is 
therefore: 
var???
 ? =
 ?+ 2(1??)2?+1
 2??
 ?
 (??1)2?2
 ?4
 +
 ?2
 ?2
 ? 
Equation  8-11 
It can be seen that for ??(0,1], as ? increases, the above coefficient decreases until 
it reaches a limit of [?/(2??)]. For high values of ?, the limit is approached very 
quickly.  
The difference between MSE of SBA and Croston?s method is:  
MSESBA ?MSECroston  
=?var?EstimatesSBA?+ BiasSBA
 2 ??[var?EstimatesCroston ?+ BiasCroston
 2 ] 
Equation  8-12 
But when ? increases, the bias of both Croston and SBA decreases and is close to 
zero (this has been confirmed by simulation results). So the difference is 
approximately:     
MSESBA ?MSECroston ???1?
 ?
 2
 ?
 2
 ?1?var?EstimatesCroston ? 
Equation  8-13 
From Equation  8-11 we have: 
MSESBA ?MSECroston ???1?
 ?
 2
 ?
 2
 ?1??
 ?+ 2(1??)2?+1
 2??
 ??
 (??1)2?2
 ?4
 +
 ?2
 ?2
 ? 
Equation  8-14 
As the results of Table  8-14 show, when ? = 0.2, the above coefficient decreases 
when ? increases; therefore the difference between MSE of Croston and SBA also 
decreases. However, because the above coefficient reaches a limit of ?
 ?2
 4
 ????
 ?
 2??
 ?, 
it can be seen from Table  8-14 that the advantage of SBA over Croston does not 
change perceptibly when the number of observations is high. 
For ?= 0.5, the results of Table ?8-15 confirm that, as expected, the difference 
between MSE of Croston and SBA changes little with changes in ?.  
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Although the Croston-SBA categorization is for i.i.d. demand, we have also tested it 
when demand is an INAR(1), INMA(1) or an INARMA(1,1) process. The results 
confirm that the Croston-SBA categorization generally holds for all of the above-
 mentioned processes. There is only one exception when there is an autoregressive 
component (either INAR(1) or INARMA(1,1)). For the INMA(1) case, there are two 
exceptions to the Croston-SBA categorization. The results are presented in Appendix 
8.C.   
Therefore, because the Croston-SBA categorization generally holds when the data is 
produced by any of the four INARMA processes, the best benchmark can be used to 
compete with INARMA forecasting methods. 
     
8.6 INARMA vs Benchmark Methods  
This research has suggested using INARMA models to forecast intermittent demand. 
In order to answer the last research question of ?Do INARMA models provide more 
accurate forecasts for intermittent demand than non-optimal smoothing-based 
methods??, the performance of INARMA forecasts based on ME, MSE and MASE 
has been compared to that of benchmark methods. As previously mentioned, the 
benchmarks are Croston (Croston, 1972), SBA (Syntetos and Boylan, 2005) and SBJ 
(Shale et al., 2006) methods.  
The first steps in the INARMA methodology are identification and estimation. These 
steps make INARMA more complicated than the benchmarks and result in two types 
of errors: error of identification and error of estimation. In order to investigate the 
effect of the identification error we first assume that the order of the model is known. 
The results are studied in section  8.6.1. Then we relax this assumption and examine 
the results for unknown model orders in section  8.6.2. Finally, the lead-time forecasts 
are compared in section  8.6.3.  
 
8.6.1 INARMA with Known Order  
In this section, we first compare the one-step ahead forecasts produced by each 
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method (INARMA, Croston, SBA, and SBJ). The three-step and six-step ahead 
forecasts are then compared.  
The results show that INARMA almost always produces the lowest MSE for all four 
processes (INARMA(0,0), INAR(1), INMA(1), and INARMA(1,1)) when all points 
in time are considered. This is expected because the INARMA one-step ahead 
forecasts are MMSE forecasts and therefore when the demand follows an INARMA 
process, INARMA forecasts should outperform the benchmarks in terms of MSE.  
The results also confirm that when only issue points are considered, the INARMA 
forecasts are biased (see Appendix 8.D). This is expected because the least squares 
criterion and therefore the CLS estimates are developed for the case where 
parameters are updated each period regardless of the demand being positive or zero. 
As parameters need to be estimated for INARMA models, with an increase in the 
number of observations, the forecasts? accuracy increases. 
The degree of improvement over benchmarks using the MSE measure, when all 
points in time are considered, is shown in Table  8-16 to Table ?8-21. It should be 
noted that in some tables ? is used in two different ways: when it is below the 
benchmark methods, it is the smoothing parameter for that specific method and when 
it is in the first column of the table, it is the autoregressive parameter of the 
INARMA process.  
Table  8-16 One-step ahead  for INARMA(0,0) series (known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.?  
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.?  
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.?  
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.3  0.8691 0.9114 0.9150 0.9473 0.9711 0.9731 0.9740 0.9894 0.9904 0.9794 0.9872 0.9875 
?= 0.5  0.9502 0.9773 0.9789 0.9747 0.9895 0.9904 0.9762 0.9870 0.9876 0.9675 0.9769 0.9772 
?= 0.7
   
0.9694 0.9900 0.9917 0.9732 0.9857 0.9862 0.9706 0.9812 0.9814 0.9587 0.9688 0.9690 
?= 1  0.9749 0.9892 0.9894 0.9688 0.9789 0.9788 0.9575 0.9670 0.9668 0.9478 0.9572 0.9569 
?= 3  0.9596 0.9525 0.9484 0.9424 0.9369 0.9331 0.9323 0.9257 0.9218 0.9208 0.9136 0.9096 
?= 5  0.9498 0.9255 0.9178 0.9367 0.9112 0.9034 0.9269 0.9048 0.8974 0.9126 0.8889 0.8814 
?= 20  0.9529 0.8212 0.7940 0.9315 0.8023 0.7756 0.9281 0.7990 0.7721 0.9124 0.7851 0.7586 
 
The results show that the improvement increases when more observations are 
available for higher values of ? (??0.7). With more observations, the accuracy of 
parameters? estimates and therefore forecasts of INARMA and benchmark methods 
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become more accurate. However, the results suggest that the accuracy of INARMA 
forecasts improves at a faster rate than the benchmarks. 
The simulation results also show that for INARMA(0,0) and INMA(1) processes, the 
improvement over benchmarks is not considerable. However, with the presence of an 
autoregressive component, as in the INAR(1) and INARMA(1,1) cases, the 
improvement is considerable for the cases in which the autoregressive parameter is 
high (?= 0.9).  
As can be seen from Table ?8-16, when ?= 20, the improvement of MSE of 
INARMA over SBA and SBJ is very high. This is because these methods are 
designed for highly intermittent demand, but when ?= 20, the demand is barely 
intermittent and the methods do not reduce to SES. In this case, Croston?s method is 
equivalent to SES.  
Table  8-17 One-step ahead  for INMA(1) series (known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.9421 0.9733 0.9755 0.9634 0.9816 0.9829 0.9715 0.9833 0.9837 0.9583 0.9704 0.9709 
?= 0.5,?= 0.5  0.9124 0.9470 0.9490 0.9395 0.9645 0.9660 0.9400 0.9607 0.9620 0.9282 0.9483 0.9495 
?= 0.9,?= 0.5  0.9124 0.9543 0.9569 0.9227 0.9503 0.9521 0.9273 0.9503 0.9515 0.9118 0.9352 0.9367 
?= 0.1,?= 1  0.9739 0.9871 0.9871 0.9629 0.9752 0.9751 0.9566 0.9673 0.9671 0.9426 0.9532 0.9530 
?= 0.5,?= 1  0.9872 1.0027 1.0024 0.9685 0.9793 0.9785 0.9550 0.9674 0.9669 0.9425 0.9545 0.9539 
?= 0.9,?= 1  1.0070 1.0146 1.0129 0.9849 0.9945 0.9931 0.9750 0.9839 0.9825 0.9628 0.9706 0.9690 
?= 0.1,?= 3  0.9719 0.9611 0.9563 0.9587 0.9490 0.9442 0.9500 0.9390 0.9341 0.9334 0.9249 0.9204 
?= 0.5,?= 3  1.0174 0.9948 0.9870 1.0035 0.9805 0.9728 0.9954 0.9730 0.9655 0.9763 0.9536 0.9461 
?= 0.9,?= 3  1.0720 1.0282 1.0166 1.0657 1.0262 1.0150 1.0405 1.0045 0.9937 1.0300 0.9917 0.9809 
?= 0.1,?= 5  0.9788 0.9474 0.9383 0.9499 0.9252 0.9169 0.9445 0.9168 0.9082 0.9308 0.9028 0.8944 
?= 0.5,?= 5  1.0318 0.9787 0.9648 1.0241 0.9679 0.9537 1.0019 0.9461 0.9322 0.9866 0.9376 0.9244 
?= 0.9,?= 5  1.0969 1.0211 1.0025 1.0777 1.0051 0.9867 1.0635 0.9917 0.9736 1.0345 0.9622 0.9445 
 
When data is produced by an INARMA(0,0) or an INMA(1) process, the results of 
INARMA forecasts  are only compared to those of Croston, SBA and SBJ with 
smoothing parameter 0.2. But for INAR(1) and INARMA(1,1) processes where an 
autoregressive component is present, the benchmark methods with smoothing 
parameter 0.5 are also included in comparisons (Table ?8-19 and Table ?8-21). This is 
because when the autoregressive parameter is high, the benchmark methods with 
higher smoothing parameter produce better forecasts than those with smoothing 
parameter 0.2. 
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Table  8-18 One-step ahead  with smoothing parameter 0.2 for INAR(1) 
series (known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.9752 1.0033 1.0026 0.9868 1.0061 1.0074 0.9747 0.9877 0.9884 0.9609 0.9726 0.9733 
?= 0.5,?= 0.5  0.7962 0.8190 0.8212 0.7715 0.7929 0.7941 0.7688 0.7852 0.7858 0.7408 0.7582 0.7590 
?= 0.9,?= 0.5  0.5848 0.5134 0.4988 0.5333 0.4666 0.4536 0.5251 0.4684 0.4559 0.4917 0.4396 0.4280 
?= 0.1,?= 1  0.9971 1.0153 1.0158 0.9746 0.9860 0.9858 0.9636 0.9725 0.9721 0.9433 0.9532 0.9529 
?= 0.5,?= 1  0.8845 0.8890 0.8870 0.8280 0.8308 0.8288 0.8122 0.8145 0.8124 0.7924 0.7962 0.7943 
?= 0.9,?= 1  0.5825 0.4598 0.4379 0.5478 0.4285 0.4078 0.5275 0.4196 0.3997 0.5068 0.4054 0.3865 
?= 0.1,?= 3  0.9922 0.9794 0.9742 0.9621 0.9539 0.9494 0.9538 0.9433 0.9385 0.9317 0.9222 0.9176 
?= 0.5,?= 3  0.9342 0.8928 0.8815 0.8807 0.8408 0.8301 0.8586 0.8180 0.8073 0.8356 0.7960 0.7857 
?= 0.9,?= 3  0.5985 0.3502 0.3175 0.5379 0.3104 0.2816 0.5215 0.3001 0.2723 0.4984 0.2848 0.2584 
?= 0.1,?= 5  0.9982 0.9644 0.9550 0.9675 0.9353 0.9261 0.9515 0.9224 0.9135 0.9325 0.9031 0.8943 
?= 0.5,?= 5  0.9170 0.8396 0.8217 0.8934 0.8194 0.8019 0.8586 0.7846 0.7677 0.8383 0.7676 0.7511 
?= 0.9,?= 5  0.5881 0.2457 0.2165 0.5374 0.2341 0.2067 0.5208 0.2322 0.2052 0.5022 0.2190 0.1934 
 
Table  8-19 One-step ahead  with smoothing parameter 0.5 for INAR(1) 
series (known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.8996 0.9844 1.0063 0.8776 0.9584 0.9960 0.8577 0.9340 0.9680 0.8445 0.9192 0.9505 
?= 0.5,?= 0.5  0.7901 0.8582 0.7930 0.7459 0.8201 0.7663 0.7356 0.8014 0.7470 0.7034 0.7688 0.7252 
?= 0.9,?= 0.5  0.9191 0.3860 0.2257 0.8746 0.3646 0.2094 0.8416 0.3604 0.2104 0.8066 0.3418 0.1975 
?= 0.1,?= 1  0.8912 0.9544 0.9629 0.8619 0.9153 0.9243 0.8548 0.9036 0.9074 0.8318 0.8836 0.8915 
?= 0.5,?= 1  0.9069 0.8851 0.7594 0.8500 0.8284 0.7064 0.8316 0.8128 0.6949 0.8058 0.7894 0.6785 
?= 0.9,?= 1  0.9332 0.2532 0.1451 0.8807 0.2362 0.1349 0.8583 0.2296 0.1316 0.8248 0.2256 0.1294 
?= 0.1,?= 3  0.8630 0.8141 0.7700 0.8310 0.7906 0.7558 0.8293 0.7850 0.7434 0.8105 0.7676 0.7264 
?= 0.5,?= 3  0.9728 0.7309 0.5562 0.9190 0.6883 0.5230 0.8957 0.6672 0.5067 0.8703 0.6505 0.4946 
?= 0.9,?= 3  0.9337 0.1106 0.0630 0.8746 0.1003 0.0569 0.8514 0.0972 0.0552 0.8186 0.0922 0.0523 
?= 0.1,?= 5  0.8603 0.7393 0.6599 0.8312 0.7100 0.6363 0.8165 0.6998 0.6270 0.8010 0.6854 0.6142 
?= 0.5,?= 5  0.9588 0.5936 0.4247 0.9311 0.5748 0.4116 0.8952 0.5533 0.3949 0.8720 0.5369 0.3847 
?= 0.9,?= 5  0.9364 0.0642 0.0362 0.8728 0.0620 0.0350 0.8586 0.0612 0.0346 0.8171 0.0578 0.0326 
 
The degree of improvement over benchmarks, using the MASE measure, is shown in 
Appendix 8.E. The results show that for INARMA(0,0) and INMA(1) processes, the 
improvement over benchmarks, in terms of MASE, is not considerable. But for 
INAR(1) and INARMA(1,1) processes, the improvement is high for the cases in 
which the autoregressive parameter is high. This confirms the results using MSE. 
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Table  8-20 One-step ahead  with smoothing parameter 0.2 for INARMA(1,1) 
series (known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.1,?= 0.5  0.9881 1.0188 1.0202 0.9798 1.0007 1.0021 0.9716 0.9882 0.9892 0.9516 0.9667 0.9674 
?= 0.1,?= 0.9,?= 0.5  0.8263 0.8614 0.8633 0.8117 0.8382 0.8400 0.8272 0.8483 0.8495 0.8113 0.8311 0.8322 
?= 0.5,?= 0.5,?= 0.5  0.7641 0.7846 0.7846 0.7271 0.7439 0.7443 0.7000 0.7128 0.7130 0.6491 0.6638 0.6641 
?= 0.9,?= 0.1,?= 0.5  0.5621 0.4725 0.4577 0.5314 0.4674 0.4542 0.4982 0.4397 0.4276 0.4740 0.4208 0.4091 
?= 0.1,?= 0.1,?= 1  1.0022 1.0176 1.0176 0.9872 1.0013 1.0012 0.9657 0.9782 0.9780 0.9410 0.9530 0.9528 
?= 0.1,?= 0.9,?= 1  0.9076 0.9143 0.9127 0.8657 0.8765 0.8754 0.8613 0.8670 0.8655 0.8523 0.8595 0.8581 
?= 0.5,?= 0.5,?= 1  0.8216 0.8156 0.8119 0.7701 0.7676 0.7645 0.7533 0.7488 0.7456 0.7082 0.7073 0.7045 
?= 0.9,?= 0.1,?= 1  0.5736 0.4402 0.4180 0.5206 0.4057 0.3860 0.4975 0.3911 0.3723 0.4610 0.3665 0.3492 
?= 0.1,?= 0.1,?= 5  1.0117 0.9720 0.9613 0.9802 0.9453 0.9352 0.9653 0.9306 0.9206 0.9442 0.9096 0.8998 
?= 0.1,?= 0.9,?= 5  0.9149 0.8425 0.8257 0.8857 0.8149 0.7987 0.8560 0.7915 0.7762 0.8482 0.7853 0.7701 
?= 0.5,?= 0.5,?= 5  0.8271 0.7310 0.7106 0.7831 0.6908 0.6713 0.7541 0.6713 0.6531 0.7249 0.6439 0.6262 
?= 0.9,?= 0.1,?= 5  0.5341 0.2424 0.2140 0.5230 0.2214 0.1951 0.4948 0.2153 0.1901 0.8477 0.8073 0.0154 
 
Table  8-21 One-step ahead  with smoothing parameter 0.5 for INARMA(1,1) series 
(known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.1,?= 0.5  0.9038 1.0019 1.0255 0.8647 0.9572 0.9917 0.8475 0.9364 0.9709 0.8258 0.9106 0.9474 
?= 0.1,?= 0.9,?= 0.5  0.7641 0.8583 0.8595 0.7157 0.8114 0.8250 0.7357 0.8203 0.8208 0.7211 0.8043 0.8037 
?= 0.5,?= 0.5,?= 0.5  0.7960 0.8529 0.7388 0.7567 0.7983 0.6949 0.7268 0.7625 0.6618 0.6713 0.7108 0.6191 
?= 0.9,?= 0.1,?= 0.5  0.9343 0.3702 0.2060 0.8703 0.3592 0.2061 0.8319 0.3426 0.1959 0.7895 0.3213 0.1843 
?= 0.1,?= 0.1,?= 1  0.8982 0.9543 0.9513 0.8780 0.9369 0.9357 0.8621 0.9150 0.9112 0.8355 0.8885 0.8884 
?= 0.1,?= 0.9,?= 1  0.8859 0.8900 0.7964 0.8257 0.8452 0.7746 0.8359 0.8396 0.7565 0.8209 0.8294 0.7517 
?= 0.5,?= 0.5,?= 1  0.9256 0.8391 0.6537 0.8635 0.7895 0.6188 0.8433 0.7673 0.6014 0.7877 0.7255 0.5714 
?= 0.9,?= 0.1,?= 1  0.9236 0.2359 0.1346 0.8665 0.2240 0.1270 0.8322 0.2161 0.1228 0.7864 0.2054 0.1164 
?= 0.1,?= 0.1,?= 5  0.8940 0.7391 0.6392 0.8696 0.7208 0.6244 0.8625 0.7127 0.6135 0.8371 0.6939 0.6003 
?= 0.1,?= 0.9,?= 5  0.9156 0.5979 0.4408 0.8931 0.5789 0.4277 0.8616 0.5651 0.4186 0.8536 0.5581 0.4132 
?= 0.5,?= 0.5,?= 5  0.9496 0.4851 0.3221 0.8921 0.4558 0.3031 0.8605 0.4491 0.2998 0.8230 0.4266 0.2851 
?= 0.9,?= 0.1,?= 5  0.8881 0.0630 0.0357 0.8565 0.0576 0.0325 0.8252 0.0568 0.0320 0.9035 0.6340 0.5079 
 
The results of comparing INARMA with benchmark methods for three-step ahead 
forecasts are given in Table ?8-22 to Table ?8-27 (See Appendix 8.F for the six-step 
ahead results). The results of comparing the h-step ahead forecasts (?= 3, 6) of 
INARMA with benchmarks for INARMA(0,0) are very close to the results of one-
 step ahead forecasts.  
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Table  8-22 Three-step ahead  for INARMA(0,0) series (known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.3  0.8459 0.8930 0.8980 0.9447 0.9692 0.9714 0.9751 0.9886 0.9898 0.9826 0.9901 0.9904 
?= 0.5  0.9458 0.9761 0.9785 0.9756 0.9910 0.9919 0.9735 0.9846 0.9851 0.9665 0.9757 0.9759 
?= 0.7
   
0.9693 0.9909 0.9924 0.9751 0.9868 0.9871 0.9720 0.9824 0.9827 0.9586 0.9686 0.9687 
?= 1  0.9758 0.9901 0.9903 0.9686 0.9791 0.9789 0.9644 0.9724 0.9720 0.9475 0.9564 0.9561 
?= 3  0.9578 0.9475 0.9432 0.9411 0.9346 0.9307 0.9305 0.9222 0.9182 0.9196 0.9137 0.9100 
?= 5  0.9522 0.9320 0.9249 0.9389 0.9149 0.9073 0.9263 0.9029 0.8954 0.9118 0.8908 0.8836 
?= 20  0.9549 0.8234 0.7960 0.9331 0.8011 0.7740 0.9265 0.7968 0.7699 0.9152 0.7911 0.7649 
 
Table  8-23 Three-step ahead  for INMA(1) series (known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.9359 0.9747 0.9782 0.9738 0.9916 0.9928 0.9660 0.9812 0.9820 0.9593 0.9711 0.9716 
?= 0.5,?= 0.5  0.9514 0.9890 0.9922 0.9541 0.9782 0.9798 0.9503 0.9713 0.9726 0.9280 0.9474 0.9486 
?= 0.9,?= 0.5  0.9481 0.9968 1.0009 0.9423 0.9752 0.9776 0.9297 0.9595 0.9615 0.9142 0.9367 0.9380 
?= 0.1,?= 1  0.9727 0.9880 0.9882 0.9664 0.9784 0.9783 0.9530 0.9666 0.9667 0.9357 0.9470 0.9468 
?= 0.5,?= 1  0.9614 0.9816 0.9820 0.9430 0.9580 0.9579 0.9274 0.9431 0.9431 0.9066 0.9214 0.9213 
?= 0.9,?= 1  0.9597 0.9746 0.9741 0.9269 0.9385 0.9377 0.9113 0.9312 0.9312 0.8884 0.9023 0.9017 
?= 0.1,?= 3  0.9542 0.9490 0.9449 0.9369 0.9290 0.9246 0.9246 0.9208 0.9169 0.9097 0.9042 0.9001 
?= 0.5,?= 3  0.9426 0.9304 0.9246 0.9146 0.9060 0.9007 0.8970 0.8871 0.8818 0.8797 0.8728 0.8677 
?= 0.9,?= 3  0.9444 0.9307 0.9238 0.9052 0.8900 0.8830 0.8915 0.8789 0.8723 0.8626 0.8496 0.8431 
?= 0.1,?= 5  0.9535 0.9341 0.9265 0.9339 0.9077 0.8996 0.9143 0.8929 0.8853 0.9010 0.8786 0.8710 
?= 0.5,?= 5  0.9401 0.9164 0.9067 0.9199 0.8872 0.8769 0.8997 0.8650 0.8546 0.8741 0.8418 0.8319 
?= 0.9,?= 5  0.9493 0.9035 0.8903 0.9075 0.8631 0.8503 0.8929 0.8528 0.8406 0.8618 0.8220 0.8101 
 
Table  8-24 Three-step ahead  with smoothing parameter 0.2 for INAR(1) 
series (known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.9779 1.0054 1.0076 0.9766 0.9924 0.9934 0.9688 0.9841 0.9850 0.9538 0.9672 0.9678 
?= 0.5,?= 0.5  1.0023 1.0387 1.0413 0.9757 1.0063 1.0083 0.9403 0.9708 0.9728 0.8924 0.9209 0.9228 
?= 0.9,?= 0.5  0.9722 0.9494 0.9365 0.9039 0.8583 0.8446 0.8577 0.8218 0.8098 0.7963 0.7682 0.7574 
?= 0.1,?= 1  0.9789 0.9993 1.0002 0.9623 0.9752 0.9752 0.9497 0.9607 0.9605 0.9347 0.9469 0.9469 
?= 0.5,?= 1  1.0005 1.0231 1.0231 0.9571 0.9759 0.9757 0.9256 0.9445 0.9444 0.8840 0.9012 0.9009 
?= 0.9,?= 1  0.9861 0.8725 0.8463 0.9031 0.8023 0.7786 0.8624 0.7758 0.7537 0.8057 0.7239 0.7029 
?= 0.1,?= 3  0.9586 0.9553 0.9512 0.9445 0.9363 0.9318 0.9253 0.9201 0.9161 0.9050 0.8995 0.8955 
?= 0.5,?= 3  0.9964 0.9755 0.9670 0.9330 0.9170 0.9095 0.9118 0.8958 0.8884 0.8730 0.8639 0.8573 
?= 0.9,?= 3  0.9680 0.6638 0.6176 0.8894 0.6050 0.5624 0.8873 0.6099 0.5665 0.8018 0.5559 0.5167 
?= 0.1,?= 5  0.9576 0.9332 0.9251 0.9296 0.9014 0.8931 0.9172 0.8933 0.8853 0.9035 0.8787 0.8707 
?= 0.5,?= 5  1.0170 0.9605 0.9454 0.9463 0.8926 0.8779 0.9114 0.8690 0.8558 0.8659 0.8225 0.8096 
?= 0.9,?= 5  0.9575 0.5535 0.5009 0.8854 0.8709 0.8602 0.8585 0.4990 0.4524 0.7998 0.4644 0.4210 
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For an INMA(1) process, the performance of INARMA compared to benchmark 
methods is improved for h-step ahead forecasts compared to one-step ahead 
forecasts. This could be because the benchmark methods use the same forecast as 
one-step ahead forecast, but the INMA(1) method updates the forecasts. 
Table  8-25 Three-step ahead  with smoothing parameter 0.5 for INAR(1) 
series (known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.8885 0.9715 0.9774 0.8680 0.9432 0.9476 0.8537 0.9305 0.9356 0.8285 0.9070 0.9135 
?= 0.5,?= 0.5  0.9040 1.0122 1.0132 0.8470 0.9572 0.9595 0.8166 0.9260 0.9295 0.7684 0.8704 0.8741 
?= 0.9,?= 0.5  1.0808 0.7588 0.5810 1.0428 0.6862 0.5234 0.9866 0.6757 0.5192 0.9210 0.6331 0.4861 
?= 0.1,?= 1  0.8477 0.9174 0.9078 0.8337 0.8935 0.8821 0.8181 0.8761 0.8642 0.8076 0.8658 0.8543 
?= 0.5,?= 1  0.8654 0.9204 0.8876 0.8261 0.8750 0.8432 0.8023 0.8504 0.8206 0.7673 0.8105 0.7808 
?= 0.9,?= 1  1.1085 0.5490 0.3835 1.0376 0.5089 0.3552 1.0002 0.4991 0.3480 0.9346 0.4595 0.3190 
?= 0.1,?= 3  0.8006 0.7790 0.7181 0.7972 0.7646 0.7029 0.7724 0.7476 0.6896 0.7575 0.7331 0.6762 
?= 0.5,?= 3  0.8384 0.7401 0.6411 0.7946 0.7033 0.6100 0.7727 0.6852 0.5947 0.7383 0.6629 0.5761 
?= 0.9,?= 3  1.0951 0.2602 0.1617 1.0240 0.2353 0.1460 1.0154 0.2317 0.1432 0.9261 0.2125 0.1313 
?= 0.1,?= 5  0.7956 0.7032 0.6145 0.7698 0.6751 0.5888 0.7597 0.6681 0.5823 0.7511 0.6579 0.5729 
?= 0.5,?= 5  0.8714 0.6602 0.5333 0.8028 0.6011 0.4821 0.7715 0.5927 0.4782 0.7308 0.5574 0.4492 
?= 0.9,?= 5  1.1015 0.1672 0.0996 1.0322 0.7275 0.5586 1.0000 0.1529 0.0914 0.9226 0.1424 0.0852 
 
Table  8-26 Three-step ahead  with smoothing parameter 0.2 for INARMA(1,1) 
series (known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.1,?= 0.5  0.9621 0.9993 0.9992 0.9806 0.9994 1.0006 0.9730 0.9897 0.9907 0.9526 0.9673 0.9680 
?= 0.1,?= 0.9,?= 0.5  0.9515 0.9996 1.0031 0.9404 0.9728 0.9753 0.9278 0.9577 0.9597 0.8986 0.9229 0.9244 
?= 0.5,?= 0.5,?= 0.5  0.9945 1.0227 1.0239 0.9531 0.9855 0.9875 0.9317 0.9631 0.9651 0.8928 0.9228 0.9247 
?= 0.9,?= 0.1,?= 0.5  1.3727 1.2345 1.2092 1.5485 1.4763 1.4539 1.5901 1.5111 1.4876 1.7403 1.6794 1.6553 
?= 0.1,?= 0.1,?= 1  0.9927 1.0168 1.0178 0.9670 0.9810 0.9810 0.9561 0.9699 0.9698 0.9220 0.9359 0.9360 
?= 0.1,?= 0.9,?= 1  0.9532 0.9718 0.9715 0.9177 0.9347 0.9344 0.9064 0.9227 0.9224 0.8833 0.8989 0.8985 
?= 0.5,?= 0.5,?= 1  0.9933 1.0106 1.0097 0.9427 0.9644 0.9641 0.9201 0.9347 0.9336 0.8862 0.9034 0.9027 
?= 0.9,?= 0.1,?= 1  1.3867 1.2511 1.2147 1.5431 1.3756 1.3331 1.5887 1.4125 1.3700 1.7368 1.5550 1.5095 
?= 0.1,?= 0.1,?= 5  0.9832 0.9584 0.9495 0.9375 0.9126 0.9041 0.9181 0.8978 0.8898 0.8928 0.8704 0.8625 
?= 0.1,?= 0.9,?= 5  0.9710 0.9245 0.9105 0.9130 0.8713 0.8584 0.8894 0.8487 0.8365 0.8556 0.8185 0.8068 
?= 0.5,?= 0.5,?= 5  1.0173 0.9483 0.9303 0.9598 0.9053 0.8889 0.9245 0.8736 0.8579 0.8803 0.8285 0.8133 
?= 0.9,?= 0.1,?= 5  1.7356 0.9574 0.8627 1.6699 0.9654 0.8737 1.7683 1.0071 0.9128 1.7151 0.9770 0.8836 
 
For INAR(1) and INARMA(1,1) processes, the performance of INARMA over the 
benchmark methods is improved compared to the one-step ahead case when the 
autoregressive parameter is low. But, as discussed in chapter 6, when the 
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autoregressive parameter is high, the fact that the forecasts converge to the mean of 
the process results in poor forecasts compared to the one-step ahead case. As 
explained in chapter 6, some authors suggest using different models for different 
horizons in order to improve forecast accuracy (Cox, 1961; Tiao and Xu, 1993; 
Kang, 2003). 
Table  8-27 Three-step ahead  with smoothing parameter 0.5 for INARMA(1,1) 
series (known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.1,?= 0.5  0.8645 0.9711 1.0200 0.8670 0.9500 0.9861 0.8402 0.9282 0.9735 0.8223 0.9071 0.9479 
?= 0.1,?= 0.9,?= 0.5  0.8371 0.9597 1.0175 0.7945 0.9047 0.9622 0.7757 0.8869 0.9431 0.7477 0.8483 0.9002 
?= 0.5,?= 0.5,?= 0.5  0.8855 0.9781 0.9853 0.8377 0.9372 0.9549 0.8185 0.9158 0.9341 0.7771 0.8723 0.8951 
?= 0.9,?= 0.1,?= 0.5  1.5506 0.9825 0.6679 1.8084 1.2198 0.8406 1.8603 1.2357 0.8578 2.0440 1.3820 0.9572 
?= 0.1,?= 0.1,?= 1  0.8588 0.9342 0.9719 0.8309 0.8943 0.9200 0.8203 0.8794 0.9068 0.7889 0.8504 0.8796 
?= 0.1,?= 0.9,?= 1  0.7944 0.8515 0.8782 0.7608 0.8154 0.8461 0.7513 0.8033 0.8338 0.7334 0.7820 0.8109 
?= 0.5,?= 0.5,?= 1  0.8670 0.9014 0.8896 0.8186 0.8594 0.8564 0.7895 0.8212 0.8123 0.7642 0.7988 0.7923 
?= 0.9,?= 0.1,?= 1  1.5546 0.7857 0.5145 1.7618 0.8418 0.5498 1.8280 0.8853 0.5789 2.0404 0.9911 0.6449 
?= 0.1,?= 0.1,?= 5  0.8070 0.7083 0.6504 0.7714 0.6736 0.6199 0.7510 0.6620 0.6146 0.7323 0.6432 0.5955 
?= 0.1,?= 0.9,?= 5  0.7803 0.6129 0.5297 0.7334 0.5807 0.5030 0.7137 0.5707 0.4969 0.6856 0.5474 0.4774 
?= 0.5,?= 0.5,?= 5  0.8725 0.6197 0.4987 0.8124 0.5889 0.4761 0.7889 0.5699 0.4608 0.7503 0.5401 0.4354 
?= 0.9,?= 0.1,?= 5  1.9454 0.2820 0.1644 1.9418 0.2908 0.1712 2.0688 0.3114 0.1832 1.9978 0.2951 0.1731 
 
8.6.2 INARMA with Unknown Order  
It was assumed in section  8.6.1 that the order of the INARMA process is known. 
However, in reality this is not the case and the autoregressive and moving average 
orders of the model need to be identified. As discussed in chapter 4, when simulating 
a high number of replications, automated approaches such as AIC and BIC should be 
used for identification rather than sample autocorrelation (SACF) and sample partial 
autocorrelation functions (SPACF).  
In chapter 4, two identification procedures were suggested. A two-stage 
identification procedure is based on using the Ljung-Box test to distinguish between 
INARMA(0,0) and other processes and then using the AIC (or AICC for small 
sample sizes) to select among the other possible INARMA processes. On the other 
hand, the one-stage method only uses the AIC to select among all possible INARMA 
models including INARMA(0,0).   
BenchmarkINARMA MSEMSE /
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For simplicity, we first assume that data can be produced by either an INARMA(0,0) 
or an INAR(1) process. The results of identification among these two processes are 
summarized in section  8.6.2.1. As an alternative approach to identification, we 
suggest that the model with the highest order in the set of models (in this case 
INAR(1)) can be used for forecasting. The results are presented in section  8.6.2.2.  
Then we assume that data can be produced by any of the four processes. The results 
of identification based using two-stage and one-stage identification procedures are 
presented in section  8.6.2.3. The most-general-model approach is also tested and the 
results are analyzed in section  8.6.2.4. The results of treating all models as INAR(1) 
are compared to the benchmark methods in section  8.6.2.5. 
 
8.6.2.1 Identification among Two Processes  
In this section, it is assumed that data is either INARMA(0,0) or INAR(1). As 
suggested by Jung and Tremayne (2003), in order to distinguish between the 
INARMA(0,0) (or an i.i.d. Poisson process) and INAR(1), we test if the data show a 
significant serial dependence or not.  
This is done using a portmanteau test called the Ljung-Box test explained in section 
 4.2.3. The test is based on a ??-statistic given by: 
??=?(?+ 2)? ??????1??
 2
 ?
 ?=1
  
Equation  8-15 
where ? is the sample size, ? is the number of autocorrelation lags included in the 
statistic (we assume ?= 10), ?? is the sample autocorrelation at lag ?. The ?
 ? 
statistic can be used when a univariate model is fitted to a time series. It can be used 
as a lack-of-fit test for a departure from randomness. Under the null hypothesis that 
the model fit is adequate, the test statistic is asymptotically chi-square distributed. 
Results are presented for a significance level of 0.05. 
The results in terms of percentage of series for which the model is correctly 
identified are summarized in Table  8-28 and Table  8-29 for both Ljung-Box and AIC 
identification procedures. The results of Table  8-28 show identification with the 
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Ljung-Box test provides better results than with the AIC for INARMA(0,0) series.   
Comparing the results of Table  8-28 to the results by Jung and Tremayne (2003) 
shows that the ?? statistic produces similar results to those suggested in their study.  
The simulation results show that for those cases where an INARMA(0,0) is 
misidentified as an INAR(1) process, the estimated autoregressive parameter is close 
to zero. 
Table  8-28 The percentage of correct identification for INARMA(0,0) series 
Parameters  
Ljung-Box AIC 
?=?? ?=?? ?=?? ?=?? ?=?? ?=?? ?=?? ?=?? 
?= 0.3  94.42 95.53 97.10 95.00 91.00 89.60 87.70 81.50 
?= 0.5  93.35 94.50 94.60 95.60 92.20 88.30 83.70 78.70 
?= 0.7
   
93.16 94.11 96.00 95.60 91.80 87.80 83.10 74.80 
?= 1  93.64 94.25 94.60 95.30 91.10 83.20 80.40 71.40 
?= 3  95.00 92.50 94.20 95.20 83.10 79.60 74.70 69.70 
?= 5  92.80 93.70 93.80 94.60 84.20 77.20 74.40 68.80 
?= 20  93.20 94.20 93.60 94.80 83.70 75.90 72.40 68.50 
 
It can be seen from Table ?8-29 that, for an INAR(1) process, when the autoregressive 
parameter is small (?= 0.1), the model is often misidentified as INARMA(0,0). The 
AIC is always better than the Ljung-Box method. For high values of ?, the correct 
model in identified by the AIC in most cases. Both identification methods perform 
better when more observations are available. For high values of ? (?= 0.9) and ? 
(?= 96) the two identification methods are close. 
Table  8-29 The percentage of correct identification for INAR(1) series 
Parameters  
Ljung-Box AIC 
?=?? ?=?? ?=?? ?=?? ?=?? ?=?? ?=?? ?=?? 
?= 0.1,?= 0.5  5.90 6.00 5.10 5.40 13.70 19.90 28.40 47.20 
?= 0.5,?= 0.5  15.40 23.90 34.30 71.60 49.00 73.60 86.00 98.60 
?= 0.9,?= 0.5  34.20 65.50 84.80 100.00 90.00 98.50 99.70 100.00 
?= 0.1,?= 1  6.50 7.20 6.90 6.30 14.90 26.10 35.40 52.20 
?= 0.5,?= 1  16.30 22.60 35.40 73.90 57.70 80.70 90.10 99.70 
?= 0.9,?= 1  35.10 63.30 86.50 99.80 89.80 98.30 100.00 100.00 
?= 0.1,?= 3  9.00 5.90 7.20 6.30 22.30 33.90 39.10 57.00 
?= 0.5,?= 3  14.50 23.90 34.40 71.30 62.70 83.40 92.50 99.60 
?= 0.9,?= 3  34.50 66.00 83.50 99.90 91.10 98.70 99.80 100.00 
?= 0.1,?= 5  7.40 6.50 4.80 7.70 22.80 37.10 40.10 59.40 
?= 0.5,?= 5  16.80 24.40 35.30 72.50 67.00 86.60 93.20 99.70 
?= 0.9,?= 5  33.90 64.40 83.60 99.70 91.10 98.50 99.70 100.00 
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Because the INARMA(0,0) process is correctly identified in most of the cases, the 
forecast accuracy of the INARMA(0,0) with identification is close to that of the case 
when the order is known. The same is true for an INAR(1) process with high values 
of ? and ?. As a result, the performance of these two processes compared to 
benchmarks is similar to what was discussed in section  8.6.1.  
The accuracy results of INAR(1) forecasts using ME, MSE and MASE for the two 
identification methods are shown in Table ?8-30. Similar results for the case that the 
order of the model is known are provided in Table ?8-31 for comparison.  
The results of Table ?8-30 show that the AIC produces better forecasts than the Ljung-
 Box method in most of the cases, except for the case where ?= 0.1 and ? and ? are 
small.  
The results also show that when ?= 0.1, although the percentage of correct 
identification is small, INARMA with identification produces more accurate 
forecasts compared to the case where the order is known. This means that, in this 
case, using an INARMA(0,0) forecast based on the average of the previous 
observations produces better results than estimating ? and ? and forecasting using an 
INAR(1) model. 
However, when the autoregressive parameter is high (?= 0.9) and the number of 
observations is small (?= 24), although the percentage of correct identification is 
considerable, the difference between INARMA without identification and with 
identification for the Ljung-Box method is huge. This is expected because here a 
time series with high autocorrelation is wrongly identified as a series with no 
autocorrelation. Therefore, instead of putting a high weight on the last observation, 
the forecast is based on the INARMA(0,0) model which uses the simple average of 
all previous observations with equal weights.  However, as the length of history 
increases, the percentage of correct identification also increases and the forecast 
accuracy of the two cases become very close. This is also true when comparing the 
Ljung-Box and AIC identification methods. For high values of ?, the latter is 
considerably better than the former due to the higher percentage of correct 
identification and the fact that misidentification of an INAR(1) process with high 
autoregressive parameter as an INARMA(0,0) has a huge penalty. 
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Table  8-30 Accuracy of INAR(1) forecasts for Ljung-Box and AIC identification procedures 
Parameters 
?=??  ?=??  ?=??  ?=??  
Ljung-Box AIC Ljung-Box AIC Ljung-Box AIC Ljung-Box AIC 
ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE 
?= 0.1,?= 0.5  -0.0105 0.6244 1.0977 0.0006 0.6343 1.1239 0.0064 0.6235 1.0925 0.0104 0.6038 1.0563 -0.0056 0.5928 1.0145 0.0084 0.6196 1.0273 -0.0024 0.5691 0.9758 -0.0038 0.5660 0.9690 
?= 0.5,?= 0.5  0.0047 1.0475 1.4131 0.0144 1.0372 1.3421 -0.0072 1.0201 1.2497 0.0102 0.9106 1.1900 0.0016 0.9858 1.2016 0.0023 0.8703 1.1342 0.0062 0.8633 1.1078 0.0039 0.7970 1.0655 
?= 0.9,?= 0.5  0.0547 2.7057 1.9921 0.0082 1.4192 1.4380 0.0188 2.0866 1.6381 -0.0122 1.1614 1.3010 -0.0193 1.5043 1.3871 -0.0223 1.0431 1.1720 -0.0058 1.0078 1.1428 -0.0091 1.0118 1.1512 
?= 0.1,?= 1  -0.0022 1.2865 0.9486 0.0063 1.3055 0.8974 -0.0019 1.1974 0.8462 -0.0011 1.2412 0.8653 -0.0053 1.1850 0.8292 -0.0045 1.1771 0.8355 0.0106 1.1682 0.8102 -0.0064 1.1372 0.7995 
?= 0.5,?= 1  0.0108 2.1835 1.1859 0.0187 1.9727 1.1119 0.0284 2.1543 1.1541 -0.0017 1.8151 1.0594 0.0131 1.9543 1.0778 0.0031 1.7068 1.0146 0.0040 1.6895 0.9885 0.0046 1.5869 0.9646 
?= 0.9,?= 1  0.0246 5.3777 1.7945 -0.0147 2.8294 1.3379 0.0015 4.2493 1.5135 -0.0247 2.3516 1.1871 -0.0190 2.8263 1.2406 -0.0047 2.1486 1.1096 -0.0084 2.0473 1.0789 -0.0035 2.0222 1.0807 
?= 0.1,?= 3  0.0226 3.9401 0.8599 0.0091 3.8786 0.8505 -0.0248 3.6785 0.8039 0.0103 3.8087 0.8416 0.0014 3.6089 0.8094 0.0014 3.6078 0.8150 0.0065 3.4860 0.7868 -0.0025 3.4883 0.7823 
?= 0.5,?= 3  0.0856 6.5598 1.1244 -0.0293 5.9107 1.0177 -0.0051 6.2115 1.0573 0.0050 5.4093 0.9960 0.0089 5.9927 1.0129 0.0133 5.1793 0.9548 0.0333 5.2292 0.9589 -0.0359 4.6773 0.9000 
?= 0.9,?= 3  0.1048 15.6396 1.6548 0.0026 8.1910 1.2077 -0.0602 11.6692 1.3805 0.0020 6.9766 1.1231 0.0335 9.4088 1.2402 -0.0010 6.5496 1.0791 0.0076 6.1685 1.0349 -0.0080 6.0951 1.0283 
?= 0.1,?= 5  -0.0021 6.6522 0.8473 0.0089 6.4835 0.8336 0.0023 6.1105 0.8153 0.0198 6.2402 0.8273 -0.0329 5.8728 0.7829 0.0073 6.0014 0.7918 -0.0209 5.7109 0.7718 0.0015 5.8188 0.7695 
?= 0.5,?= 5  0.0828 10.9849 1.1122 -0.0084 9.6383 1.0246 0.0380 10.2881 1.0358 -0.0419 8.7787 0.9678 0.0139 9.9559 1.0261 0.0012 8.4644 0.9364 -0.0196 8.4499 0.9316 -0.0009 7.9078 0.8969 
?= 0.9,?= 5  -0.0928 26.7365 1.6375 -0.0277 13.8802 1.2078 -0.0658 21.3689 1.4308 -0.0124 11.6831 1.1051 -0.0208 15.1822 1.2121 0.0341 10.8485 1.0563 0.0020 10.2432 1.0281 -0.0286 10.1068 1.0197 
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Table  8-31 Accuracy of INAR(1) forecasts when the order is known 
Parameters 
?=??  ?=??  ?=??  ?=??  
ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE 
?= 0.1,?= 0.5  0.0026 0.6614 1.1418 -0.0089 0.6286 1.0555 0.0052 0.6047 1.0237 0.0045 0.5822 0.9822 
?= 0.5,?= 0.5  -0.0026 0.9466 1.3290 -0.0089 0.8743 1.1807 0.0044 0.8532 1.1570 -0.0054 0.7834 1.0534 
?= 0.9,?= 0.5  0.0017 1.2082 1.3901 0.0042 1.1489 1.2894 -0.0043 1.0811 1.2176 -0.0033 1.0164 1.1486 
?= 0.1,?= 1  -0.0149 1.2880 0.9376 -0.0059 1.2072 0.8496 0.0052 1.1967 0.8382 0.0029 1.1663 0.8057 
?= 0.5,?= 1  -0.0195 1.8846 1.0837 -0.0018 1.7244 1.0202 -0.0045 1.6745 1.0059 0.0026 1.5905 0.9618 
?= 0.9,?= 1  -0.0121 2.5216 1.2401 0.0054 2.2655 1.1594 -0.0146 2.1925 1.1262 -0.0105 2.0319 1.0686 
?= 0.1,?= 3  0.0100 3.9224 0.8544 -0.0176 3.6703 0.8228 -0.0010 3.6641 0.8136 0.0085 3.4701 0.7846 
?= 0.5,?= 3  -0.0308 5.6926 1.0126 -0.0035 5.1557 0.9491 -0.0078 4.9742 0.9331 0.0143 4.7749 0.9160 
?= 0.9,?= 3  -0.0906 7.5862 1.1509 -0.0298 6.7494 1.1026 -0.0243 6.4376 1.0658 -0.0093 6.0230 1.0205 
?= 0.1,?= 5  0.0371 6.6926 0.8565 0.0209 6.1869 0.8143 0.0282 6.0095 0.7973 0.0139 5.7529 0.7742 
?= 0.5,?= 5  0.0123 9.3467 0.9840 0.0082 8.6581 0.9653 0.0116 8.3583 0.9392 -0.0034 7.8699 0.9011 
?= 0.9,?= 5  -0.0013 11.9986 1.1483 -0.0126 11.2051 1.0914 -0.0467 10.8985 1.0720 0.0185 10.1102 1.0272 
 
8.6.2.2 All-INAR(1)   
In this section, it is again assumed that data is produced by either an INARMA(0,0) 
or an INAR(1) process. Instead of identification, we assume that the most general 
model, INAR(1) in this case, is used for estimation and forecasting. It is expected 
that if the data is in fact an INARMA(0,0) process, the estimated autoregressive 
parameter should be close to zero and the results confirm this. In general, the 
forecasting accuracy deteriorates slightly in this case compared to the case of using 
Ljung-Box for identification among two possible models. The results for all points in 
time are shown in Table ?8-32.  
This shows that, instead of adding an extra step to the INARMA forecasting 
procedure for identification, treating everything as an INAR(1) process produces 
close results to those with identification and it has the advantage of being simple. 
The degree of deterioration caused by skipping identification is on average 2 percent 
for both MSE and MASE. 
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Table  8-32 Accuracy of forecasts with identification and all-INAR(1) for INARMA(0,0) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Ljung-Box All-INAR(1) Ljung-Box All-INAR(1) Ljung-Box All-INAR(1) Ljung-Box All-INAR(1) 
ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE 
?= 0.3  0.0000 0.3509 1.1781 -0.0040 0.3610 1.1919 0.0005 0.3309 1.1476 -0.0008 0.3383 1.1552 -0.0032 0.3161 1.0892 -0.0066 0.3295 1.0741 -0.0039 0.3075 1.0115 0.0025 0.3131 1.0161 
?= 0.5  -0.0021 0.5796 1.0779 -0.0054 0.5967 1.0959 -0.0012 0.5512 1.0077 -0.0019 0.5613 1.0133 0.0009 0.5368 0.9725 0.0013 0.5561 0.9737 -0.0039 0.5183 0.9365 -0.0017 0.5191 0.9412 
?= 0.7
   
0.0003 0.8039 0.9807 -0.0062 0.8331 0.9786 -0.0039 0.7708 0.9005 -0.0017 0.7855 0.9152 0.0066 0.7572 0.8817 -0.0016 0.7510 0.8937 0.0048 0.7241 0.8537 0.0012 0.7374 0.8466 
?= 1  0.0012 1.1651 0.8716 -0.0028 1.1930 0.8947 0.0002 1.0979 0.8120 -0.0011 1.1178 0.8275 0.0000 1.0774 0.8025 -0.0068 1.0679 0.7956 0.0115 1.0490 0.7596 -0.0023 1.0481 0.7666 
?= 3  0.0210 3.4439 0.8065 -0.0273 3.5655 0.8128 -0.0154 3.3509 0.7703 0.0024 3.3711 0.7799 0.0087 3.2019 0.7589 -0.0083 3.2774 0.7651 0.0054 3.1061 0.7422 -0.0086 3.0890 0.7322 
?= 5  0.0099 5.8831 0.8153 -0.0158 5.8972 0.8071 -0.0067 5.5456 0.7624 -0.0150 5.4933 0.7567 0.0001 5.4289 0.7581 0.0010 5.4727 0.7642 0.0123 5.2099 0.7375 -0.0003 5.2125 0.7325 
?= 20  -0.0248 22.8486 0.7730 -0.0053 23.8074 0.8088 -0.0543 22.0121 0.7581 -0.0683 22.0701 0.7631 0.0183 21.2026 0.7420 -0.0101 22.2400 0.7589 0.0079 20.5646 0.7248 -0.0335 20.8631 0.7307 
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8.6.2.3 Identification among Four Processes   
In this section it is assumed that data can be produced by one of the four processes 
that we focus on in this study: INARMA(0,0), INAR(1), INMA(1), or 
INARMA(1,1). As previously mentioned, two methods of identification are used. 
The two-stage method is based on first using the Ljung-Box ??-statistic of Equation 
 8-15 to distinguish between the INARMA(0,0) or random Poisson process from the 
other possible INARMA models. Then, the other three models (INAR(1), INMA(1), 
and INARMA(1,1)) are distinguished using the Akaike information criterion based 
on the expression for ARMA models: 
AIC??log??
 2 + 2? 
Equation  8-16 
As explained in section  4.5, when the sample size is small (?/?< 40), the 
following bias correction is necessary: 
AICC ??log??
 2 + 2?+ 2?(?+ 1)/(????1) 
Equation  8-17 
On the other hand, the one-stage method only uses the AIC to select the appropriate 
model. As discussed in chapter 4, although the above equations have been developed 
for ARMA models with a Normal distribution, as the likelihood function for INMA 
processes has not been established in the literature and AIC is a method of 
identification that can be automated, we use these equations to test the performance 
of AIC for INARMA processes.  
The percentage of correct identification for each of the four INARMA processes for 
both two-stage and one-stage methods is shown in Table ?8-33, Table ?8-34, Table 
?8-35, and Table ?8-36.  
The results of Table ?8-33 confirm the results of section  8.6.2.1 in that the two-stage 
method identifies the INARMA(0,0) processes more frequently than the one-stage 
method.  
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Table  8-33 The percentage of correct identification for INARMA(0,0) series 
Parameters  
Two-stage identification One-stage identification 
?=?? ?=?? ?=?? ?=?? ?=?? ?=?? ?=?? ?=?? 
?= 0.3  94.62 95.87 96.30 94.90 89.40 89.00 88.60 80.80 
?= 0.5  93.29 94.45 94.40 95.10 91.90 88.10 84.30 73.30 
?= 0.7
   
92.81 94.07 95.30 95.90 88.80 82.80 78.80 69.00 
?= 1  93.54 94.32 94.10 95.10 90.40 79.60 76.00 67.20 
?= 3  93.40 92.40 94.40 94.70 82.70 72.50 65.40 57.00 
?= 5  92.90 93.40 92.80 93.50 78.50 70.90 61.70 55.00 
?= 20  92.70 93.40 94.10 95.30 76.20 66.00 61.00 51.40 
 
For an INAR(1) case, the results of Table ?8-34 confirm that when the autoregressive 
parameter is low, the process is misidentified in most cases for both identification 
methods. However, the one-stage method produces better results. On the other hand, 
with a high autoregressive parameter, the performance of both methods improves. 
The results also show that when more observations are available, the percentage of 
correct identification increases for both methods. The one-stage method outperforms 
the two-stage method in most of the cases, especially for small samples.  
Table  8-34 The percentage of correct identification for INAR(1) series 
Parameters  
Two-stage identification One-stage identification 
?=?? ?=?? ?=?? ?=?? ?=?? ?=?? ?=?? ?=?? 
?= 0.1,?= 0.5  2.30 2.50 2.60 2.90 9.60 15.80 21.20 26.40 
?= 0.5,?= 0.5  9.50 19.80 25.80 52.70 38.40 55.60 67.70 75.80 
?= 0.9,?= 0.5  30.60 55.00 61.50 73.80 73.30 71.70 71.70 72.50 
?= 0.1,?= 1  1.70 1.50 1.80 3.00 13.20 19.20 22.20 30.00 
?= 0.5,?= 1  10.90 18.70 26.60 49.70 46.90 59.20 65.90 72.40 
?= 0.9,?= 1  28.60 52.40 62.50 71.50 74.70 71.80 72.20 69.30 
?= 0.1,?= 3  1.90 2.50 1.70 2.90 16.30 22.10 22.40 28.00 
?= 0.5,?= 3  11.20 16.10 24.30 50.20 47.40 57.90 60.70 68.00 
?= 0.9,?= 3  24.40 46.30 63.90 75.30 75.50 74.90 72.30 75.50 
?= 0.1,?= 5  2.70 2.40 2.70 2.50 17.50 22.70 22.50 26.10 
?= 0.5,?= 5  12.10 17.60 26.30 44.70 50.20 59.10 61.50 68.30 
?= 0.9,?= 5  27.30 49.40 63.00 73.80 76.20 75.40 73.30 73.90 
 
As can be seen from Table ?8-35, an INMA(1) process is misidentified in most of the 
cases regardless of the size of the moving average parameter. However, the results 
show that it does not affect the forecasting accuracy to a great extent. This can be 
seen by comparing the results of Table ?8-38 and Table ?8-41. The one-stage 
identification method again outperforms the two-stage method.   
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Table  8-35 The percentage of correct identification for INMA(1) series 
Parameters  
Two-stage identification One-stage identification 
?=?? ?=?? ?=?? ?=?? ?=?? ?=?? ?=?? ?=?? 
?= 0.1,?= 0.5  3.30 2.70 3.30 3.10 4.10 6.70 8.10 12.00 
?= 0.5,?= 0.5  4.30 4.00 4.60 7.60 13.40 19.80 23.00 23.20 
?= 0.9,?= 0.5  7.90 10.60 11.60 32.50 21.70 33.70 37.80 45.10 
?= 0.1,?= 1  4.40 3.90 3.30 1.50 5.60 6.80 8.10 11.50 
?= 0.5,?= 1  3.20 3.90 3.30 4.10 9.80 14.60 17.20 16.80 
?= 0.9,?= 1  7.80 7.60 6.70 14.90 19.80 23.50 24.70 21.50 
?= 0.1,?= 3  3.80 3.40 2.50 1.20 5.40 6.70 9.00 14.00 
?= 0.5,?= 3  2.00 2.70 2.50 2.10 10.90 14.60 15.10 11.50 
?= 0.9,?= 3  4.60 4.00 4.30 7.10 18.30 16.70 14.40 11.00 
?= 0.1,?= 5  4.80 2.30 2.50 2.00 5.70 7.40 12.10 12.10 
?= 0.5,?= 5  3.90 3.20 2.20 1.80 10.60 14.20 11.20 9.60 
?= 0.9,?= 5  3.80 4.30 3.20 5.00 17.30 15.80 13.40 7.50 
 
The results of Table ?8-36 suggest that, as expected, when the autoregressive 
parameter is high, the correct model is identified more often than the case with low 
autoregressive parameter. The identification performance improves when the length 
of history increases. The one-stage identification method produces better results than 
the two-stage method in most of the cases. 
 
Table  8-36 The percentage of correct identification for INARMA(1,1) series 
Parameters  
Two-stage identification One-stage identification 
?=??  ?=??  ?=?? ?=?? ?=?? ?=?? ?=?? ?=?? 
?= 0.1,?= 0.1,?= 0.5  0.60 0.40 0.90 1.70 1.30 2.40 4.40 13.20 
?= 0.1,?= 0.9,?= 0.5  1.70 2.70 6.90 14.00 5.80 11.20 10.80 12.00 
?= 0.5,?= 0.5,?= 0.5  3.10 6.20 10.80 14.50 7.80 12.10 13.90 16.90 
?= 0.9,?= 0.1,?= 0.5  6.20 15.50 19.60 29.50 14.20 23.70 26.10 25.60 
?= 0.1,?= 0.1,?= 1  0.10 0.80 1.30 1.70 1.70 6.90 11.80 20.10 
?= 0.1,?= 0.9,?= 1  2.30 4.20 7.10 11.20 7.90 14.40 15.30 12.80 
?= 0.5,?= 0.5,?= 1  3.00 8.60 11.80 15.20 11.50 18.80 20.10 14.70 
?= 0.9,?= 0.1,?= 1  7.30 20.00 29.70 31.30 24.20 31.60 34.70 34.40 
?= 0.1,?= 0.1,?= 5  0.50 1.70 2.20 3.70 8.80 18.70 23.70 33.10 
?= 0.1,?= 0.9,?= 5  7.00 13.20 17.20 23.80 29.50 40.40 42.30 27.20 
?= 0.5,?= 0.5,?= 5  12.20 18.80 32.50 37.90 35.60 46.30 50.40 43.40 
?= 0.9,?= 0.1,?= 5  14.20 31.40 42.10 47.80 37.10 49.50 48.70 47.80 
 
 
The accuracy of INAR(1), INMA(1) and INARMA(1,1) forecasts using ME, MSE 
and MASE for two identification methods are presented in Table ?8-37, Table ?8-38, 
and Table ?8-39. Similar results for the cases that the order of the model is known are 
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provided in Table ?8-40, Table ?8-41, and Table ?8-42 for comparison reasons. 
The results show that for processes with an AR component, when the autoregressive 
parameter is high, misidentification has a great effect on the accuracy of forecasts. 
However, because the one-stage identification method identifies the correct model 
more frequently than the two-stage method, the forecasts are closer to the case of 
known order. But when the autoregressive parameter is small, the effect of 
misidentification on forecasting accuracy is also small. For INARMA processes 
without an AR component, the effect of misidentification on forecasting accuracy is 
small, regardless of the size of the MA parameter. When the number of observations 
increases, forecasts with identification and without identification have similar 
accuracy. 
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Table  8-37 Accuracy of INAR(1) forecasts for one-stage and two-stage identification procedures 
Parameters 
?=??  ?=??  ?=??  ?=??  
Two-stage 
identification 
One-stage 
identification 
Two-stage 
identification 
One-stage 
identification 
Two-stage 
identification 
One-stage 
identification 
Two-stage 
identification 
One-stage 
identification 
ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE 
?= 0.1,?= 0.5  -0.0013 0.6357 1.1459 -0.0005 0.6347 1.1208 0.0073 0.6327 1.1044 0.0115 0.6260 1.1063 0.0008 0.6026 1.0373 0.0056 0.6005 1.0295 0.0019 0.5765 0.9804 0.0010 0.5826 0.9799 
?= 0.5,?= 0.5  0.0034 1.1192 1.4704 0.0381 1.0614 1.3967 0.0278 1.0414 1.2999 0.0050 0.9311 1.2226 0.0179 1.0165 1.2303 0.0064 0.8655 1.1425 0.0200 0.8786 1.1276 -0.0055 0.8014 1.0694 
?= 0.9,?= 0.5  0.0283 2.6093 1.9312 0.0279 1.4243 1.4776 -0.0005 2.0101 1.6350 0.0034 1.1610 1.2703 0.0090 1.6472 1.4275 -0.0103 1.0725 1.2157 0.0025 1.0257 1.1445 -0.0120 0.9981 1.1395 
?= 0.1,?= 1  0.0188 1.3041 0.9162 0.0063 1.3144 0.9415 -0.008 1.2309 0.8614 -0.0024 1.2606 0.8758 0.0029 1.2061 0.8395 0.0071 1.2258 0.8523 0.0005 1.1699 0.8088 0.0044 1.1590 0.8104 
?= 0.5,?= 1  0.0409 2.3062 1.2365 0.0196 2.0526 1.1509 0.0131 2.0748 1.1167 0.0117 1.8415 1.0550 0.0019 1.9812 1.0876 0.0093 1.7273 1.0262 0.0109 1.7521 1.0034 0.0039 1.6017 0.9651 
?= 0.9,?= 1  -0.018 5.2825 1.7681 -0.0212 2.7024 1.2864 0.0258 4.2144 1.4907 0.0037 2.2686 1.1378 0.0222 3.1025 1.2932 -0.0043 2.1714 1.1203 0.0087 2.0297 1.0845 -0.0012 2.0015 1.0693 
?= 0.1,?= 3  -0.0055 3.7732 0.8183 -0.0310 3.8137 0.8345 -0.0096 3.7235 0.8334 0.0042 3.7900 0.8337 -0.0036 3.5162 0.7995 -0.0041 3.6297 0.8083 0.0098 3.5198 0.7902 -0.0184 3.4845 0.7845 
?= 0.5,?= 3  -0.0356 6.6692 1.0898 0.0256 6.0453 1.0472 0.0322 6.4381 1.0708 0.0170 5.5157 0.9955 0.0377 6.0613 1.0365 -0.0103 5.1944 0.9556 0.0263 5.1238 0.9517 0.0027 4.7714 0.9155 
?= 0.9,?= 3  0.0466 17.2237 1.6973 -0.0198 8.0490 1.2229 0.0386 12.4798 1.4291 0.0090 6.7598 1.1070 0.0380 8.8346 1.1905 0.0301 6.4818 1.0660 0.0107 6.1671 1.0259 0.0099 6.0402 1.0160 
?= 0.1,?= 5  -0.0215 6.3926 0.8466 0.0440 6.7467 0.8632 0.0314 6.1703 0.8199 0.0022 6.1377 0.8190 -0.0108 6.0691 0.8034 -0.0241 6.1470 0.8087 0.0073 5.7416 0.7720 -0.0252 5.9063 0.7726 
?= 0.5,?= 5  -0.0479 10.7311 1.0682 -0.0116 9.9783 1.0548 0.1183 10.4885 1.0480 -0.0001 9.0103 0.9843 -0.0082 9.7144 1.0139 -0.0479 8.4696 0.9420 0.0108 8.5805 0.9368 -0.0078 7.9000 0.9092 
?= 0.9,?= 5  -0.0995 26.0358 1.6186 0.1313 13.5067 1.1973 0.0334 21.0114 1.4054 0.0554 11.3171 1.0809 -0.0524 15.4657 1.1925 0.0363 10.8754 1.0706 -0.0140 10.2025 1.0191 -0.0036 10.0731 1.0171 
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Table  8-38 Accuracy of INMA(1) forecasts for one-stage and two-stage identification procedures 
Parameters 
?=??  ?=??  ?=??  ?=??  
Two-stage 
identification 
One-stage 
identification 
Two-stage 
identification 
One-stage 
identification 
Two-stage 
identification 
One-stage 
identification 
Two-stage 
identification 
One-stage 
identification 
ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE 
?= 0.1,?= 0.5  0.0263 0.6370 1.1790 0.0006 0.6474 1.1537 0.0081 0.6080 1.0762 -0.0042 0.6022 1.0458 0.0030 0.5913 1.0025 0.0005 0.5732 0.9729 0.0064 0.5719 0.9804 -0.0088 0.6604 0.7515 
?= 0.5,?= 0.5  0.0166 0.8479 1.3582 0.0210 0.8392 1.2970 0.0125 0.8181 1.2071 -0.0001 0.7935 1.1635 0.0022 0.7871 1.1224 0.0013 0.7284 1.0496 0.0082 0.7597 1.0724 0.0401 0.9122 0.9183 
?= 0.9,?= 0.5  0.0246 1.0729 1.4336 -0.0101 1.9689 1.1383 0.0207 1.0169 1.3105 0.0269 0.9813 1.2952 0.0240 1.0123 1.2547 0.0304 0.8882 1.1203 0.0250 0.9228 1.1422 0.1589 1.0747 1.0178 
?= 0.1,?= 1  -0.0003 1.2975 0.9130 -0.0104 1.2574 0.8783 -0.0070 1.2071 0.8535 -0.0014 1.2389 0.8692 0.0017 1.1671 0.8266 -0.0103 1.1444 0.8014 0.0036 1.1466 0.8073 -0.0335 1.2159 0.8080 
?= 0.5,?= 1  0.0098 1.7287 1.0880 0.0241 1.7225 1.0816 0.0153 1.6183 1.0208 -0.0065 1.5827 0.9817 -0.0051 1.6029 1.0149 -0.0020 1.4386 0.9239 0.0077 1.5257 0.9653 0.0177 1.5554 0.9547 
?= 0.9,?= 1  0.0081 2.1437 1.2136 -0.0131 1.9568 1.1574 0.0027 2.0207 1.1294 0.0036 1.8299 1.0827 0.0221 2.0155 1.1022 0.0179 1.6855 0.9954 0.0025 1.7263 1.0134 0.0595 1.7732 1.0167 
?= 0.1,?= 3  -0.0143 3.8219 0.8451 0.0170 3.9592 0.8653 0.0095 3.6174 0.8141 -0.0217 3.7610 0.8249 -0.0132 3.5934 0.8019 0.0052 3.4847 0.7859 -0.0158 3.3791 0.7756 0.0006 3.5011 0.8056 
?= 0.5,?= 3  0.0029 5.1085 0.9854 0.0143 5.2555 0.9867 0.0086 4.8587 0.9522 -0.0237 4.8094 0.9361 0.0259 4.7425 0.9197 -0.0040 4.2445 0.8681 0.0024 4.5513 0.8899 -0.0040 4.2567 0.8749 
?= 0.9,?= 3  -0.0104 6.3963 1.1064 -0.0283 6.0747 1.0769 0.0162 5.9595 1.0526 0.0190 5.4653 1.0106 0.0191 5.7408 1.0273 -0.0034 4.8673 0.9248 -0.0221 5.0070 0.9420 -0.0028 4.8710 0.9265 
?= 0.1,?= 5  0.0349 6.4620 0.8532 -0.0388 6.5789 0.8436 -0.0228 6.1804 0.8130 -0.0241 6.1703 0.8007 -0.0035 5.9428 0.7934 0.0168 5.7806 0.7811 0.0003 5.7474 0.7794 0.0160 5.7818 0.7843 
?= 0.5,?= 5  0.0000 8.3916 0.9442 -0.0841 8.5133 0.9644 0.0077 8.0429 0.9225 -0.0184 7.8372 0.9231 0.0038 8.0922 0.9232 0.0028 7.1503 0.8623 0.0291 7.5896 0.8869 0.0027 7.1503 0.8628 
?= 0.9,?= 5  0.0320 10.5829 1.1034 -0.0552 9.9051 1.0576 -0.0166 10.2863 1.0590 0.0005 8.9502 0.9893 -0.0596 9.3927 0.9941 0.0135 7.9759 0.9193 -0.0112 8.3874 0.9427 0.0135 7.9764 0.9194 
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Table  8-39 Accuracy of INARMA(1,1) forecasts for one-stage and two-stage identification procedures 
Parameters 
?=??  ?=??  ?=??  ?=??  
Two-stage 
identification 
One-stage 
identification 
Two-stage 
identification 
One-stage 
identification 
Two-stage 
identification 
One-stage 
identification 
Two-stage 
identification 
One-stage 
identification 
ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE 
?= 0.1,?= 0.1,?= 0.5  0.0011 0.7193 1.1489 0.0064 0.7234 1.2251 0.0071 0.6856 1.0945 0.0163 0.6807 1.1061 0.0040 0.6758 1.0704 0.0071 0.6736 1.0554 0.0059 0.6447 1.0204 -0.0001 0.6425 1.0050 
?= 0.1,?= 0.9,?= 0.5  0.0368 1.3416 1.5159 0.0243 1.2303 1.4021 0.0201 1.2114 1.2766 0.0094 1.0992 1.2406 0.0173 1.1478 1.2195 0.0162 1.0410 1.1899 0.0159 1.0410 1.1174 0.0138 1.0175 1.1117 
?= 0.5,?= 0.5,?= 0.5  0.0536 1.9040 1.5660 0.0198 1.6235 1.4007 0.0186 1.6852 1.3458 0.0318 1.4292 1.2942 0.0301 1.5869 1.3092 0.0198 1.3254 1.1971 0.0064 1.1989 1.0976 0.0049 1.1844 1.1020 
?= 0.9,?= 0.1,?= 0.5  0.1342 2.8645 2.0436 0.0480 1.5286 1.4458 0.0377 2.1973 1.6213 0.0289 1.3400 1.3159 0.0277 1.6027 1.3899 0.0310 1.1833 1.2270 0.0105 1.1303 1.1566 0.0057 1.1247 1.1435 
?= 0.1,?= 0.1,?= 1  0.0004 1.4375 0.9427 -0.0167 1.4091 0.9407 0.0130 1.3668 0.8973 0.0079 1.3705 0.9013 -0.0038 1.3390 0.8764 0.0020 1.3314 0.8871 -0.0064 1.2803 0.8575 -0.0080 1.2693 0.8538 
?= 0.1,?= 0.9,?= 1  0.0137 2.5594 1.2132 0.0161 2.3860 1.1767 -0.0010 2.4152 1.1409 -0.0137 2.1568 1.0963 0.0109 2.3587 1.0905 0.0001 1.9950 1.0265 0.0028 2.0246 1.0093 0.0032 1.9137 0.9745 
?= 0.5,?= 0.5,?= 1  0.0028 3.7251 1.3345 -0.0434 3.0511 1.1857 -0.0317 3.4130 1.2229 0.0026 2.7933 1.1045 0.0225 3.0826 1.1397 0.0027 2.5683 1.0629 -0.0053 2.3995 1.0005 -0.0111 2.2977 0.9876 
?= 0.9,?= 0.1,?= 1  0.0911 6.0831 1.7798 -0.0259 3.0317 1.2791 0.0230 4.8164 1.5115 -0.0462 2.4860 1.1595 -0.0248 3.4115 1.2711 -0.0062 2.3640 1.0960 -0.0036 2.2186 1.0714 -0.0052 2.1915 1.0725 
?= 0.1,?= 0.1,?= 5  -0.0126 7.1217 0.8862 0.0116 7.3120 0.8927 0.0082 6.8366 0.8465 -0.0300 6.7345 0.8344 0.0131 6.6983 0.8327 0.0088 6.6701 0.8331 -0.0071 6.4563 0.8119 -0.0136 6.3122 0.8035 
?= 0.1,?= 0.9,?= 5  0.0523 12.8778 1.1181 0.0211 11.8098 1.0700 0.0125 11.8990 1.0497 -0.0111 10.4597 0.9831 0.0224 11.3640 1.0295 -0.0163 9.9553 0.9482 -0.0102 9.9313 0.9337 -0.0177 9.2879 0.9064 
?= 0.5,?= 0.5,?= 5  -0.0698 18.7993 1.2511 -0.0942 14.7010 1.0942 0.0161 16.7775 1.1609 -0.0720 12.9606 1.0033 -0.0238 15.2377 1.0874 -0.0601 12.3897 0.9876 0.0213 11.8909 0.9624 -0.0353 11.4452 0.9463 
?= 0.9,?= 0.1,?= 5  0.0827 29.4367 1.6336 0.0109 15.2016 1.2041 -0.0115 23.6024 1.4174 -0.0590 12.3696 1.0847 -0.0741 16.4158 1.2023 -0.0188 11.9975 1.0709 -0.0215 11.0569 1.0183 -0.0287 11.1985 1.0193 
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Table  8-40 Accuracy of INAR(1) forecasts when the order in known 
Parameters 
?=??  ?=??  ?=??  ?=??  
ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE 
?= 0.1,?= 0.5  0.0026 0.6614 1.1418 -0.0089 0.6286 1.0555 0.0052 0.6047 1.0237 0.0045 0.5822 0.9822 
?= 0.5,?= 0.5  -0.0026 0.9466 1.3290 -0.0089 0.8743 1.1807 0.0044 0.8532 1.1570 -0.0054 0.7834 1.0534 
?= 0.9,?= 0.5  0.0017 1.2082 1.3901 0.0042 1.1489 1.2894 -0.0043 1.0811 1.2176 -0.0033 1.0164 1.1486 
?= 0.1,?= 1  -0.0149 1.2880 0.9376 -0.0059 1.2072 0.8496 0.0052 1.1967 0.8382 0.0029 1.1663 0.8057 
?= 0.5,?= 1  -0.0195 1.8846 1.0837 -0.0018 1.7244 1.0202 -0.0045 1.6745 1.0059 0.0026 1.5905 0.9618 
?= 0.9,?= 1  -0.0121 2.5216 1.2401 0.0054 2.2655 1.1594 -0.0146 2.1925 1.1262 -0.0105 2.0319 1.0686 
?= 0.1,?= 3  0.0100 3.9224 0.8544 -0.0176 3.6703 0.8228 -0.0010 3.6641 0.8136 0.0085 3.4701 0.7846 
?= 0.5,?= 3  -0.0308 5.6926 1.0126 -0.0035 5.1557 0.9491 -0.0078 4.9742 0.9331 0.0143 4.7749 0.9160 
?= 0.9,?= 3  -0.0906 7.5862 1.1509 -0.0298 6.7494 1.1026 -0.0243 6.4376 1.0658 -0.0093 6.0230 1.0205 
?= 0.1,?= 5  0.0371 6.6926 0.8565 0.0209 6.1869 0.8143 0.0282 6.0095 0.7973 0.0139 5.7529 0.7742 
?= 0.5,?= 5  0.0123 9.3467 0.9840 0.0082 8.6581 0.9653 0.0116 8.3583 0.9392 -0.0034 7.8699 0.9011 
?= 0.9,?= 5  -0.0013 11.9986 1.1483 -0.0126 11.2051 1.0914 -0.0467 10.8985 1.0720 0.0185 10.1102 1.0272 
 
Table  8-41 Accuracy of INMA(1) forecasts when the order in known 
Parameters 
?=?? ?=?? ?=?? ?=?? 
ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE 
?= 0.1,?= 0.5  -0.0031 0.6295 1.1297 0.0027 0.6035 1.0473 0.0114 0.5993 1.0493 0.0007 0.5702 0.9736 
?= 0.5,?= 0.5  0.0395 0.8793 1.3407 0.0279 0.8552 1.2527 0.0229 0.7997 1.1494 0.0031 0.7885 1.0948 
?= 0.9,?= 0.5  0.0767 1.1019 1.5472 0.0671 1.0609 1.3632 0.0628 1.0229 1.2606 0.0445 0.9878 1.1797 
?= 0.1,?= 1  0.0234 1.2748 0.9163 0.0000 1.2038 0.8547 0.0082 1.1724 0.8365 0.0048 1.1313 0.7957 
?= 0.5,?= 1  0.0347 1.7554 1.0666 0.0440 1.6455 1.0247 0.0310 1.6074 1.0005 0.0204 1.5302 0.9648 
?= 0.9,?= 1  0.1249 2.2869 1.2485 0.1025 2.1650 1.1687 0.1148 2.0762 1.1223 0.1116 1.9944 1.0920 
?= 0.1,?= 3  0.0452 3.9039 0.8547 0.0402 3.6622 0.8158 0.0150 3.5353 0.7960 0.0062 3.4237 0.7767 
?= 0.5,?= 3  0.1260 5.2415 0.9971 0.0781 4.9565 0.9450 0.0929 4.8942 0.9424 0.0608 4.6821 0.9036 
?= 0.9,?= 3  0.2970 6.7422 1.1268 0.3209 6.5993 1.1023 0.2796 6.2599 1.0587 0.2718 6.0678 1.0364 
?= 0.1,?= 5  0.0838 6.4549 0.8431 0.0132 6.2194 0.8182 0.0226 5.9292 0.7937 0.0111 5.7446 0.7806 
?= 0.5,?= 5  0.1407 8.7278 0.9676 0.1984 8.3020 0.9417 0.1738 8.0993 0.9245 0.1269 7.8404 0.9063 
?= 0.9,?= 5  0.4387 11.6802 1.1864 0.4081 10.9042 1.0713 0.4804 10.7677 1.0895 0.4479 10.1863 1.0242 
 
Table  8-42 Accuracy of INARMA(1,1) forecasts when the order in known 
Parameters 
?=??  ?=??  ?=??  ?=??  
ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE 
?= 0.1,?= 0.1,?= 0.5  -0.0007 0.7482 1.2163 -0.0066 0.7138 1.1186 0.0019 0.6777 1.0787 -0.0047 0.6468 1.0076 
?= 0.1,?= 0.9,?= 0.5  0.0401 1.2112 1.4173 0.0336 1.1340 1.2974 0.0267 1.0734 1.1958 0.0163 1.0429 1.1248 
?= 0.5,?= 0.5,?= 0.5  0.0485 1.5791 1.4864 0.0209 1.4070 1.2666 0.0445 1.3825 1.1924 0.0261 1.2261 1.1137 
?= 0.9,?= 0.1,?= 0.5  0.0920 1.4003 1.4228 0.0532 1.2843 1.3142 0.0487 1.2226 1.2608 0.0324 1.1110 1.1489 
?= 0.1,?= 0.1,?= 1  -0.0041 1.4908 0.9689 -0.0108 1.4146 0.9145 -0.0129 1.3358 0.8925 -0.0119 1.2833 0.8575 
?= 0.1,?= 0.9,?= 1  0.0192 2.3265 1.1462 -0.0185 2.2569 1.0930 0.0368 2.2224 1.0713 0.0149 2.0900 1.0210 
?= 0.5,?= 0.5,?= 1  0.0296 3.1322 1.1914 0.0250 2.7101 1.1033 0.0409 2.6748 1.0798 0.0220 2.4363 1.0245 
?= 0.9,?= 0.1,?= 1  0.0665 2.8324 1.2617 0.0494 2.5623 1.1748 0.0640 2.4301 1.1219 0.0413 2.2588 1.0786 
?= 0.1,?= 0.1,?= 5  0.0279 7.4165 0.8824 -0.0070 6.9501 0.8502 0.0011 6.7534 0.8307 0.0006 6.4253 0.8079 
?= 0.1,?= 0.9,?= 5  0.0436 11.2147 1.0506 0.0580 10.5085 0.9941 0.0521 10.1101 0.9589 0.0606 9.7366 0.9338 
?= 0.5,?= 0.5,?= 5  0.1082 14.0754 1.0425 0.1239 13.0227 1.0240 0.1074 12.7060 0.9952 0.1065 11.8259 0.9556 
?= 0.9,?= 0.1,?= 5  0.1214 13.8720 1.1795 0.1895 12.4636 1.0932 0.1569 12.0389 1.0813 0.0906 11.2782 1.0311 
M.Mohammadipour, 2009, Chapter 8   188 
 
8.6.2.4 All-INARMA(1,1)   
In this section the method of section  8.6.2.2 is extended to include all four processes. 
Therefore data can be produced by either an INARMA(0,0), INAR(1), INMA(1) or 
an INARMA(1,1) process. Then, for estimation of parameters and forecasting, an 
INARMA(1,1) process is used. We expect that when data is in fact INARMA(0,0) 
the estimated autoregressive and moving average parameters (?,?) will be close to 
zero, and for INAR(1) and INMA(1) data, the estimated ? or ? will be close to zero, 
respectively.  
The results for all points in time are shown in Table ?8-43, Table ?8-44, and Table ?8-45. 
The results show that, for INARMA(0,0), identification produces better forecasts 
than the all-INARMA(1,1) approach. When the number of observations increases, 
the results of two approaches become close. For ?= 96, the degree of improvement 
by using identification rather than all-INARMA(1,1) is on average 2.3 percent.  
For INAR(1) and INMA(1) processes, when the number of observations is small, the 
all-INARMA(1,1) approach produces better results in many cases. But when the 
number of observations increases, the results of identification improve and the two 
methods produce close results.   
Based on the results of Table ?8-43, Table ?8-44, and Table ?8-45, using the most general 
model could be a good substitute for identification especially when less data is 
available as is often the case for intermittent demand data. Although it has not been 
looked at in the literature, the results suggest that treating the data as the general 
INARMA process and eliminating the complexity of identification, can be considered 
as a potentially useful approach.  
The forecast accuracy of all-INARMA(1,1) is compared to those of all-INAR(1) in 
Appendix 8.G. It is expected that for INARMA(0,0) and INAR(1) series the latter 
outperforms the former and the results confirm this for most of the cases. However, 
the results show that, even for INMA(1) and INARMA(1,1) series, and even for high 
moving average parameters, all-INAR(1) method produces more accurate forecasts 
(in terms of MSE and MASE) than all-INARMA(1,1) method in most of the cases. 
The difference increases for longer history.  
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Table  8-43 Accuracy of forecasts with identification and all-INARMA(1,1) for INARMA(0,0) series  
Parameters 
?=??  ?=??  ?=??  ?=??  
Two-stage 
identification 
All-INARMA(1,1) 
Two-stage 
identification 
All-INARMA(1,1) 
Two-stage 
identification 
All-INARMA(1,1) 
Two-stage 
identification 
All-INARMA(1,1) 
ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE 
?= 0.3  0.0020 0.3496 1.1877 -0.0032 0.3692 1.2046 0.0019 0.3307 1.1525 -0.0048 0.3470 1.1612 0.0003 0.3190 1.0924 -0.0064 0.3374 1.1003 0.0028 0.3146 1.0229 -0.0032 0.3182 1.0161 
?= 0.5  -0.0010 0.5789 1.0799 -0.0088 0.6195 1.1038 0.0002 0.5493 1.0109 -0.0072 0.5774 1.0240 -0.0050 0.5209 0.9639 -0.0114 0.5404 0.9630 -0.0054 0.5099 0.9213 0.0011 0.5416 0.9403 
?= 0.7
   
0.0008 0.8074 0.9693 -0.0137 0.8690 0.9951 0.0011 0.7706 0.9111 -0.0057 0.8129 0.9260 -0.0023 0.7429 0.8764 -0.0193 0.7647 0.8797 -0.0022 0.7186 0.8378 -0.0010 0.7351 0.8524 
?= 1  -0.0001 1.1538 0.8665 -0.0203 1.2508 0.8980 0.0011 1.1076 0.8157 -0.0111 1.1551 0.8358 -0.0152 1.0705 0.7820 -0.0017 1.1163 0.8011 -0.0061 1.0289 0.7508 -0.0045 1.0540 0.7640 
?= 3  0.0042 3.4186 0.8175 -0.0324 3.5960 0.8346 0.0064 3.3024 0.7818 -0.0082 3.3893 0.7871 0.0162 3.2304 0.7654 -0.0151 3.3233 0.7691 -0.0025 3.0952 0.7386 -0.0081 3.1778 0.7455 
?= 5  0.0161 5.8873 0.8155 -0.0507 6.0384 0.8235 -0.0107 5.5208 0.7711 -0.0144 5.7687 0.7783 0.0042 5.4208 0.7613 0.0135 5.5495 0.7689 -0.0153 5.2324 0.7339 -0.0056 5.1751 0.7306 
?= 20  0.0509 22.9286 0.7872 -0.0146 24.9564 0.8225 -0.0421 21.9667 0.7702 -0.0514 22.8435 0.7773 -0.0156 21.5521 0.7400 -0.0269 22.0828 0.7551 -0.0252 20.5910 0.7322 -0.0400 21.1039 0.7334 
 
Table  8-44 Accuracy of forecasts with identification and all-INARMA(1,1) for INAR(1) series  
Parameters 
?=??  ?=??  ?=??  ?=??  
One-stage 
identification 
All-INARMA(1,1) 
One-stage 
identification 
All-INARMA(1,1) 
One-stage 
identification 
All-INARMA(1,1) 
One-stage 
identification 
All-INARMA(1,1) 
ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE 
?= 0.1,?= 0.5  -0.0005 0.6347 1.1208 -0.0008 0.6699 1.1275 0.0115 0.6260 1.1063 0.0049 0.6447 1.0710 0.0056 0.6005 1.0295 0.0111 0.6389 1.0340 0.0010 0.5826 0.9799 0.0010 0.5857 0.9845 
?= 0.5,?= 0.5  0.0381 1.0614 1.3967 0.0130 1.0056 1.3278 0.0050 0.9311 1.2226 0.0039 0.9436 1.2602 0.0064 0.8655 1.1425 0.0041 0.9131 1.1864 -0.0055 0.8014 1.0694 -0.0033 0.8186 1.0727 
?= 0.9,?= 0.5  0.0279 1.4243 1.4776 0.0347 1.2681 1.4405 0.0034 1.1610 1.2703 0.0344 1.1681 1.3181 -0.0103 1.0725 1.2157 0.0066 1.0919 1.2150 -0.0120 0.9981 1.1395 0.0206 1.0235 1.1707 
?= 0.1,?= 1  0.0063 1.3144 0.9415 -0.0152 1.3755 0.9455 -0.0024 1.2606 0.8758 -0.0028 1.2778 0.8819 0.0071 1.2258 0.8523 -0.0066 1.1947 0.8427 0.0044 1.1590 0.8104 0.0045 1.1875 0.8235 
?= 0.5,?= 1  0.0196 2.0526 1.1509 -0.0092 1.9908 1.1188 0.0117 1.8415 1.0550 0.0050 1.8491 1.0640 0.0093 1.7273 1.0262 -0.0046 1.7735 1.0251 0.0039 1.6017 0.9651 0.0052 1.6469 0.9944 
?= 0.9,?= 1  -0.0212 2.7024 1.2864 0.0544 2.4325 1.2304 0.0037 2.2686 1.1378 0.0378 2.3301 1.1748 -0.0043 2.1714 1.1203 0.0484 2.1853 1.1423 -0.0012 2.0015 1.0693 0.0312 2.0343 1.0747 
?= 0.1,?= 3  -0.0310 3.8137 0.8345 -0.0275 4.1292 0.8818 0.0042 3.7900 0.8337 -0.0177 3.7457 0.8236 -0.0041 3.6297 0.8083 -0.0144 3.6442 0.8115 -0.0184 3.4845 0.7845 -0.0222 3.4929 0.7828 
?= 0.5,?= 3  0.0256 6.0453 1.0472 0.0237 5.8020 1.0279 0.0170 5.5157 0.9955 -0.0291 5.4831 0.9848 -0.0103 5.1944 0.9556 -0.0027 5.2166 0.9710 0.0027 4.7714 0.9155 0.0268 4.9748 0.9319 
?= 0.9,?= 3  -0.0198 8.0490 1.2229 0.1097 7.3168 1.1422 0.0090 6.7598 1.1070 0.1077 6.9143 1.1046 0.0301 6.4818 1.0660 0.0627 6.5204 1.0742 0.0099 6.0402 1.0160 0.0612 6.1440 1.0290 
?= 0.1,?= 5  0.0440 6.7467 0.8632 0.0124 6.5975 0.8522 0.0022 6.1377 0.8190 0.0016 6.3370 0.8206 -0.0241 6.1470 0.8087 -0.0078 6.2455 0.8197 -0.0252 5.9063 0.7726 -0.0063 5.8121 0.7805 
?= 0.5,?= 5  -0.0116 9.9783 1.0548 0.0798 9.5203 1.0114 -0.0001 9.0103 0.9843 0.0050 8.8544 0.9603 -0.0479 8.4696 0.9420 0.0325 8.4735 0.9460 -0.0078 7.9000 0.9092 -0.0003 7.9638 0.9095 
?= 0.9,?= 5  0.1313 13.5067 1.1973 0.0773 12.2386 1.1385 0.0554 11.3171 1.0809 0.1196 11.3739 1.0820 0.0363 10.8754 1.0706 0.1021 10.9289 1.0679 -0.0036 10.0731 1.0171 0.0956 10.1452 1.0232 
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Table  8-45 Accuracy of forecasts with identification and all-INARMA(1,1) for INMA(1) series  
Parameters 
?=??  ?=??  ?=??  ?=??  
One-stage 
identification 
All-INARMA(1,1) 
One-stage 
identification 
All-INARMA(1,1) 
One-stage 
identification 
All-INARMA(1,1) 
One-stage 
identification 
All-INARMA(1,1) 
ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE 
?= 0.1,?= 0.5  0.0006 0.6474 1.1537 -0.0056 0.6500 1.1831 -0.0042 0.6022 1.0458 -0.0038 0.6155 1.0589 0.0005 0.5732 0.9729 -0.0071 0.6070 1.0025 -0.0088 0.6604 0.7515 0.0063 0.5733 0.9809 
?= 0.5,?= 0.5  0.0210 0.8392 1.2970 0.0205 0.8681 1.3428 -0.0001 0.7935 1.1635 -0.0151 0.8047 1.1628 0.0013 0.7284 1.0496 0.0011 0.7815 1.1069 0.0401 0.9122 0.9183 -0.0038 0.7423 1.0637 
?= 0.9,?= 0.5  -0.0101 1.9689 1.1383 0.0430 1.0089 1.3941 0.0269 0.9813 1.2952 0.0352 0.9383 1.2649 0.0304 0.8882 1.1203 0.0122 0.9436 1.1917 0.1589 1.0747 1.0178 0.0250 0.9208 1.1448 
?= 0.1,?= 1  -0.0104 1.2574 0.8783 -0.0202 1.3447 0.9356 -0.0014 1.2389 0.8692 -0.0154 1.2458 0.8487 -0.0103 1.1444 0.8014 -0.0017 1.1956 0.8443 -0.0335 1.2159 0.8080 -0.0016 1.1525 0.8117 
?= 0.5,?= 1  0.0241 1.7225 1.0816 0.0060 1.6743 1.0374 -0.0065 1.5827 0.9817 -0.0128 1.5905 0.9873 -0.0020 1.4386 0.9239 0.0030 1.5879 0.9894 0.0177 1.5554 0.9547 -0.0077 1.4733 0.9413 
?= 0.9,?= 1  -0.0131 1.9568 1.1574 0.0145 1.9996 1.1350 0.0036 1.8299 1.0827 0.0180 1.9324 1.0960 0.0179 1.6855 0.9954 0.0165 1.8242 1.0545 0.0595 1.7732 1.0167 0.0184 1.7825 1.0406 
?= 0.1,?= 3  0.0170 3.9592 0.8653 -0.0153 3.8953 0.8642 -0.0217 3.7610 0.8249 0.0022 3.7206 0.8211 0.0052 3.4847 0.7859 0.0041 3.6216 0.7983 0.0006 3.5011 0.8056 -0.0215 3.5003 0.7873 
?= 0.5,?= 3  0.0143 5.2555 0.9867 -0.0306 4.8945 0.9557 -0.0237 4.8094 0.9361 -0.0137 4.7351 0.9278 -0.0040 4.2445 0.8681 -0.0013 4.6193 0.9143 -0.0040 4.2567 0.8749 0.0061 4.3870 0.8783 
?= 0.9,?= 3  -0.0283 6.0747 1.0769 0.0763 5.8039 1.0545 0.0190 5.4653 1.0106 0.0192 5.5915 1.0116 -0.0034 4.8673 0.9248 0.0118 5.2638 0.9726 -0.0028 4.8710 0.9265 0.0439 5.1879 0.9612 
?= 0.1,?= 5  -0.0388 6.5789 0.8436 0.0108 6.5867 0.8570 -0.0241 6.1703 0.8007 -0.0108 6.2327 0.8241 0.0168 5.7806 0.7811 -0.0045 6.0357 0.7906 0.0160 5.7818 0.7843 -0.0103 5.7236 0.7712 
?= 0.5,?= 5  -0.0841 8.5133 0.9644 -0.0335 8.3565 0.9718 -0.0184 7.8372 0.9231 0.0231 7.7461 0.9228 0.0028 7.1503 0.8623 0.0136 7.6924 0.8954 0.0027 7.1503 0.8628 0.0160 7.2509 0.8698 
?= 0.9,?= 5  -0.0552 9.9051 1.0576 0.0927 9.8826 1.0531 0.0005 8.9502 0.9893 0.0643 8.8871 0.9798 0.0135 7.9759 0.9193 0.0683 8.9059 0.9673 0.0135 7.9764 0.9194 0.0524 8.4545 0.9443 
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8.6.2.5 All-INAR(1) vs Benchmark Methods 
Based on the argument in the previous section, the degree of improvement by 
treating all INARMA series as an INAR(1) model over the benchmark methods is 
investigated in this section. The MSE results for INARMA(0,0), INMA(1), and 
INARMA(1,1) series are shown in Table  8-46 to Table ?8-49. The results for INAR(1) 
series are the same as the results of known order (Table ?8-18 and Table ?8-19). The 
results are for the case that all points in time are considered.  
As previously mentioned in section  8.6.1, there was a slight improvement over the 
benchmark methods when demand is INARMA(0,0) or INMA(1). This was for the 
case that the order of the INARMA model was known. Considering the fact that the 
identification errors result in deterioration of forecasting accuracy for INARMA 
models, we except benchmark methods to outperform INARMA especially for more 
sparse demand. The results of Table  8-46 and Table ?8-47 confirm this.  
Table  8-46  for INARMA(0,0) series (unknown order)  
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.3  0.8998 0.9435 0.9473 0.9746 0.9991 1.0012 1.0070 1.0230 1.0239 0.9918 0.9997 1.0000 
?= 0.5  0.9838 1.0119 1.0136 0.9998 1.0150 1.0159 1.0045 1.0157 1.0163 0.9756 0.9850 0.9854 
?= 0.7
   
1.0048 1.0262 1.0280 0.9922 1.0049 1.0054 0.9845 0.9952 0.9955 0.9663 0.9764 0.9767 
?= 1  1.0031 1.0179 1.0181 0.9785 0.9887 0.9885 0.9440 0.9533 0.9531 0.9624 0.9719 0.9716 
?= 3  1.0170 1.0095 1.0051 0.9479 0.9424 0.9385 0.9496 0.9428 0.9388 0.9198 0.9126 0.9087 
?= 5  0.9647 0.9399 0.9321 0.9383 0.9128 0.9050 0.9593 0.9364 0.9288 0.9290 0.9048 0.8972 
?= 20  0.9677 0.8339 0.8063 0.9323 0.8030 0.7762 0.9686 0.8339 0.8058 0.9276 0.7982 0.7712 
  
Table  8-47  for INMA(1) series (unknown order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  1.0350 1.0693 1.0717 0.9922 1.0109 1.0122 0.9695 0.9813 0.9818 0.9558 0.9678 0.9683 
?= 0.5,?= 0.5  0.8597 0.8923 0.8941 0.8599 0.8828 0.8842 0.8933 0.9129 0.9141 0.8192 0.8369 0.8380 
?= 0.9,?= 0.5  0.7818 0.8177 0.8200 0.7585 0.7812 0.7826 0.7387 0.7571 0.7580 0.7201 0.7387 0.7398 
?= 0.1,?= 1  1.0022 1.0157 1.0157 0.9694 0.9819 0.9818 0.9695 0.9804 0.9801 0.9598 0.9705 0.9703 
?= 0.5,?= 1  0.9325 0.9471 0.9468 0.9167 0.9269 0.9261 0.8776 0.8891 0.8885 0.8698 0.8809 0.8803 
?= 0.9,?= 1  0.8373 0.8436 0.8421 0.7809 0.7884 0.7873 0.7796 0.7868 0.7856 0.7468 0.7528 0.7515 
?= 0.1,?= 3  0.9677 0.9569 0.9521 0.9527 0.9430 0.9383 0.9385 0.9276 0.9228 0.9381 0.9295 0.9250 
?= 0.5,?= 3  0.9425 0.9215 0.9143 0.9388 0.9173 0.9101 0.9063 0.8860 0.8791 0.8884 0.8678 0.8610 
?= 0.9,?= 3  0.8611 0.8259 0.8166 0.8248 0.7942 0.7855 0.8116 0.7835 0.7752 0.8002 0.7705 0.7621 
?= 0.1,?= 5  0.9625 0.9316 0.9227 0.9444 0.9198 0.9116 0.9639 0.9356 0.9269 0.9229 0.8952 0.8868 
?= 0.5,?= 5  0.9521 0.9031 0.8903 0.9356 0.8843 0.8713 0.9162 0.8651 0.8525 0.8655 0.8224 0.8108 
?= 0.9,?= 5  0.8754 0.8149 0.8001 0.8617 0.8037 0.7889 0.8093 0.7546 0.7409 0.7908 0.7355 0.7219 
BenchmarkINARMA MSEMSE /
 BenchmarkINARMA MSEMSE /
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The results for INARMA(1,1) series again show that with the presence of a high 
autoregressive parameter, INARMA has a considerably smaller MSE than the 
benchmark methods. The results of MASE also confirm this (see Appendix 8.H).  
Table  8-48  with smoothing parameter 0.2 for INARMA(1,1) series 
(unknown order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.1,?= 0.5  0.9452 0.9745 0.9759 0.9301 0.9500 0.9513 0.9733 0.9899 0.9910 0.9297 0.9444 0.9451 
?= 0.1,?= 0.9,?= 0.5  0.7664 0.7989 0.8007 0.7325 0.7564 0.7581 0.7616 0.7811 0.7821 0.7025 0.7196 0.7206 
?= 0.5,?= 0.5,?= 0.5  0.6855 0.7039 0.7039 0.6828 0.6985 0.6990 0.6243 0.6358 0.6359 0.6193 0.6332 0.6336 
?= 0.9,?= 0.1,?= 0.5  0.5274 0.4433 0.4294 0.5164 0.4542 0.4414 0.4968 0.4385 0.4264 0.4740 0.4208 0.4091 
?= 0.1,?= 0.1,?= 1  0.9771 0.9922 0.9922 0.9486 0.9621 0.9620 0.9571 0.9695 0.9693 0.9168 0.9284 0.9282 
?= 0.1,?= 0.9,?= 1  0.8802 0.8867 0.8851 0.7635 0.7730 0.7721 0.7569 0.7619 0.7605 0.7493 0.7556 0.7544 
?= 0.5,?= 0.5,?= 1  0.7720 0.7663 0.7629 0.7394 0.7370 0.7340 0.6899 0.6858 0.6828 0.6710 0.6701 0.6675 
?= 0.9,?= 0.1,?= 1  0.5481 0.4206 0.3994 0.5058 0.3942 0.3750 0.4906 0.3856 0.3671 0.4525 0.3597 0.3428 
?= 0.1,?= 0.1,?= 5  0.9920 0.9531 0.9426 0.9574 0.9233 0.9135 0.9436 0.9097 0.8999 0.9182 0.8846 0.8750 
?= 0.1,?= 0.9,?= 5  0.9232 0.8501 0.8332 0.8544 0.7861 0.7705 0.8255 0.7633 0.7485 0.7985 0.7393 0.7249 
?= 0.5,?= 0.5,?= 5  0.8379 0.7406 0.7199 0.7689 0.6783 0.6591 0.7251 0.6455 0.6280 0.7068 0.6278 0.6106 
?= 0.9,?= 0.1,?= 5  0.5482 0.2488 0.2197 0.5407 0.2289 0.2017 0.4987 0.2170 0.1916 0.4535 0.2013 0.1779 
 
Table  8-49  with smoothing parameter 0.5 for INARMA(1,1) series 
(unknown order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.1,?= 0.5  0.8646 0.9584 0.9809 0.8208 0.9087 0.9414 0.8490 0.9381 0.9726 0.8068 0.8896 0.9256 
?= 0.1,?= 0.9,?= 0.5  0.7087 0.7961 0.7972 0.6459 0.7323 0.7446 0.6773 0.7553 0.7557 0.6244 0.6964 0.6958 
?= 0.5,?= 0.5,?= 0.5  0.7141 0.7652 0.6628 0.7106 0.7497 0.6526 0.6482 0.6801 0.5903 0.6404 0.6781 0.5906 
?= 0.9,?= 0.1,?= 0.5  0.8766 0.3474 0.1933 0.8457 0.3490 0.2002 0.8296 0.3417 0.1954 0.7896 0.3213 0.1843 
?= 0.1,?= 0.1,?= 1  0.8757 0.9304 0.9275 0.8436 0.9003 0.8991 0.8544 0.9068 0.9031 0.8140 0.8656 0.8655 
?= 0.1,?= 0.9,?= 1  0.8592 0.8631 0.7723 0.7282 0.7454 0.6831 0.7346 0.7378 0.6648 0.7217 0.7292 0.6608 
?= 0.5,?= 0.5,?= 1  0.8696 0.7883 0.6142 0.8291 0.7581 0.5942 0.7723 0.7027 0.5508 0.7463 0.6873 0.5413 
?= 0.9,?= 0.1,?= 1  0.8825 0.2253 0.1286 0.8418 0.2177 0.1234 0.8206 0.2131 0.1211 0.7720 0.2016 0.1143 
?= 0.1,?= 0.1,?= 5  0.8766 0.7247 0.6268 0.8494 0.7041 0.6099 0.8431 0.6967 0.5997 0.8140 0.6748 0.5838 
?= 0.1,?= 0.9,?= 5  0.9239 0.6033 0.4448 0.8616 0.5584 0.4126 0.8308 0.5450 0.4037 0.8036 0.5254 0.3890 
?= 0.5,?= 0.5,?= 5  0.9620 0.4915 0.3263 0.8759 0.4476 0.2977 0.8274 0.4318 0.2883 0.8025 0.4159 0.2780 
?= 0.9,?= 0.1,?= 5  0.9115 0.0647 0.0366 0.8855 0.0596 0.0336 0.8317 0.0572 0.0323 0.7628 0.0531 0.0300 
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8.6.3 Lead Time Forecasts  
In chapter 6, the lead time forecasts for the INARMA models were presented. For 
INARMA(0,0) and INMA(1) processes, the lead time forecast is simply given by: 
??? ??+?
 ?+1
 ?=1
 |???= (?+ 1)? 
Equation  8-18 
??? ??+?
 ?+1
 ?=1
 |???=??+ 1?(1 +?)? 
Equation  8-19 
For INAR(1) and INARMA(1,1) processes, the lead time forecasts are: 
??? ??+?
 ?+1
 ?=1
 |???=
 ?(1???+1)
 1??
 ??+
 ?
 1??
 ???+ 1??? ??
 ?+1
 ?=1
 ? 
Equation  8-20 
??? ??+?
 ?+1
 ?=1
 |???=
 ?(1???+1)
 1??
 ??+
 ?(1 +?)
 1??
 ???+ 1??? ??
 ?+1
 ?=1
 ? 
Equation  8-21 
The results of sections  8.6.2.4 and  8.6.2.5 show that the accuracy of forecasts of an 
all-INAR(1) method are generally better than those of an all-INARMA(1,1) method 
even for INARMA(1,1) series. Therefore, in this section we use an all-INAR(1) 
method and compare the lead time forecasts of this method with those of benchmarks.  
The results of comparing the MSE of INARMA with that of benchmark methods for 
INARMA(0,0), INMA(1), INAR(1) and INARMA(1,1) series are presented in Table 
?8-50 to Table ?8-61. This includes both cases of ?= 3 and ?= 6. The results using 
MASE are presented in Appendix 8.I.  
For INARMA(0,0) series, the results of Table ?8-50 show that the all-INAR(1) lead 
time forecasts are better than the best benchmark in most of the cases (with an 
exception of ?= 0.7,?= 24). The same is true for INMA(1) series, with some 
exceptions for ?= 24. 
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Table  8-50 
BenchmarkINARMA MSEMSE /
  of lead-time forecasts  for INARMA(0,0) series  
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.3  0.7373 0.8307 0.8409 0.8726 0.9393 0.9457 0.9482 0.9880 0.9912 0.9448 0.9681 0.9695 
?= 0.5  0.9128 0.9879 0.9946 0.9573 0.9968 0.9992 0.9467 0.9804 0.9822 0.9097 0.9357 0.9367 
?= 0.7
   
0.9583 1.0130 1.0166 0.9541 0.9862 0.9872 0.9332 0.9606 0.9611 0.8914 0.9142 0.9143 
?= 1  0.9589 0.9878 0.9876 0.9361 0.9625 0.9620 0.9040 0.9265 0.9257 0.8601 0.8835 0.8830 
?= 3  0.9238 0.9077 0.8984 0.8642 0.8432 0.8338 0.8292 0.8141 0.8055 0.8021 0.7884 0.7803 
?= 5  0.9120 0.8519 0.8342 0.8657 0.8127 0.7967 0.8270 0.7755 0.7598 0.7897 0.7418 0.7272 
?= 20  0.9025 0.6417 0.5990 0.8521 0.6085 0.5675 0.8197 0.5886 0.5494 0.7793 0.5561 0.5189 
  
Table  8-51  of lead-time forecasts  for INMA(1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.9226 1.0030 1.0104 0.9503 0.9928 0.9956 0.9429 0.9749 0.9765 0.9075 0.9372 0.9386 
?= 0.5,?= 0.5  0.9668 1.0400 1.0463 0.9292 0.9766 0.9800 0.9077 0.9468 0.9493 0.8554 0.8898 0.8918 
?= 0.9,?= 0.5  0.9745 1.0630 1.0708 0.9331 0.9877 0.9916 0.9030 0.9444 0.9469 0.8419 0.8803 0.8826 
?= 0.1,?= 1  0.9935 1.0339 1.0348 0.9341 0.9628 0.9627 0.9005 0.9262 0.9258 0.8557 0.8814 0.8812 
?= 0.5,?= 1  1.0054 1.0366 1.0366 0.9199 0.9444 0.9438 0.8925 0.9156 0.9148 0.8340 0.8579 0.8575 
?= 0.9,?= 1  1.0143 1.0469 1.0465 0.9382 0.9631 0.9621 0.9013 0.9218 0.9203 0.8360 0.8568 0.8557 
?= 0.1,?= 3  0.9407 0.9237 0.9139 0.8797 0.8710 0.8626 0.8487 0.8312 0.8223 0.8107 0.7981 0.7900 
?= 0.5,?= 3  0.9729 0.9451 0.9334 0.9029 0.8737 0.8627 0.8729 0.8508 0.8408 0.8190 0.7970 0.7873 
?= 0.9,?= 3  1.0083 0.9679 0.9541 0.9234 0.8801 0.8666 0.8841 0.8521 0.8401 0.8274 0.7961 0.7846 
?= 0.1,?= 5  0.9367 0.8801 0.8631 0.8710 0.8150 0.7988 0.8364 0.7885 0.7732 0.8075 0.7592 0.7443 
?= 0.5,?= 5  0.9695 0.9048 0.8853 0.8995 0.8289 0.8103 0.8683 0.8063 0.7887 0.8225 0.7612 0.7442 
?= 0.9,?= 5  0.9940 0.9124 0.8899 0.9071 0.8238 0.8029 0.8743 0.7985 0.7784 0.8297 0.7582 0.7392 
 
Table  8-52  of lead-time forecasts  with smoothing parameter 0.2 for 
INAR(1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.9441 1.0142 1.0203 0.9422 0.9906 0.9942 0.9398 0.9719 0.9736 0.9012 0.9277 0.9289 
?= 0.5,?= 0.5  0.9037 0.9525 0.9560 0.8704 0.9106 0.9131 0.8268 0.8611 0.8631 0.7714 0.8063 0.8085 
?= 0.9,?= 0.5  0.8049 0.6984 0.6780 0.7157 0.6624 0.6473 0.6897 0.6391 0.6243 0.6219 0.5734 0.5605 
?= 0.1,?= 1  0.9950 1.0303 1.0307 0.9124 0.9404 0.9403 0.9040 0.9314 0.9313 0.8533 0.8793 0.8792 
?= 0.5,?= 1  0.9647 0.9843 0.9824 0.8941 0.9126 0.9110 0.8683 0.8820 0.8799 0.8117 0.8272 0.8254 
?= 0.9,?= 1  0.7938 0.6568 0.6283 0.7219 0.6001 0.5749 0.6752 0.5758 0.5528 0.6244 0.5242 0.5024 
?= 0.1,?= 3  0.9404 0.9214 0.9117 0.8876 0.8741 0.8649 0.8494 0.8370 0.8286 0.8052 0.7906 0.7825 
?= 0.5,?= 3  0.9868 0.9416 0.9267 0.9043 0.8639 0.8504 0.8770 0.8385 0.8255 0.8203 0.7864 0.7745 
?= 0.9,?= 3  0.7825 0.4666 0.4243 0.7136 0.4197 0.3827 0.6830 0.4084 0.3724 0.6364 0.3850 0.3508 
?= 0.1,?= 5  0.9398 0.8872 0.8696 0.8577 0.8118 0.7964 0.8487 0.7989 0.7833 0.8011 0.7536 0.7389 
?= 0.5,?= 5  0.9849 0.8914 0.8674 0.9053 0.8171 0.7949 0.8794 0.8054 0.7844 0.8246 0.7455 0.7253 
?= 0.9,?= 5  0.7978 0.3639 0.3223 0.7284 0.3349 0.2968 0.6803 0.3201 0.2843 0.6294 0.3002 0.2666 
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Table  8-53 
BenchmarkINARMA MSEMSE /
  of lead-time forecasts  with smoothing parameter 0.5 for 
INAR(1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.8202 0.9889 1.0012 0.7103 0.8761 0.8946 0.7140 0.8540 0.8617 0.6728 0.8053 0.8140 
?= 0.5,?= 0.5  0.8152 0.9551 0.9479 0.7505 0.8866 0.8825 0.7104 0.8328 0.8258 0.6566 0.7783 0.7749 
?= 0.9,?= 0.5  1.0550 0.5086 0.3537 0.9908 0.5117 0.3575 0.9417 0.4827 0.3368 0.8686 0.4493 0.3156 
?= 0.1,?= 1  0.7599 0.8681 0.8403 0.6779 0.7799 0.7567 0.6688 0.7718 0.7501 0.6283 0.7240 0.7033 
?= 0.5,?= 1  0.8607 0.8891 0.8204 0.7999 0.8315 0.7695 0.7669 0.7907 0.7273 0.7220 0.7482 0.6894 
?= 0.9,?= 1  1.0446 0.3595 0.2321 0.9967 0.3383 0.2190 0.9427 0.3302 0.2135 0.8687 0.2953 0.1905 
?= 0.1,?= 3  0.6633 0.6147 0.5303 0.6263 0.5800 0.4968 0.6038 0.5614 0.4833 0.5732 0.5315 0.4577 
?= 0.5,?= 3  0.8636 0.6624 0.5257 0.7882 0.6057 0.4822 0.7691 0.5909 0.4702 0.7130 0.5554 0.4434 
?= 0.9,?= 3  1.0440 0.1492 0.0887 0.9923 0.1413 0.0843 0.9500 0.1361 0.0812 0.8741 0.1263 0.0751 
?= 0.1,?= 5  0.6527 0.5102 0.4046 0.5950 0.4720 0.3774 0.5958 0.4671 0.3722 0.5596 0.4401 0.3514 
?= 0.5,?= 5  0.8592 0.5293 0.3882 0.7813 0.4819 0.3539 0.7587 0.4735 0.3476 0.7183 0.4396 0.3219 
?= 0.9,?= 5  1.0677 0.0967 0.0564 0.9947 0.0895 0.0522 0.9433 0.0866 0.0505 0.8708 0.0809 0.0472 
 
The results of Table ?8-53 for INAR(1) series reveal that, for high autoregressive 
parameters, the improvement of INARMA over the best benchmark is narrow for short 
length of history (in case of ?= 24, INARMA is even worse). However with more 
observations, the improvement also increases. For small autoregressive parameters, the 
results of Table ?8-52 show that INARMA always outperforms the benchmark methods. 
Again, the improvement increases with an increase in the length of history.   
Table  8-54  of lead-time forecasts  with smoothing parameter 0.2 for 
INARMA(1,1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.1,?= 0.5  0.9369 1.0169 1.0242 0.9479 0.9921 0.9951 0.9330 0.9650 0.9668 0.8867 0.9178 0.9195 
?= 0.1,?= 0.9,?= 0.5  1.0164 1.0937 1.1002 0.9385 0.9915 0.9953 0.8892 0.9311 0.9338 0.8316 0.8679 0.8700 
?= 0.5,?= 0.5,?= 0.5  0.9728 1.0101 1.0118 0.8611 0.8924 0.8939 0.8120 0.8471 0.8490 0.7593 0.7894 0.7908 
?= 0.9,?= 0.1,?= 0.5  0.7710 0.6826 0.6646 0.7032 0.6297 0.6135 0.6573 0.6016 0.5875 0.6034 0.5641 0.5519 
?= 0.1,?= 0.1,?= 1  0.9975 1.0335 1.0342 0.9151 0.9411 0.9409 0.9053 0.9308 0.9305 0.8528 0.8780 0.8779 
?= 0.1,?= 0.9,?= 1  1.0291 1.0487 1.0470 0.9294 0.9539 0.9530 0.8891 0.9065 0.9048 0.8321 0.8514 0.8502 
?= 0.5,?= 0.5,?= 1  0.9776 0.9953 0.9927 0.8819 0.8938 0.8909 0.8278 0.8396 0.8372 0.7817 0.7921 0.7897 
?= 0.9,?= 0.1,?= 1  0.7905 0.6207 0.5913 0.7148 0.5925 0.5671 0.6650 0.5543 0.5310 0.6202 0.5197 0.4979 
?= 0.1,?= 0.1,?= 5  0.9627 0.9084 0.8908 0.8969 0.8410 0.8240 0.8528 0.7949 0.7788 0.8188 0.7691 0.7541 
?= 0.1,?= 0.9,?= 5  0.9897 0.9024 0.8794 0.9067 0.8267 0.8062 0.8628 0.7857 0.7659 0.8240 0.7549 0.7362 
?= 0.5,?= 0.5,?= 5  0.9816 0.8746 0.8481 0.8829 0.7884 0.7650 0.8442 0.7589 0.7369 0.7974 0.7113 0.6900 
?= 0.9,?= 0.1,?= 5  0.8126 0.3508 0.3100 0.7160 0.3352 0.2973 0.6811 0.3100 0.2747 0.6252 0.2905 0.2576 
 
For INARMA(1,1) series, the results of Table ?8-54 reveal that for small autoregressive 
parameters, INARMA outperforms the benchmark methods in most cases (except for 
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sparse data and short history). The improvement increases with an increase in the 
length of history. For high autoregressive parameters, the improvement of INARMA 
over the best benchmark is narrow for short length of history (in case of ?= 24, 
INARMA is even worse). However, with more observations, the improvement also 
increases.     
Table  8-55  of lead-time forecasts  with smoothing parameter 0.5 for 
INARMA(1,1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.1,?= 0.5  0.7926 0.9844 1.0046 0.7387 0.8943 0.9066 0.7080 0.8508 0.8602 0.6609 0.8020 0.8151 
?= 0.1,?= 0.9,?= 0.5  0.8284 1.0145 1.0283 0.7348 0.8943 0.9020 0.7039 0.8473 0.8523 0.6502 0.7844 0.7891 
?= 0.5,?= 0.5,?= 0.5  0.8944 1.0074 0.9783 0.7886 0.8929 0.8719 0.7309 0.8355 0.8170 0.6878 0.7789 0.7584 
?= 0.9,?= 0.1,?= 0.5  1.0603 0.5206 0.3644 0.9695 0.4808 0.3352 0.9265 0.4691 0.3282 0.8538 0.4430 0.3099 
?= 0.1,?= 0.1,?= 1  0.7832 0.8878 0.8586 0.6954 0.7909 0.7656 0.6774 0.7742 0.7505 0.6433 0.7359 0.7132 
?= 0.1,?= 0.9,?= 1  0.8336 0.8953 0.8471 0.7351 0.7975 0.7544 0.7160 0.7657 0.7200 0.6662 0.7168 0.6756 
?= 0.5,?= 0.5,?= 1  0.9017 0.9086 0.8233 0.8102 0.8075 0.7288 0.7721 0.7688 0.6955 0.7151 0.7143 0.6467 
?= 0.9,?= 0.1,?= 1  1.0454 0.3365 0.2171 0.9817 0.3287 0.2121 0.9322 0.3129 0.2021 0.8667 0.2929 0.1888 
?= 0.1,?= 0.1,?= 5  0.6847 0.5329 0.4230 0.6441 0.4943 0.3906 0.6123 0.4713 0.3743 0.5900 0.4578 0.3637 
?= 0.1,?= 0.9,?= 5  0.7799 0.5191 0.3907 0.7282 0.4872 0.3678 0.6804 0.4559 0.3444 0.6462 0.4364 0.3297 
?= 0.5,?= 0.5,?= 5  0.8976 0.5027 0.3589 0.8053 0.4581 0.3287 0.7748 0.4442 0.3189 0.7296 0.4119 0.2948 
?= 0.9,?= 0.1,?= 5  1.0675 0.0921 0.0538 1.0085 0.0898 0.0523 0.9440 0.0829 0.0483 0.8732 0.0781 0.0455 
  
When ?= 6, the results of Table ?8-56 and Table ?8-57 show that the improvement by 
using INARMA (an all-INAR(1) method) over the benchmarks is generally greater 
than the case of ?= 3 for INARMA(0,0) and INMA(1) series. This is also true for 
INAR(1) and INARMA(1,1) series with small autoregressive parameters.  
Table  8-56  of lead-time forecasts  for INARMA(0,0) series  
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.3  0.7796 0.9163 0.9315 0.7748 0.8717 0.8815 0.9112 0.9772 0.9824 0.9101 0.9488 0.9509 
?= 0.5  0.8894 1.0054 1.0161 0.8839 0.9565 0.9615 0.8798 0.9363 0.9394 0.8343 0.8782 0.8801 
?= 0.7
   
0.9194 1.0260 1.0341 0.9137 0.9761 0.9785 0.8802 0.9208 0.9212 0.7996 0.8416 0.8424 
?= 1  0.9390 1.0161 1.0193 0.8674 0.9197 0.9202 0.8225 0.8631 0.8623 0.7647 0.7959 0.7945 
?= 3  0.8688 0.8472 0.8330 0.7845 0.7530 0.7397 0.7503 0.7332 0.7213 0.6768 0.6616 0.6507 
?= 5  0.8601 0.7770 0.7533 0.7800 0.6999 0.6783 0.7253 0.6539 0.6336 0.6543 0.5956 0.5778 
?= 20  0.8767 0.5377 0.4903 0.7646 0.4681 0.4264 0.7239 0.4344 0.3956 0.6602 0.3997 0.3638 
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Table  8-57  of lead-time forecasts  for INMA(1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.9555 1.0866 1.0992 0.9010 0.9718 0.9768 0.8826 0.9284 0.9306 0.8254 0.8694 0.8715 
?= 0.5,?= 0.5  0.9758 1.1192 1.1334 0.9130 0.9811 0.9859 0.8869 0.9499 0.9540 0.7785 0.8321 0.8355 
?= 0.9,?= 0.5  0.9807 1.1343 1.1492 0.9248 1.0144 1.0212 0.8610 0.9261 0.9304 0.7866 0.8389 0.8420 
?= 0.1,?= 1  0.9389 0.9944 0.9952 0.8628 0.9081 0.9082 0.8151 0.8529 0.8524 0.7649 0.7994 0.7987 
?= 0.5,?= 1  1.0045 1.0576 1.0578 0.8718 0.9157 0.9156 0.8293 0.8652 0.8644 0.7372 0.7696 0.7690 
?= 0.9,?= 1  1.0814 1.1128 1.1094 0.8983 0.9348 0.9332 0.8351 0.8787 0.8780 0.7429 0.7737 0.7725 
?= 0.1,?= 3  0.9124 0.8748 0.8592 0.8079 0.7739 0.7602 0.7394 0.7149 0.7030 0.6741 0.6553 0.6447 
?= 0.5,?= 3  0.9662 0.9205 0.9032 0.8329 0.8094 0.7957 0.7654 0.7379 0.7251 0.7011 0.6748 0.6630 
?= 0.9,?= 3  1.0009 0.9633 0.9456 0.8596 0.8297 0.8139 0.7917 0.7518 0.7364 0.7021 0.6679 0.6544 
?= 0.1,?= 5  0.9127 0.8509 0.8281 0.7848 0.7108 0.6897 0.7241 0.6617 0.6424 0.6698 0.6068 0.5887 
?= 0.5,?= 5  0.9715 0.8770 0.8489 0.8084 0.7152 0.6921 0.7664 0.6978 0.6771 0.6977 0.6281 0.6085 
?= 0.9,?= 5  0.9922 0.8905 0.8600 0.8249 0.7123 0.6872 0.7697 0.6726 0.6487 0.7043 0.6223 0.6010 
 
Table  8-58  of lead-time forecasts  with smoothing parameter 0.2 for INAR(1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.8625 0.9847 0.9967 0.9076 0.9769 0.9817 0.8948 0.9484 0.9515 0.8221 0.8695 0.8720 
?= 0.5,?= 0.5  1.0555 1.1742 1.1849 0.9302 0.9968 1.0014 0.8466 0.9094 0.9138 0.7524 0.8044 0.8079 
?= 0.9,?= 0.5  1.0075 0.9778 0.9611 0.8818 0.8539 0.8397 0.8450 0.8217 0.8080 0.7595 0.7278 0.7149 
?= 0.1,?= 1  0.9882 1.0425 1.0431 0.8784 0.9175 0.9170 0.8314 0.8690 0.8684 0.7560 0.7902 0.7896 
?= 0.5,?= 1  1.0573 1.0997 1.0987 0.9195 0.9563 0.9552 0.8406 0.8812 0.8809 0.7540 0.7849 0.7841 
?= 0.9,?= 1  1.0224 0.8642 0.8311 0.8859 0.7750 0.7469 0.8428 0.7480 0.7224 0.7515 0.6479 0.6238 
?= 0.1,?= 3  0.9045 0.8885 0.8752 0.8091 0.7854 0.7727 0.7458 0.7196 0.7073 0.6899 0.6730 0.6625 
?= 0.5,?= 3  1.0213 0.9597 0.9405 0.8731 0.8446 0.8301 0.8273 0.8022 0.7887 0.7472 0.7167 0.7039 
?= 0.9,?= 3  1.0113 0.6310 0.5780 0.8916 0.5759 0.5289 0.8439 0.5512 0.5061 0.7476 0.4875 0.4483 
?= 0.1,?= 5  0.9003 0.8337 0.8110 0.7897 0.7115 0.6909 0.7370 0.6712 0.6516 0.6750 0.6152 0.5977 
?= 0.5,?= 5  1.0195 0.9360 0.9091 0.8660 0.7777 0.7532 0.8137 0.7304 0.7077 0.7336 0.6596 0.6391 
?= 0.9,?= 5  1.0231 0.5077 0.4525 0.8918 0.4638 0.4151 0.8473 0.4276 0.3828 0.7593 0.3885 0.3471 
 
Table  8-59  of lead-time forecasts  with smoothing parameter 0.5 for INAR(1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.7025 0.9582 0.9857 0.6247 0.8199 0.8331 0.5745 0.7630 0.7799 0.5215 0.6905 0.7043 
?= 0.5,?= 0.5  0.8524 1.1231 1.1434 0.7197 0.9131 0.9156 0.6479 0.8299 0.8336 0.5690 0.7232 0.7255 
?= 0.9,?= 0.5  1.1450 0.7467 0.5466 1.0414 0.6744 0.4948 1.0005 0.6378 0.4654 0.8948 0.5661 0.4149 
?= 0.1,?= 1  0.6911 0.8284 0.7860 0.5767 0.6950 0.6643 0.5338 0.6439 0.6137 0.4794 0.5823 0.5562 
?= 0.5,?= 1  0.8340 0.9221 0.8532 0.7122 0.7868 0.7257 0.6494 0.7205 0.6662 0.5808 0.6405 0.5915 
?= 0.9,?= 1  1.1542 0.4903 0.3295 1.0352 0.4408 0.2939 0.9963 0.4401 0.2945 0.8878 0.3718 0.2478 
?= 0.1,?= 3  0.5518 0.5061 0.4185 0.4869 0.4383 0.3619 0.4381 0.3939 0.3249 0.4151 0.3808 0.3157 
?= 0.5,?= 3  0.7784 0.5975 0.4667 0.6520 0.5253 0.4146 0.6223 0.4970 0.3921 0.5562 0.4413 0.3479 
?= 0.9,?= 3  1.1314 0.2106 0.1279 1.0516 0.1967 0.1188 0.9973 0.1881 0.1133 0.8818 0.1691 0.1023 
?= 0.1,?= 5  0.5334 0.4028 0.3086 0.4696 0.3467 0.2660 0.4351 0.3195 0.2432 0.4036 0.2995 0.2290 
?= 0.5,?= 5  0.7723 0.4940 0.3607 0.6419 0.4011 0.2909 0.6079 0.3820 0.2778 0.5447 0.3420 0.2489 
?= 0.9,?= 5  1.1593 0.1391 0.0817 1.0545 0.1297 0.0765 0.9927 0.1220 0.0720 0.8994 0.1079 0.0635 
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Table  8-60  of lead-time forecasts  with smoothing parameter 0.2 for 
INARMA(1,1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.1,?= 0.5  0.9060 1.0221 1.0332 0.9114 0.9817 0.9867 0.8773 0.9416 0.9460 0.8151 0.8622 0.8649 
?= 0.1,?= 0.9,?= 0.5  1.1265 1.2635 1.2754 0.9392 1.0143 1.0196 0.8486 0.9209 0.9263 0.7638 0.8196 0.8232 
?= 0.5,?= 0.5,?= 0.5  1.1516 1.2325 1.2381 0.9878 1.0498 1.0535 0.8733 0.9306 0.9341 0.7564 0.8034 0.8062 
?= 0.9,?= 0.1,?= 0.5  1.0244 0.9352 0.9148 0.9012 0.8209 0.8031 0.8309 0.7946 0.7805 0.7339 0.7067 0.6946 
?= 0.1,?= 0.1,?= 1  0.9968 1.0472 1.0475 0.8069 0.7319 0.7102 0.8184 0.8626 0.8631 0.7493 0.7859 0.7857 
?= 0.1,?= 0.9,?= 1  1.0785 1.1185 1.1166 0.9066 0.9557 0.9558 0.8358 0.8781 0.8777 0.7402 0.7684 0.7670 
?= 0.5,?= 0.5,?= 1  1.1171 1.1825 1.1829 0.9376 0.9673 0.9650 0.8410 0.8700 0.8683 0.7467 0.7730 0.7715 
?= 0.9,?= 0.1,?= 1  1.0111 0.8583 0.8239 0.9020 0.7835 0.7542 0.8249 0.7473 0.7226 0.7269 0.6397 0.6174 
?= 0.1,?= 0.1,?= 5  0.9241 0.8565 0.8332 0.8016 0.7424 0.7218 0.7275 0.6645 0.6456 0.6887 0.6289 0.6111 
?= 0.1,?= 0.9,?= 5  0.9912 0.8566 0.8262 0.8560 0.7602 0.7341 0.7844 0.7027 0.6792 0.7024 0.6251 0.6044 
?= 0.5,?= 0.5,?= 5  1.0538 0.9423 0.9107 0.9001 0.7968 0.7694 0.8238 0.7342 0.7098 0.7444 0.6602 0.6380 
?= 0.9,?= 0.1,?= 5  1.0067 0.4899 0.4369 0.8862 0.4498 0.4017 0.8352 0.4233 0.3787 0.7291 0.3757 0.3360 
 
Table  8-61  of lead-time forecasts  with smoothing parameter 0.5 for 
INARMA(1,1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.1,?= 0.5  0.7042 0.9695 1.0084 0.6267 0.8313 0.8481 0.5555 0.7524 0.7762 0.5135 0.6838 0.7022 
?= 0.1,?= 0.9,?= 0.5  0.8479 1.1332 1.1494 0.6814 0.8807 0.8870 0.5838 0.7769 0.7926 0.5222 0.6861 0.6938 
?= 0.5,?= 0.5,?= 0.5  0.9535 1.1744 1.1651 0.8018 0.9757 0.9598 0.6933 0.8499 0.8383 0.6112 0.7413 0.7295 
?= 0.9,?= 0.1,?= 0.5  1.1333 0.7081 0.5236 1.0656 0.6303 0.4630 0.9797 0.6255 0.4586 0.8789 0.5565 0.4072 
?= 0.1,?= 0.1,?= 1  0.6951 0.8151 0.7736 0.4846 0.3506 0.2659 0.5338 0.6524 0.6276 0.4804 0.5845 0.5592 
?= 0.1,?= 0.9,?= 1  0.7753 0.8666 0.8034 0.6309 0.7326 0.6886 0.5860 0.6681 0.6238 0.5191 0.5816 0.5393 
?= 0.5,?= 0.5,?= 1  0.8907 0.9756 0.8926 0.7496 0.7941 0.7204 0.6635 0.7086 0.6475 0.5940 0.6314 0.5747 
?= 0.9,?= 0.1,?= 1  1.1266 0.4673 0.3099 1.0550 0.4426 0.2935 0.9801 0.4372 0.2912 0.8728 0.3766 0.2513 
?= 0.1,?= 0.1,?= 5  0.5502 0.4146 0.3174 0.4870 0.3610 0.2743 0.4375 0.3241 0.2474 0.4218 0.3097 0.2358 
?= 0.1,?= 0.9,?= 5  0.6697 0.4177 0.3047 0.5673 0.3623 0.2632 0.5251 0.3368 0.2448 0.4660 0.3026 0.2219 
?= 0.5,?= 0.5,?= 5  0.8193 0.4787 0.3404 0.7079 0.4066 0.2885 0.6455 0.3788 0.2698 0.5771 0.3386 0.2420 
?= 0.9,?= 0.1,?= 5  1.1254 0.1355 0.0798 1.0412 0.1238 0.0729 0.9907 0.1195 0.0705 0.8700 0.1045 0.0615 
 
In general, the lead time forecasts produced by an all-INAR(1) method beat the 
benchmark methods except for the cases when the data is sparse and the sample is 
small. This can be attributed to the fact that there is less positive data available for 
estimation of parameters for an INAR(1) process. The improvement increases with 
an increase in the length of history. When the lead time increases, the improvement 
of INARMA over benchmarks generally increases except for the case where the 
autoregressive parameter is high.  
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8.7 Conclusions 
In this chapter, the results of the simulation experiment have been presented. The 
performance of YW and CLS estimation methods (and CML for INAR(1) process) in 
terms of the accuracy of estimates and also their impact on forecast accuracy has 
been examined. The results show that when the length of history is short, CLS 
produces better forecasts than YW especially in the presence of a high autoregressive 
parameter. For cases where the autoregressive parameter is low, and also for the 
INMA(1) process, the two estimation methods are close. Also when the number of 
observations increases, the two estimation methods will produce close forecasts (in 
terms of MSE and MASE). 
The Croston-SBA categorization (Syntetos et al., 2005) has been tested and validated 
for an i.i.d. Poisson process (an INARMA(0,0) process). Although the categorization 
was originally developed using MSE of forecasts, the results of simulation show that 
it also holds when MASE of forecasts are considered. The simulation results show 
that the Croston-SBA categorization also holds for INAR(1), INMA(1) and 
INARMA(1,1) processes.  
It has been found that when the number of observation increases, the advantage of 
SBA over Croston in terms of MSE decreases until it reaches a limit. 
Four INARMA processes have been used in this study: INARMA(0,0), INAR(1), 
INMA(1) and INARMA(1,1). The identification is therefore limited to selecting the 
best process among them. As discussed in chapter 4, two identification procedures 
are used. A two-stage identification procedure first uses the Ljung-Box statistic to 
distinguish between INARMA(0,0) and other processes. The AIC is then used to 
select among the other INARMA models. A one-stage identification procedure only 
uses AIC to select among all INARMA models including INARMA(0,0). The results 
show that the two-stage method provides better results for the INARMA(0,0) model 
(in terms of the percentage of series for which the correct model is identified). 
However, for other models, the one-stage method produces better results. In terms of 
the accuracy of forecasts, for an INARMA(0,0) process, the two-stage method 
produces better forecasts using MSE and MASE in most of the cases. For other 
processes, when the autoregressive parameter is high, the one-stage method produces 
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much better forecasts. This is also true for high moving average parameters but the 
difference is smaller. When more observations are available, the two methods 
produce similar forecasts. The results also suggest that, as expected, misidentification 
has a high effect on forecast accuracy when the autoregressive parameter is high. But 
for MA processes and for AR processes with low autoregressive parameters, the 
effect of misidentification is not high. 
As a potential substitute to identification, the most general INARMA model can be 
used. For example, if data is in fact an INAR(1) process, the estimated MA 
parameter should be close to zero. The results show that, in the presence of an AR 
component, using the most general INARMA model results in more accurate 
forecasts (in terms of MSE and MASE) than those of identification, especially for 
short history and high AR parameter. When the number of observations increases, 
the results of two methods will be close.  
We have also tested using an INAR(1) method to forecast all four INARMA models 
and have compared the results to the case of using an INARMA(1,1) method for all 
four models. The results show that the all-INAR(1) method generally produces better 
forecasts than the all-INARMA(1,1) method even for MA series.      
The INARMA forecasts are compared to those of Croston, SBA and SBJ. For 
INARMA(0,0) and INMA(1) processes, the improvement by using INARMA over 
benchmark methods is small. But when data is produced by INAR(1) or 
INARMA(1,1) and the autoregressive parameter is high, INARMA produces much 
more accurate one-step ahead forecasts than the benchmark methods. The degree of 
improvement generally increases when more observations are available. 
The results for three-step and six-step ahead forecasts show that, for INMA(1), and 
INAR(1) and INARMA(1,1) processes with small autoregressive parameters, the 
forecast accuracy of INARMA over benchmarks is improved compared to the one-
 step ahead forecasts. However, the same is not true for INARMA processes with 
high autoregressive parameters.  
Finally, the lead time forecasts of an all-INAR(1) method have been compared to 
those of the benchmark methods. The results show that the all-INAR(1) method 
generally beats the benchmark methods and the improvement increases when more 
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observations are available. The only exception is when both autoregressive parameter 
and lead time are high and the number of observations is small. In that case, the best 
benchmark method outperforms the all-INAR(1) method. Even for such cases, when 
the number of observations increases, INARMA starts to produce more accurate lead 
time forecasts than benchmarks. 
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Chapter 9 EMPIRICAL ANALYSIS 
 
 
 
 
 
 
 
 
9.1 Introduction 
As discussed in chapter 3, INARMA models have been developed for forecasting 
count data. The application areas of these models have been mainly for counts of 
events or individuals such as the number of patients in a hospital?s emergency unit 
each hour.  
Intermittent series, as a series of non-negative integer values where some values are 
zero (Shenstone and Hyndman, 2005), can be considered as a special class of count 
series. However, there is no empirical evidence on the performance of INARMA 
models in this area.  
Accurate demand forecasting is a key to better inventory management. Although this 
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research only focuses on forecasting, an improvement in accuracy of forecasts can be 
translated to fewer inventories, less obsolescence and better customer service.              
This PhD thesis has suggested using INARMA models to forecast intermittent 
demand. The performance of these models has been compared to that of the 
benchmark methods of Croston, SBA and SBJ in Chapter 8. However, it was 
assumed that data were produced by one of the four INARMA models: 
INARMA(0,0), INAR(1), INMA(1) or INARMA(1,1). In this chapter, the model 
assumptions are relaxed by testing the results on empirical data.   
This chapter is organized as follows. The purposes of empirical analysis are 
explained in section  9.2. The series for this study consist of the demand data of 
16,000 Royal Air Force (RAF) SKUs, some of which are highly lumpy, and 3,000 
data series from the automotive industry. The filtering mechanism applied to the 
demand data for INARMA forecasting is discussed in section  9.3. Details of 
empirical analysis design are provided in section  9.4. The accuracy of INARMA 
forecasts and those of the benchmark methods are compared in section  9.5. In this 
section, the results of identification are compared with treating all as INAR(1) and 
INARMA(1,1). The ?-step ahead forecasts and lead time forecasts are also 
presented. The sensitivity of the results to the length of history has been tested. 
Finally, the conclusions of the empirical analysis are given in section  9.6.  
              
9.2 Rationale for Empirical Analysis 
The main purpose of empirical analysis is to validate the theoretical and simulation 
findings on real data. The results of simulation show that when data is produced by 
INAR(1) or INARMA(1,1) and the autoregressive parameter is high, INARMA 
forecasting methods produce much more accurate forecasts than benchmark 
methods. But when data is produced by INARMA(0,0) or INMA(1), the 
improvement by using INARMA over benchmark methods is small. We are 
interested in finding out whether the INARMA forecasting approach still 
outperforms the benchmark methods for real intermittent demand data.  
In the simulation chapter we also looked at the effect of various factors on forecast 
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accuracy. The effect of YW and CLS (and CML for INAR(1)) estimates on the 
accuracy of INARMA forecasts was studied. The results of identification or using the 
most general INARMA model in the class were compared. The sample size effect on 
the accuracy of forecasts was also tested. The empirical analysis will assess the effect 
of these factors and enable us to validate the simulation results. 
 
9.3 Demand Data Series  
The real demand data series for this research consists of the Royal Air Force (RAF) 
individual demand histories of 16,000 SKUs over a period of 6 years (monthly 
observations). We have also used another data set which consists of 3,000 real 
intermittent demand data series from the automotive industry1 (from Syntetos and 
Boylan, 2005) which, unlike the previous one, has more occurrences of positive 
demand than zeros. This data series consists of demand histories of 3,000 SKUs over 
a period of 2 years (24 months). These two data sets are called 16,000 and 3,000 
series from now on.  
The 16,000 series are useful in assessing the effect of length of history on the 
accuracy of forecasts because it has longer history. However, it is can be categorized 
as a set of slower intermittent series because it has many periods of no demand. On 
the other hand, the 3,000 series has a very short history but it contains faster 
intermittent series with more positive demands.  
As previously mentioned, this research has focused on INARMA processes with 
Poisson innovations. Although some of the theoretical results are not based on a 
distributional assumption, whenever a specific distribution was needed, such as for 
estimation of parameters, a Poisson distribution was assumed.  
Out of the four processes of this study, three of them have a Poisson distribution 
when the marginal distribution is Poisson. The only exception is the INARMA(1,1) 
process where:  
??=?????1 +??+?????1 
Equation  9-1 
                                                 
1 This data set is available from: http://www.forecasters.org/ijf/data/Empirical%20Data.xls 
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?????=
 1 +?
 1??
 ?
  
Equation  9-2 
var????=
 1
 1??2
 [1 +?+?+ 3??]? 
Equation  9-3 
 
var????
 ?????
 =
 1 +?+?+ 3??
 1 +?+?+??
 ?1.5        for 0???1, 0???1 
Equation  9-4 
In order to remove the data series with highly variable demands, a Poisson dispersion 
test (also called the variance test) is needed for all processes except INARMA(1,1). 
Under the null hypothesis that ?1,?,?? are Poisson distributioned, the test statistic: 
???=?
 (????)
 2
 ?
 ?
 ?=1
  
Equation  9-5 
has a chi-square distribution with (??1) degrees of freedom. Therefore, ?0 is 
rejected if ???>???1;1??
 2 .  
A revised statistic is used to allow for the difference between the mean and variance 
of an INARMA(1,1) process. The new test statistic is given by: 
????=
 ???
 1.5
  
Equation  9-6 
The new statistic also has a chi-square distribution with (??1) degrees of freedom.  
Further filtering of data was performed for series with fewer than two nonzero 
demands. As previously mentioned in Chapter 8, the benchmark methods need at 
least two nonzero observations for initialization.   
Out of the 16,000 series, 5,168 series met the above criteria and therefore are used 
for empirical analysis. The filtering of the 3,000 series results in 1,943 series. It can 
be seen that although a substantial number of series has the potential to benefit from 
PoINARMA models, for a large number of series these models are not appropriate. 
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Other distributional assumptions would obviously result in different number of 
filtered series, which can be pursued as a further study. 
 
9.4 Design of Empirical Analysis   
The design of the empirical analysis follows the detailed simulation design of 
Chapter 7. As discussed in section  7.3.3.4, two fixed values have been used for the 
smoothing parameter of Croston, SBA, and SBJ methods (?= 0.2, 0.5). The 
initialization for these methods is based on using the first inter-demand interval as 
the first smoothed inter-demand interval and the average of the first two non-zero 
observations as the first smoothed size.  
The data series is divided into two parts: ?estimation period? for initialization and 
estimation of parameters and ?performance period? for assessing the accuracy of 
forecasts. If at least two non-zero demands are observed in the estimation period, the 
first half of the observations is assigned for the estimation period and the other half 
for the performance period. However, if fewer than two non-zero demands are 
observed in the estimation period, this period will be extended until the second non-
 zero demand is observed. When the effect of length of history is tested, the 
performance period is fixed and the estimation period varies. 
It is assumed that there are four possible INARMA models to use for forecasting. 
Therefore, identification is undertaken among these models. This is done by applying 
both two-stage and one-stage identification procedures (see section  4.6). The former 
first uses the Ljung-Box test to distinguish between INARMA(0,0) and the other 
three models. Then, the AIC is used to select among the other models. The latter uses 
only the AIC to select among all INARMA models.    
Based on the simulation results of chapter 8, we suggested that general models 
(INAR(1) and INARMA(1,1) were tested in chapter 8) can be used as alternatives to 
identification. This is also tested on empirical data.  
YW and CLS (and CML only for the INAR(1) model) have been used to estimate the 
parameters of INARMA models. The simulation results show that these methods 
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result in similar forecasts when the length of history is high. But for short history and 
high autoregressive parameters, CLS generally produces more accurate one-step 
ahead forecasts in terms of MSE and MASE. These estimation methods have been 
used for empirical analysis to test the validity of the simulation findings. It is worth 
mentioning that the INARMA forecasts are minimum mean square (MMSE). 
Therefore, we expect an improvement in terms of MSE but not necessarily in terms 
of MASE.     
The accuracy measures used in empirical analysis are discussed in chapter 2 in detail. 
In addition to the measures used in the simulation experiment (ME, MSE, and 
MASE), two relative-to-another-method measures have been used. As previously 
mentioned in section  2.4, the percent better (PB) determines how often a method is 
better than another method. However, it does not show how much the improvement 
is. The relative geometric root-mean-square error (RGRMSE) is used to calculate the 
magnitude of improvement of one method over another. 
 
9.5 INARMA vs Benchmark Methods  
In this section, the results of comparing INARMA forecasts with those of 
benchmarks are presented. First, we use an all-INAR(1) approach assuming that all 
the series are in fact INAR(1) processes. The different estimation methods used in 
the simulation chapter for estimation of INAR(1) parameters are also used here. An 
all-INARMA(1,1) approach is then used and the results are compared to both 
benchmark methods and all-INAR(1) results. As previously mentioned in sections 
8.6.2.2 and 8.6.2.4, these approaches especially perform well compared to 
identification for highly auto-correlated data and short data histories. To assess their 
performance for empirical data, the forecast accuracy results based on identification 
are also presented.  
The results of identification show what INARMA models each series follows. Those 
series that follow a specific INARMA model are then separated and each one is 
forecasted with the corresponding INARMA method (either INARMA(0,0), 
INAR(1), INMA(1), or INARMA(1,1)). The accuracy of these INARMA forecasts is 
compared to the corresponding simulation results. The results include one-step, 
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three-step and six-step-ahead forecasts.   
The sensitivity of INARMA forecasts to the length of history is also tested for the 
16,000 series. Finally, the results of lead time forecasts for the INAR(1) model are 
presented for both the 16,000 and 3,000 series.  
 
9.5.1 All-INAR(1)  
We suggest in chapter 8 that using a general INARMA model produces forecasts 
comparable to those based on identification. As we will show in section  9.5.3, most 
of the series in both 16,000 and 3,000 series are identified as INARMA(0,0) or 
INAR(1). Therefore, using INAR(1) to forecast seems to be a promising approach 
for these datasets. The results of INAR(1) and benchmarks for all points in time and 
issue points are shown in Table  9-1 and Table  9-2 for 16,000 series.   
Recall from chapter 5 that, as pointed out by Al-Osh and Alzaid (1987), for small 
sample sizes (??75) and small autoregressive parameter ??= 0.1?, because the 
sample contains many zero values, CML is not as good as YW in terms of bias and 
MSE of the estimates. The simulation results in section 8.3 show that for 
corresponding parameters (see section  9.5.4), YW yields better forecasts than CLS 
and CML using MSE and MASE. We test this by presenting CLS, YW and CML 
based forecasts. The empirical results confirm the corresponding simulation results. 
Table ?9-1 Comparing INAR(1) with benchmarks for all points in time (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INAR(1) 
CLS 
INAR(1) 
YW 
INAR(1) 
CML 
ME -0.0719 -0.0933 -0.0402 -0.0086 -0.0367 0.0196 0.0261 0.0283 0.0282 
MSE 0.3910 0.4205 0.3802 0.3859 0.3793 0.3846 0.3609 0.3527 0.3555 
MASE 2.8594 2.8852 2.7051 2.4925 2.6881 2.3640 1.9789 1.9124 1.9432 
PB of MASE  
INAR(1)-CLS/Benchmark 
0.6830 0.6952 0.6302 0.5624 0.6236 0.5116    
PB of MASE  
INAR(1)-YW/Benchmark 
0.6742 0.6868 0.6216 0.5555 0.6150 0.5050    
PB of MASE  
INAR(1)-CML/Benchmark 
0.6651 0.6878 0.6116 0.5545 0.6050 0.5050    
RGRMSE  
INAR(1)-CLS/Benchmark 
0.7812 0.7401 0.8272 0.9024 0.8352 0.9927    
RGRMSE  
INAR(1)-YW/Benchmark 
0.7898 0.7493 0.8382 0.9157 0.8463 1.0077    
RGRMSE  
INAR(1)-CML/Benchmark 
0.7894 0.7494 0.8367 0.9152 0.8449 1.0075    
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Table ?9-2 Comparing INAR(1) with benchmarks for issue points (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INAR(1) 
CLS 
INAR(1) 
YW 
INAR(1) 
CML 
ME -0.0266 -0.0441 0.0028 0.0339 0.0061 0.0598 -0.0598 -0.0324 -0.0197 
MSE 0.5329 0.5666 0.5237 0.5344 0.5231 0.5359 0.5792 0.5218 0.5420 
MASE 0.3309 0.3375 0.3188 0.3048 0.3175 0.2951 0.3679 0.3473 0.3444 
PB of MASE  
INAR(1)-CLS/Benchmark 
0.4590 0.4509 0.4016 0.3219 0.3949 0.2900    
PB of MASE  
INAR(1)-YW/Benchmark 
0.4584 0.4493 0.4026 0.3273 0.3956 0.2941    
PB of MASE  
INAR(1)-CML/Benchmark 
0.4826 0.4785 0.4234 0.3534 0.4166 0.3196    
RGRMSE  
INAR(1)-CLS/Benchmark 
1.2416 1.3295 1.3402 1.6694 1.3531 1.8393    
RGRMSE  
INAR(1)-YW/Benchmark 
1.1734 1.2477 1.2728 1.5709 1.2847 1.7301    
RGRMSE  
INAR(1)-CML/Benchmark 
1.1060 1.2158 1.1989 1.5367 1.2105 1.6960    
 
The results of Table  9-1 show that INAR(1) produces better results than benchmarks 
regardless of the estimation method. The results also show that YW based INAR(1) 
is the best estimation method among the three methods, outperforming the best 
benchmark method (SBJ 0.2 for MSE and SBJ 0.5 for MASE) by 7 percent in terms 
of MSE and 19 percent in terms of MASE. The results of PB and RGRMSE also 
show superior performance of INARMA compared to the benchmark methods.  
As can be seen from Table  9-2, when only issue points are considered, the INARMA 
forecasts are biased, agreeing with the simulation results. We find that this is true for 
all the cases that only issue points are considered so we do not discuss this again.  
It can be seen from Table  9-1 that the MASE of all methods is very high which, as 
explained in section 2.4, suggests that all of these methods are worse than na?ve. The 
reason is that because the data series contain many zeros in the estimation period, the 
error of na?ve in most of the periods is zero. Therefore the in-sample MAE is very 
small and the MASE is very large.  
However, when only issue points are considered, because it is likely that a nonzero 
demand is followed with a zero demand, the absolute error of na?ve and therefore the 
in-sample MAE is large. As a result, the MASE of the forecasting methods is smaller 
compared to the all points in time case. The results of Table  9-2 confirm this.  
As a result, for highly intermittent data, MASE does not provide reliable results for 
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all points in time and issue points.  
The simulation results of section 8.6.1 show the superiority of INARMA(0,0) 
forecasts compared to the benchmarks for ?= 0.3,?= 96. It will be seen in section 
 9.5.4 that the majority of 16,000 series are identified as INARMA(0,0) with ? close 
to 0.3 (see appendix 9.A) so the results for 16,000 series for all points in time agree 
with the simulation results. 
The results for 3,000 series are shown in Table  9-3 and Table  9-4. It can be seen that 
YW again results in more accurate forecasts than both CLS and CML. CLS and 
CML results are worse than benchmarks and YW results only improve MSE by 0.5 
percent compared to the best benchmark which is SBA 0.2. However, the MASE of 
SBJ 0.2 is better than that of INAR(1)-YW by one percent. As mentioned in chapter 
6, the INARMA forecasts provide the minimum MSE and not MASE.   
The results of Table  9-3 also show the superior performance of INAR(1)-YW to the 
benchmark methods in terms of PB and RGRMSE except for SBA and SBJ 0.2.  
Based on the results of Table  9-4, INAR(1)-YW is better than the best benchmark in 
terms of MSE although the INARMA forecasts are biased when only issue points are 
considered. However, the MASE is still slightly worse. 
Table ?9-3 Comparing INAR(1) with benchmarks for all points in time (3000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INAR(1) 
CLS 
INAR(1) 
YW 
INAR(1) 
CML 
ME -0.0419 -0.1016 0.1662 0.4336 0.1894 0.6120 0.1016 0.0136 0.0145 
MSE 3.2574 3.7054 3.2483 3.6470 3.2550 3.8249 3.3540 3.2319 3.2640 
MASE 0.8694 0.9277 0.8543 0.8848 0.8535 0.8914 0.8757 0.8636 0.8720 
PB of MASE  
INAR(1)-CLS/Benchmark 
0.5097 0.5528 0.4885 0.5211 0.4886 0.5329    
PB of MASE  
INAR(1)-YW/Benchmark 
0.5171 0.5551 0.4842 0.5211 0.4839 0.5295    
PB of MASE  
INAR(1)-CML/Benchmark 
0.5133 0.5522 0.4828 0.5136 0.4812 0.5259    
RGRMSE  
INAR(1)-CLS/Benchmark 
0.5329 0.9814 0.9370 1.0027 1.0037 1.0067    
RGRMSE  
INAR(1)-YW/Benchmark 
0.9471 0.9175 0.9765 0.9868 0.9826 0.9857    
RGRMSE  
INAR(1)-CML/Benchmark 
0.9476 0.9207 0.9791 0.9898 0.9847 0.9894    
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Table ?9-4 Comparing INAR(1) with benchmarks for issue points (3000 series)  
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INAR(1) 
CLS 
INAR(1) 
YW 
INAR(1) 
CML 
ME -0.0518 -0.1058 0.1544 0.4233 0.1773 0.5996 -0.0037 -0.0650 -0.0732 
MSE 3.3807 3.8368 3.3685 3.7724 3.3749 3.9483 3.4687 3.3563 3.3865 
MASE 0.9083 0.9686 0.8918 0.9210 0.8907 0.9260 0.9164 0.9054 0.9130 
PB of MASE  
INAR(1)-CLS/Benchmark 
0.5087 0.5555 0.4861 0.5157 0.4857 0.5231    
PB of MASE  
INAR(1)-YW/Benchmark 
0.5117 0.5539 0.4756 0.5127 0.4744 0.5161    
PB of MASE  
INAR(1)-CML/Benchmark 
0.5097 0.5519 0.4741 0.5076 0.4723 0.5162    
RGRMSE  
INAR(1)-CLS/Benchmark 
1.0187 0.9738 1.0354 1.0442 1.0434 1.0503    
RGRMSE  
INAR(1)-YW/Benchmark 
0.9927 0.9618 1.0200 1.0311 1.0293 1.0377    
RGRMSE  
INAR(1)-CML/Benchmark 
0.9953 0.9686 1.0291 1.0434 1.0394 1.0495    
 
The simulation results of chapter 8 suggest that, with the presence of a high 
autocorrelation, INAR(1)  outperforms the benchmarks. Also, the simulation results 
show that for ?= 0.1 and ?= 1, 3, when the number of observations is small 
(?= 24), SBA and SBJ (with smoothing parameter 0.2) are better than INAR(1) in 
terms of both MSE and MASE. But for higher number of observations, INAR(1) 
starts to slightly perform better. 
It will be seen in section  9.5.4 that the estimated autoregressive parameter is generally 
close to 0.1. Therefore, the results for 3000 series agree with the simulation results. 
  
9.5.2 All-INARMA(1,1)  
In this section it is assumed that all series follow the INARMA(1,1) model. The 
results for 16,000 series are presented in Table  9-5 and Table  9-6.   
The simulation results show that for INARMA(1,1) processes, CLS produces better 
results than YW. We test this for empirical data by presenting both CLS and YW-
 based forecasts. As explained in chapter 5, the CML estimates have only been 
obtained for INAR(p) models and therefore these estimates are not presented for the 
INARMA(1,1) model.   
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The results of Table  9-5 show that INARMA improves the accuracy of forecast by 3 
percent in terms of MSE and 19 percent in terms of MASE compared to the best 
benchmark (SBJ 0.2 for MSE and SBJ 0.5 for MASE). The RGRMSE results 
confirm the MSE results. It can be seen that the YW-based INARMA(1,1) forecasts 
are worse than CLS-based forecasts, agreeing with simulation results.  
Table ?9-5 Comparing INARMA(1,1) with benchmarks for all points in time (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
CLS 
INARMA 
YW 
ME -0.0719 -0.0933 -0.0402 -0.0086 -0.0367 0.0196 0.0258 -0.0039 
MSE 0.3910 0.4205 0.3802 0.3859 0.3793 0.3846 0.3668 0.4833 
MASE 2.8594 2.8852 2.7051 2.4925 2.6881 2.3640 1.9128 2.3085 
PB of MASE  
INARMA-CLS/Benchmark 
0.6692 0.6842 0.6161 0.5508 0.6095 0.5004   
PB of MASE  
INARMA-YW/Benchmark 
0.7359 0.7413 0.7150 0.6922 0.7122 0.6691   
RGRMSE  
INARMA-CLS/Benchmark 
0.7653 0.7294 0.8128 0.8918 0.8205 0.9818   
RGRMSE  
INARMA-YW/Benchmark 
0.7843 0.7464 0.8200 0.8960 0.8285 0.9881   
 
Table ?9-6 Comparing INARMA(1,1) with benchmarks for issue points (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
CLS 
INARMA 
YW 
ME -0.0266 -0.0441 0.0028 0.0339 0.0061 0.0598 -0.0326 -0.5620 
MSE 0.5329 0.5666 0.5237 0.5344 0.5231 0.5359 0.5766 1.5057 
MASE 0.3309 0.3375 0.3188 0.3048 0.3175 0.2951 0.3509 0.7313 
PB of MASE  
INARMA-CLS/Benchmark 
0.4958 0.4797 0.4349 0.3507 0.4275 0.3162   
PB of MASE  
INARMA-YW/Benchmark 
0.3004 0.2923 0.2779 0.2375 0.2750 0.2185   
RGRMSE  
INARMA-CLS/Benchmark 
1.0833 1.1712 1.1751 1.4768 1.1862 1.6282   
RGRMSE  
INARMA-YW/Benchmark 
2.1539 2.3492 2.4021 2.9709 2.4289 3.3006   
 
The results of comparing INARMA(1,1) and benchmarks for all points in time and 
issue points for 3,000 series are presented in Table  9-7 and Table  9-8 for both CLS 
and YW estimates. The results confirm that INARMA(1,1) forecasts based on CLS 
estimates are better than those based on YW estimates. 
The results of Table  9-7 show that both CLS and YW based INARMA(1,1) forecasts 
are worse than benchmarks. In order to understand the reason, we need to identify 
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the autoregressive and moving average order of the data series. This will be 
examined in the next section. 
Table ?9-7 Comparing INARMA(1,1) with benchmarks for all points in time (3000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
CLS 
INARMA 
YW 
ME -0.0419 -0.1016 0.1662 0.4336 0.1894 0.6120 -0.0461 0.0091 
MSE 3.2574 3.7054 3.2483 3.6470 3.2550 3.8249 3.4038 4.0726 
MASE 0.8694 0.9277 0.8543 0.8848 0.8535 0.8914 0.8869 0.9548 
PB of MASE  
INARMA-CLS/Benchmark 
0.5063 0.5401 0.4777 0.5125 0.4767 0.5209   
PB of MASE  
INARMA-YW/Benchmark 
0.4734 0.5018 0.4517 0.4782 0.4522 0.4899   
RGRMSE  
INARMA-CLS/Benchmark 
0.9893 0.9536 1.0231 1.0293 1.0289 1.0276   
RGRMSE  
INARMA-YW/Benchmark 
0.7435 0.7078 0.7675 0.7680 0.7723 0.7669   
 
Table ?9-8 Comparing INARMA(1,1) with benchmarks for issue points (3000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
CLS 
INARMA 
YW 
ME -0.0518 -0.1058 0.1544 0.4233 0.1773 0.5996 -0.1366 -0.1972 
MSE 3.3807 3.8368 3.3685 3.7724 3.3749 3.9483 3.5569 4.1304 
MASE 0.9083 0.9686 0.8918 0.9210 0.8907 0.9260 0.9327 0.9902 
PB of MASE  
INARMA-CLS/Benchmark 
0.5006 0.5378 0.4691 0.5027 0.4677 0.5097   
PB of MASE  
INARMA-YW/Benchmark 
0.4805 0.5108 0.4558 0.4844 0.4570 0.4961   
RGRMSE  
INARMA-CLS/Benchmark 
1.0343 0.9940 1.0629 1.0707 1.0712 1.0772   
RGRMSE  
INARMA-YW/Benchmark 
0.8166 0.7749 0.8417 0.8469 0.8486 0.8527   
 
The simulation results for the corresponding parameter set (?= 0.1, 0.3,  ? close to 
zero, and ?= 1,3) show that when the number of observations is small (?= 24), 
INARMA(1,1) performance is poor. But for a higher autoregressive parameter and 
number of observations, INARMA(1,1) performance improves greatly.      
Comparing the results of this section with those of the previous section shows that 
treating all as INAR(1) produces better results than treating all as INARMA(1,1) 
which confirms the simulation results (see section  8.6.2.4). A possible explanation is 
that the number of parameters to be estimated and therefore the estimation error is 
less for all-INAR(1) compared to all-INARMA(1,1). The results of identification in 
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the next section will show that 98.78 percent of 16,000 series (78.43 for 3,000 series) 
are identified as INAR(0,0) or INAR(1). This could also justify the superior 
performance of all-INAR(1) because only 1.22 percent of the series (21.57 for 3000 
series) are either INMA(1) or INARMA(1,1). Although more series are identified as 
INMA(1) and INARMA(1,1) in 3,000 series, their moving average parameter is 
generally between zero and 0.1 and these processes are close to INARMA(0,0) and 
INAR(1). This could also help to understand why all-INAR(1) works better than all-
 INARMA(1,1) for 3,000 series.   
 
9.5.3 Identification among four Processes     
In this section, the appropriate INARMA model is identified among the four possible 
candidates. Both one-stage and two-stage identification procedures are tested (see 
section  4.6 for details). For both identification methods, the results for the case where 
all the INARMA forecasts are based on CLS and YW estimates are presented.  
The accuracy of INARMA forecasts based on identification and treating all as 
INAR(1) or INARMA(1,1) for 16,000 series are compared in Table  9-9 and Table 
 9-10. As expected, identification (two-stage) produces slightly better results in terms 
of MSE and MASE, (except for MSE of all-INAR(1) for all points in time) but the 
results are generally close. 
Table ?9-9 The effect of identification on INARMA forecasts for all points in time (16000 series) 
The 
identification 
method 
ME MSE MASE 
PB of MASE 
(INARMA/Benchmark) 
RGRMSE 
 (INARMA/Benchmark) 
Crost 
0.2 
Crost 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
Crost 
0.2 
Crost 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
Two-stage 
identification (CLS) 
0.0334 0.3529 1.8576 0.6659 0.6818 0.6099 0.5440 0.6030 0.4927 0.8004 0.7614 0.8514 0.9328 0.8595 1.0264 
Two-stage 
identification (YW) 
0.0321 0.3521 1.8647 0.6655 0.6811 0.6096 0.5440 0.6027 0.4924 0.7968 0.7577 0.8474 0.9286 0.8555 1.0217 
One-stage  
identification (CLS) 
0.0307 0.3581 1.9008 0.6665 0.6832 0.6123 0.5481 0.6054 0.4963 0.7948 0.7549 0.8443 0.9232 0.8524 1.0165 
One-stage  
identification (YW) 
0.0309 0.3533 1.9085 0.6359 0.6413 0.6150 0.5422 0.6022 0.4961 0.7945 0.7557 0.8436 0.9221 0.8529 1.0151 
All-INAR(1) (YW) 0.0283 0.3527 1.9124 0.6742 0.6868 0.6216 0.5555 0.6150 0.5050 0.7898 0.7493 0.8382 0.9157 0.8463 1.0077 
All-INARMA(1,1) 
(CLS) 
0.0258 0.3668 1.9128 0.6692 0.6842 0.6161 0.5508 0.6095 0.5004 0.7653 0.7294 0.8128 0.8918 0.8205 0.9818 
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Table ?9-10 The effect of identification on INARMA forecasts for issue points (16000 series) 
The 
identification 
method 
ME MSE MASE 
PB of MASE 
(INARMA/Benchmark) 
RGRMSE 
 (INARMA/Benchmark) 
Crost 
0.2 
Crost 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
Crost 
0.2 
Crost 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
Two-stage 
identification (CLS) 
0.0351 0.5045 0.3055 0.5562 0.5246 0.4903 0.3836 0.4817 0.3448 0.9315 0.9659 1.0093 1.2102 1.0186 1.3311 
Two-stage 
identification (YW) 
0.0256 0.5187 0.3093 0.5514 0.5196 0.4856 0.3795 0.4768 0.3406 0.9587 0.9910 1.0392 1.2435 1.0488 1.3688 
One-stage  
identification (CLS) 
0.0012 0.5288 0.3293 0.5211 0.5014 0.4581 0.3682 0.4497 0.3308 1.0188 1.0941 1.1053 1.3783 1.1158 1.5188 
One-stage  
identification (YW) 
0.0220 0.5257 0.3313 0.5204 0.5023 04579 0.3575 0.4450 0.3185 1.0145 1.0722 1.0951 1.3723 1.1116 1.5252 
All-INAR(1) (YW) -0.0324 0.5218 0.3473 0.4584 0.4493 0.4026 0.3273 0.3956 0.2941 1.1734 1.2477 1.2728 1.5709 1.2847 1.7301 
All-INARMA(1,1) 
(CLS) 
-0.0326 0.5766 0.3509 0.4958 0.4797 0.4349 0.3507 0.4275 0.3162 1.0833 1.1712 1.1751 1.4768 1.1862 1.6282 
 
The results of Table  9-9 and Table  9-10 also show that the two-stage identification 
procedure provides better results than the one-stage. Since the majority of series are 
identified as INARMA(0,0), this agrees with the simulation results of section 8.6.2.3. 
It can also be seen that the CLS and YW yield close results for both two-stage and 
one-stage identification methods. In order to be consistent with the simulation 
analysis (see conclusion of section  8.4), we focus on the CLS-based two-stage 
identification results. 
For 16,000 time series, out of the 5,168 series, 98.12 percent were identified as 
INARMA(0,0), 0.66 percent as INAR(1), 1.04 percent as INMA(1), and 0.17 percent 
were identified as INARMA(1,1).   
As can be seen, the majority of the series are identified as INARMA(0,0). The 
simulation results show that when data is in fact INARMA(0,0), the all-
 INARMA(1,1) forecasts are close to INARMA(0,0) forecasts. The simulation results 
also show that when the order is known to be (0,0), all-INARMA(1,1) produces 
better forecasts than the best benchmark method. The results of Table  9-5 and Table 
 9-6 show that all-INARMA(1,1) for 16,000 series performs better than benchmarks, 
agreeing with the simulation results.    
Now, the accuracy of INARMA forecasts based on identification and treating all as 
INAR(1) or INARMA(1,1) for 3,000 series are compared in Table  9-11 and Table 
 9-12. Here again, the two-stage identification produces slightly better results not only 
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in terms of MSE and MASE, but also in terms of PB of MASE and RGRMSE (with 
the exception of MSE of all-INAR(1)). It should be mentioned that these results are 
still not as good as SBA and SBJ with smoothing parameter 0.2.  
Table ?9-11 The effect of identification on INARMA forecasts for all points in time (3000 series)  
The 
identification 
method 
ME MSE MASE 
PB of MASE 
(INARMA/Benchmark) 
RGRMSE 
 (INARMA/Benchmark) 
Crost 
0.2 
Crost 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
Crost 
0.2 
Crost 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
Two-stage 
identification (CLS) 
0.0813 3.2925 0.8608 0.5238 0.5557 0.4973 0.5286 0.4974 0.5358 0.9376 0.9050 0.9599 0.9710 0.9647 0.9707 
Two-stage 
identification (YW) 
0.0191 3.2840 0.8603 0.5229 0.5514 0.4895 0.5244 0.4893 0.5315 0.9135 0.8875 0.9412 0.9544 0.9475 0.9500 
One-stage  
identification (CLS) 
0.0276 3.3088 0.8697 0.5156 0.5497 0.4852 0.5191 0.4854 0.5276 0.9469 0.9145 0.9747 0.9829 0.9803 0.9823 
One-stage  
identification (YW) 
0.0091 3.3726 0.8748 0.4734 0.5018 0.4517 0.4782 0.4522 0.4899 0.9475 0.9178 0.9679 0.9980 0.9823 0.9969 
All-INAR(1) (YW) 0.0136 3.2319 0.8636 0.5171 0.5551 0.4842 0.5211 0.4839 0.5295 0.9471 0.9175 0.9765 0.9868 0.9826 0.9857 
All-INARMA(1,1) 
(CLS) 
-0.0461 3.4038 0.8869 0.5063 0.5401 0.4777 0.5125 0.4767 0.5209 0.9893 0.9536 1.0231 1.0293 1.0289 1.0276 
 
Table ?9-12 The effect of identification on INARMA forecasts for issue points (3000 series)  
The 
identification 
method 
ME MSE MASE 
PB of MASE 
(INARMA/Benchmark) 
RGRMSE 
 (INARMA/Benchmark) 
Crost 
0.2 
Crost 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
Crost 
0.2 
Crost 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
Two-stage 
identification (CLS) 
0.0099 3.4099 0.9013 0.5202 0.5544 0.4888 0.5225 0.4883 0.5256 0.9907 0.9560 1.0076 1.0214 1.0160 1.0277 
Two-stage 
identification (YW) 
-0.0303 3.3835 0.8995 0.5190 0.5501 0.4827 0.5191 0.4814 0.5225 0.9653 0.9365 0.9879 1.0004 0.9973 1.0039 
One-stage  
identification (CLS) 
-0.0490 3.4327 0.9107 0.5107 0.5486 0.4783 0.5127 0.4780 0.5174 0.9961 0.9618 1.0188 1.0301 1.0282 1.0371 
One-stage  
identification (YW) 
-0.0572 3.5304 0.9202 0.5005 0.5408 0.4658 0.5144 0.4670 0.5161 0.9966 0.9749 1.0217 1.0469 1.0486 1.0527 
All-INAR(1) (YW) -0.0650 3.3563 0.9054 0.5117 0.5539 0.4756 0.5127 0.4744 0.5161 0.9927 0.9618 1.0200 1.0311 1.0293 1.0377 
All-INARMA(1,1) 
(CLS) 
-0.1366 3.5569 0.9327 0.5006 0.5378 0.4691 0.5027 0.4677 0.5097 1.0343 0.9940 1.0629 1.0707 1.0712 1.0772 
 
The results of Table  9-11 and Table  9-12 also show that the two-stage identification 
procedure provides better results than the one-stage method. This agrees with the 
corresponding simulation results of section  8.6.2.3 for each of INARMA(0,0), 
INAR(1), INMA(1) and INARMA(1,1) models with similar parameters to those 
estimated for 3,000 series (see section  9.5.4 to find the corresponding parameters). 
The CLS-based two-stage identification results for 3,000 series show that out of 
1,943 filtered series, 54.55 percent were identified as INARMA(0,0), 23.88 percent 
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as INAR(1), 17.96 percent as INMA(1), and 3.60 percent were identified as 
INARMA(1,1). 
Now, if we go back to the results of the previous section, the results show that all-
 INARMA(1,1) results are worse than the benchmark methods. The simulation results 
also show that for the INAR(1) and INMA(1) processes with the corresponding 
parameters (the most common INARMA parameters of the 1,943 series are provided 
in the next section), the INARMA forecast accuracy is very close or slightly worse 
than that of benchmark methods. This could explain the 4 percent superiority (in 
terms of MSE) of the best benchmark forecasts (SBA 0.2) over the all-
 INARMA(1,1) forecasts. 
Based on the results of this section, identification (two-stage) results in better 
INARMA forecasts than using an all-INAR(1) or all-INARMA(1,1) approach but the 
accuracy benefits are small. As also mentioned in the simulation chapter, the all-
 INAR(1) and all-INARMA(1,1) approaches are especially useful when the 
autoregressive parameter is high, but this is not the case for our empirical data.  
        
9.5.4 INARMA(0,0), INAR(1), INMA(1) and INARMA(1,1) Series      
As previously mentioned, a considerable percentage of series among 1,943 filtered 
series (of 3,000 series) were identified as INARMA(0,0), INAR(1) or INMA(1) and 
a few series were identified as INARMA(1,1). In this section, we separate the series 
according to the models identified and study them individually.  
Because most of the series in the 16,000 data set are identified as INARMA(0,0) and 
a small number identified as other models, we do not present the results of each 
model here. Similar results for 16,000 series can be found in Appendix 9.A.     
As the results of identification in the previous section suggest, 54.55 percent of 1943 
series are identified as INARMA(0,0). Now, we assume that the order of these 1,060 
series is taken to be (0,0) and the INARMA(0,0) forecasting method, i.e. using the 
average of all the previous observations as the forecast for the next period, is used. 
The results for all points in time and issue points are presented in Table  9-13 and 
Table  9-14.  
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Table ?9-13 Only INARMA(0,0) series for all points in time (3000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME 0.0288 -0.0843 0.1719 0.3017 0.1878 0.4303 0.1420 
MSE 2.0878 2.3629 2.0998 2.2830 2.1043 2.3483 2.0749 
MASE 0.9139 0.9819 0.9021 0.9352 0.9016 0.9382 0.8978 
PB of MASE 
(INARMA/Benchmark) 
0.5329 0.5624 0.5080 0.5453 0.5085 0.5491 - 
RGRMSE 
(INARMA/Benchmark) 
0.8992 0.8543 0.9111 0.8922 0.9152 0.8798 - 
 
Table ?9-14 Only INARMA(0,0) series for issue points (3000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME 0.0071 -0.0959 0.1482 0.2827 0.1639 0.4089 0.0830 
MSE 2.1982 2.4911 2.2013 2.3901 2.2049 2.4482 2.1704 
MASE 0.9472 1.0182 0.9327 0.9635 0.9318 0.9634 0.9298 
PB of MASE 
(INARMA/Benchmark) 
0.5328 0.5642 0.5023 0.5388 0.5013 0.5362 - 
RGRMSE 
(INARMA/Benchmark) 
0.9743 0.9149 0.9763 0.9549 0.9836 0.9450 - 
 
Investigating the estimated parameter of the INARMA(0,0) process (?), we found 
that in general ? is close to 1 (the average is 1.2641 and 73.87 percent are between 
0.5 and 1.5). 
The results of Table  9-13 agree with the corresponding simulation results (?= 1 and 
?= 24). The simulation results show that INARMA produces the best results and 
the empirical results also show a very narrow improvement over the best benchmark 
method. The PB of MASE results confirm the results of MASE for both all points in 
time and issue points.  
The results of identification show that 23.88 percent of 1,943 series are identified as 
INAR(1). Now, we assume that the order of these 464 series is taken to be (1,0) and 
the INAR(1) forecasting method is used. We also investigate the effect of using 
different estimation methods on forecast accuracy. For this reason, the forecasts 
based on the three estimation methods of CLS, YW and CML are presented in Table 
 9-15 and Table  9-16.  
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In general, the estimated autoregressive parameter of the INAR(1) process, ?, is 
close to 0.1 (the average is 0.1234 and 50.65 percent are between 0.05 and 0.15) and 
the estimated innovation parameter, ?, is around 2 (the average is 2.5972 and 40.52 
percent are between 1 and 3). The simulation results for the corresponding 
parameters (similar values of ?, ?, and ?) show that YW yields better results than 
CLS  and CML. The simulation results also show that the YW results are slightly 
better than those of SBA and SBJ with smoothing parameter 0.2. 
Table ?9-15 Only INAR(1) series for all points in time (3000 series)  
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INAR(1) 
CLS 
INAR(1) 
YW 
INAR(1) 
CML 
ME -0.1557 -0.1498 0.1365 0.5791 0.1689 0.8221 -0.1963 -0.1411 -0.1257 
MSE 4.8743 5.6076 4.8235 5.5217 4.8319 5.8396 4.9049 4.7921 4.8386 
MASE 0.9168 0.9721 0.8923 0.9218 0.8906 0.9312 0.9203 0.9088 0.9177 
PB of MASE  
INAR(1)-CLS/Benchmark 
0.4989 0.5408 0.4596 0.4919 0.4605 0.5068    
PB of MASE  
INAR(1)-YW/Benchmark 
0.5119 0.5458 0.4682 0.5038 0.4662 0.5135    
PB of MASE  
INAR(1)-CML/Benchmark 
0.5083 0.5462 0.4657 0.4928 0.4653 0.5070    
RGRMSE  
INAR(1)-CLS/Benchmark 
0.9940 0.9733 1.0499 1.0924 1.0529 1.1180    
RGRMSE  
INAR(1)-YW/Benchmark 
0.9726 0.9554 1.0275 1.0703 1.0311 1.0950    
RGRMSE  
INAR(1)-CML/Benchmark 
0.9887 0.9672 1.0443 1.0835 1.0457 1.1087    
      
Table ?9-16 Only INAR(1) series for issue points (3000 series)  
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INAR(1) 
CLS 
INAR(1) 
YW 
INAR(1) 
CML 
ME -0.1439 -0.1390 0.1465 0.5856 0.1787 0.8272 -0.2755 -0.2165 -0.2114 
MSE 5.0350 5.7658 4.9933 5.7037 5.0027 6.0297 5.1167 4.9863 5.0296 
MASE 0.9600 1.0166 0.9362 0.9669 0.9346 0.9764 0.9743 0.9609 0.9685 
PB of MASE  
INAR(1)-CLS/Benchmark 
0.4850 0.5330 0.4464 0.4837 0.4473 0.4962    
PB of MASE  
INAR(1)-YW/Benchmark 
0.4988 0.5411 0.4579 0.4954 0.4551 0.5024    
PB of MASE  
INAR(1)-CML/Benchmark 
0.5005 0.5413 0.4544 0.4872 0.4552 0.5001    
RGRMSE  
INAR(1)-CLS/Benchmark 
1.0272 1.0087 1.0864 1.1242 1.0913 1.1743    
RGRMSE  
INAR(1)-YW/Benchmark 
1.0041 0.9888 1.0625 1.1012 1.0682 1.1496    
RGRMSE  
INAR(1)-CML/Benchmark 
1.0177 0.9981 1.0731 1.1107 1.0778 1.1582    
 
The results of Table  9-15 agree with the simulation results in that YW results are 
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better than CLS and CML. The YW-based INAR(1) forecasts are also better than 
benchmarks by one percent in terms of MSE. However, the MASE of INAR(1) is 
worse than that of the best benchmark by one percent. 
The results of Table  9-16 also show a narrow improvement of INAR(1)-YW 
compared to the best benchmark (0.15 percent in terms of MSE) although the 
INARMA forecasts are biased when only issue points are considered. 
Based on the results of identification, 17.96 percent of 1,943 series are identified as 
INMA(1). We assume that the order of these 349 series is taken to be (0,1) and the 
INMA(1) forecasting method is used. We also investigate the effect of using 
different estimation methods (CLS and YW) on the forecasting accuracy. The results 
are given in Table  9-17 and Table  9-18. 
Table ?9-17 Only INMA(1) series for all points in time (3000 series)  
Accuracy measure 
Forecasting method  
Croston 
0.2 
Crosto
 n 0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INMA(1) 
CLS 
INMA(1) 
YW 
ME -0.0869 -0.0875 0.1907 0.6066 0.2215 0.8380 -0.1041 -0.0936 
MSE 4.3556 4.9339 4.3470 4.9673 4.3581 5.2745 4.3291 4.3464 
MASE 0.6681 0.7022 0.6556 0.6778 0.6549 0.6904 0.6676 0.6668 
PB of MASE  
INMA(1)-CLS/Benchmark 
0.5093 0.5418 0.4728 0.5033 0.4702 0.5150   
PB of MASE  
INMA(1)-YW/Benchmark 
0.5150 0.5461 0.4742 0.5062 0.4723 0.5177   
RGRMSE  
INMA(1)-CLS/Benchmark 
0.9546 0.9687 0.9829 1.0729 0.9960 1.0516   
RGRMSE  
INMA(1)-YW/Benchmark 
0.9345 0.9527 0.9642 1.0524 0.9771 1.0316   
 
Table ?9-18 Only INMA(1) series for issue points (3000 series)  
Accuracy measure 
Forecasting method  
Croston 
0.2 
Crosto
 n 0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INMA(1) 
CLS 
INMA(1) 
YW 
ME -0.0870 -0.0846 0.1889 0.6043 0.2195 0.8340 -0.1593 -0.1444 
MSE 4.4429 5.0046 4.4358 5.0503 4.4471 5.3611 4.4548 4.4742 
MASE 0.7177 0.7512 0.7045 0.7255 0.7039 0.7391 0.7256 0.7235 
PB of MASE  
INMA(1)-CLS/Benchmark 
0.4924 0.5304 0.4575 0.4891 0.4539 0.5019   
PB of MASE  
INMA(1)-YW/Benchmark 
0.5026 0.5361 0.4616 0.4945 0.4594 0.5064   
RGRMSE  
INMA(1)-CLS/Benchmark 
0.9891 1.0325 1.0230 1.1233 1.0399 1.1033   
RGRMSE  
INMA(1)-YW/Benchmark 
0.9654 1.0118 0.9987 1.0970 1.0152 1.0773   
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Looking at the estimated parameters of the INMA(1) process (?,?) reveals that in 
general, ? is close to zero (the average is 0.0374 and 79.94 percent are between 0 
and 0.05) and ? is between 2 and 3 (the average is 2.7357 and 43.55 percent are 
between 2 and 3). 
The simulation results for the corresponding parameters (similar values of ?, ?, and 
?) show that YW yields slightly better results than CLS and also both CLS and YW 
results are close to SBA and SBJ with smoothing parameter 0.2 (with INMA slightly 
better in terms of MSE). The results of Table  9-17 show that YW forecasts are better 
than CLS in terms of MASE (only by 0.1 percent) but worse in terms of MSE (only 
by 0.5 percent). The best INMA(1) is better than the best benchmark by only 0.4 
percent using MSE and worse than the best benchmark by 1.8 percent using MASE. 
Finally, the results of identification show that 3.60 percent of 1,943 series are 
identified as INARMA(1,1). We assume that the order of these 70 series is taken to 
be (1,1) and the INARMA(1,1) forecasting method is used. We also investigate the 
effect of using different estimation methods (CLS and YW) on the forecasting 
accuracy. The results are given in Table  9-19 and Table  9-20.  
Table ?9-19 Only INARMA(1,1) series for all points in time (3000 series)  
Accuracy measure 
Forecasting method  
Croston 
0.2 
Crosto
 n 0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INMA(1) 
CLS 
INMA(1) 
YW 
ME -0.1340 -0.1141 0.1556 0.6049 0.1878 0.8446 -0.2016 -0.0997 
MSE 4.7747 5.3016 4.7204 5.2908 4.7275 5.6017 5.0449 5.8052 
MASE 0.8853 0.9369 0.8695 0.9076 0.8690 0.9192 0.9178 0.9849 
PB of MASE  
INMA(1)-CLS/Benchmark 
0.4607 0.5226 0.4452 0.4821 0.4512 0.5036   
PB of MASE  
INMA(1)-YW/Benchmark 
0.4417 0.4881 0.4369 0.4702 0.4429 0.4905   
RGRMSE  
INMA(1)-CLS/Benchmark 
1.0854 1.0284 1.1681 1.0737 1.1793 1.1495   
RGRMSE  
INMA(1)-YW/Benchmark 
0.8169 0.7752 0.8747 0.7943 0.8910 0.8146   
 
In general, the estimated autoregressive parameter of an INARMA(1,1) process is in 
the range 0.1 <?< 0.3 (the average is 0.1907 and 54.28 percent are between 0.05 
and 0.35), the moving average parameter, ?, is close to zero (the average is 0.0773 
and 57.14 percent are between 0.01 and 0.1) and the innovation parameter, ?, is 
around 2 (the average is 2.1996 and 67.14 percent are between 1 and 2.5). 
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Table ?9-20 Only INARMA(1,1) series for issue points (3000 series)  
Accuracy measure 
Forecasting method  
Croston 
0.2 
Crosto
 n 0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INMA(1) 
CLS 
INMA(1) 
YW 
ME -0.1585 -0.1414 0.1291 0.5734 0.1610 0.8116 -0.3483 -0.2846 
MSE 5.0255 5.6064 4.9530 5.5318 4.9579 5.8222 5.2348 5.8600 
MASE 0.9274 0.9841 0.9112 0.9482 0.9106 0.9573 0.9576 1.0133 
PB of MASE  
INMA(1)-CLS/Benchmark 
0.4564 0.5269 0.4426 0.4849 0.4509 0.5019   
PB of MASE  
INMA(1)-YW/Benchmark 
0.4521 0.5029 0.4390 0.4812 0.4458 0.4946   
RGRMSE  
INMA(1)-CLS/Benchmark 
1.0896 1.0261 1.1812 1.1056 1.1952 1.2051   
RGRMSE  
INMA(1)-YW/Benchmark 
0.8444 0.7778 0.8989 0.8381 0.9221 0.8584   
 
The simulation results for corresponding parameters (similar values of ?, ?, ?, and 
?) show that CLS produces better forecasts than YW. The simulation results also 
show that SBA and SBJ have better results in terms of MSE and MASE by up to one 
percent. The results of Table  9-19 show that the MSE of the best benchmark method 
(SBA 0.2) is better than that of INARMA(1,1)-CLS by 6.5 percent and by 5.3 
percent for MASE. 
The results of Table  9-20 also show that CLS produces better forecasts using MSE 
and MASE when only issue points are considered, agreeing with simulation results 
(not presented). The best benchmark method is still better than INARMA(1,1)-CLS 
by 5.38 percent in terms of MSE and 4.90 percent in terms of MASE.  
  
9.5.5 h-step-ahead Forecasts for INAR(1) Series  
All of the forecasts in section  9.5.4 were one-step-ahead. In this subsection, the 
results of three-step and six-step-ahead forecasts for INAR(1) series of 16,000 and 
3,000 series are presented. Here, we only use YW-based forecasts because of their 
better performance for INAR(1) processes compared to CLS and CML. This has 
been shown both for theoretically generated data (section  8.3) and empirical data 
(sections  9.5.1 and  9.5.4).  
The simulation results show that, for INAR(1) processes, the performance of 
INARMA over the benchmark methods is improved for a h-step ahead compared to 
M.Mohammadipour, 2009, Chapter 9   223 
 
the one-step ahead case when the autoregressive parameter is low. But when the 
autoregressive parameter is high, the forecasts converge to the mean of process, 
resulting in poor INARMA forecasts. The simulation results also show that when 
more observations are available, the improvement by using INARMA over the 
benchmark methods increases.  
Because the autoregressive parameter of the 16,000 series is estimated to be low (see 
appendix 9.A), we see a substantial improvement over the best benchmark by using 
an INAR(1) forecast. For ?= 3, the results of Table  9-21 show that the improvement 
is 9.2 percent using MSE and 16.4 percent using MASE compared to the best 
benchmark. It can be seen that the improvement in terms of MSE is more than that of 
the one-step ahead forecasts (which is 7.2 percent), agreeing with the simulation 
results. However, the improvement in terms of MASE is less than that of the one-
 step ahead forecasts (which is 17.7 percent). 
Table ?9-21 Three-step-ahead YW-INAR(1) for all points in time (16000 series) 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INAR(1) 
ME -0.1237 -0.1686 -0.0583 0.0061 -0.0510 0.0643 0.0487 
MSE 0.9643 1.0393 0.9355 0.9330 0.9332 0.9236 0.8475 
MASE 2.2896 2.3359 2.1679 2.0109 2.1545 1.9114 1.5977 
PB of MASE 
INAR(1)/Benchmark 
0.5943 0.5493 0.5666 0.5095 0.5597 0.4706 - 
RGRMSE 
INAR(1)/Benchmark 
0.8654 0.9516 0.9060 1.1389 0.9119 1.2063 - 
 
Table ?9-22 Three-step-ahead YW-INAR(1) for issue points (16000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INAR(1) 
ME -0.0389 -0.0773 0.0152 0.0678 0.0213 0.1162 0.0193 
MSE 0.9931 1.0865 0.9915 1.0363 0.9922 1.0447 1.0159 
MASE 0.6814 0.6774 0.6575 0.6143 0.6550 0.5976 0.6560 
PB of MASE 
INAR(1)/Benchmark 
0.5533 0.4839 0.5192 0.3790 0.5069 0.3485 - 
RGRMSE 
INAR(1)/Benchmark 
1.0231 1.3512 1.0843 1.6532 1.0916 1.7859 - 
 
The results of Table  9-23 show that, when ?= 6, we also see a substantial 
improvement in using an INAR(1) forecast. The improvement is 7.8 percent using 
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MSE and 16.2 percent using MASE compared to the best benchmark. It can be seen 
that the improvement using MSE is slightly more than that of one-step ahead 
forecast. However, the improvement using MASE again deteriorates by 1.5 percent 
compared to the one-step ahead forecast. 
Table ?9-23 Six-step-ahead YW-INAR(1) for all points in time (16000 series) 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INAR(1) 
ME -0.1203 -0.1612 -0.0545 0.0136 -0.0472 0.0718 0.0576 
MSE 1.0029 1.0706 0.9738 0.9656 0.9715 0.9567 0.8822 
MASE 2.3385 2.3866 2.2119 2.0483 2.1979 1.9453 1.6286 
PB of MASE 
INAR(1)/Benchmark 
0.6139 0.5503 0.5731 0.4810 0.5664 0.4573 - 
RGRMSE 
INAR(1)/Benchmark 
0.8534 0.9415 0.8999 1.1492 0.9055 1.2119 - 
 
Table ?9-24 Six-step-ahead YW-INAR(1) for issue points (16000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INAR(1) 
ME -0.0818 -0.1170 -0.0282 0.0257 -0.0223 0.0733 -0.0288 
MSE 0.9266 1.0096 0.9189 0.9449 0.9188 0.9480 0.9428 
MASE 0.6656 0.6651 0.6387 0.5937 0.6357 0.5731 0.6358 
PB of MASE 
INAR(1)/Benchmark 
0.5653 0.4500 0.5359 0.3580 0.5173 0.3530 - 
RGRMSE 
INAR(1)/Benchmark 
0.9913 1.3136 1.0633 1.6153 1.0709 1.7608 - 
 
As discussed in the previous section, the autoregressive parameter of the 3,000 series 
is estimated to be close to zero. Therefore, because the estimated ? is low, we see an 
improvement by using INAR(1) over the benchmark methods. The improvement is 
1.8 percent using MSE. But the MASE is worse than the best benchmark by 1.7 
percent. It can be seen that the improvement in terms of MSE is more than that of the 
one-step ahead forecasts (0.6 percent). Also the deterioration in terms of MASE has 
been decreased compared to one-step ahead case (which was 2 percent), agreeing 
with the simulation results.  
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Table ?9-25 Three-step-ahead YW-INAR(1) for all points in time (3000 series) 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INAR(1) 
ME -0.2430 -0.2309 0.0516 0.5026 0.0844 0.7471 -0.2403 
MSE 4.9832 5.8989 4.8563 5.5920 4.8567 5.8457 4.7689 
MASE 0.9188 0.9835 0.8885 0.9188 0.8862 0.9234 0.9020 
PB of MASE 
INAR(1)/Benchmark 
0.5276 0.5459 0.4735 0.5017 0.4698 0.5022 - 
RGRMSE 
INAR(1)/Benchmark 
0.9893 0.9866 1.0603 1.1242 1.0638 1.1425 - 
 
Table ?9-26 Three-step-ahead YW-INAR(1) for issue points (3000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INAR(1) 
ME -0.2364 -0.2219 0.0561 0.5058 0.0886 0.7483 -0.2654 
MSE 5.0839 5.9960 4.9608 5.7035 4.9616 5.9623 4.8882 
MASE 0.9519 1.0173 0.9211 0.9496 0.9187 0.9541 0.9390 
PB of MASE 
INAR(1)/Benchmark 
0.5227 0.5471 0.4697 0.4975 0.4641 0.4976 - 
RGRMSE 
INAR(1)/Benchmark 
1.0096 1.0098 1.0880 1.1553 1.0874 1.1650 - 
 
The results of the six-step ahead compared to one-step ahead forecasts show that the 
improvement using MSE (0.2 percent) is decreased. The deterioration in terms of 
MASE (2.3 percent) is also increased. 
The corresponding simulation results also show that when we compare the three-step 
and one-step ahead forecasts, there is an improvement in terms of MSE (1.8 percent) 
and a deterioration in terms of MASE (1.7 percent) is decreased. But for the six-step 
ahead case, the deterioration using MASE is increased compared to one-step ahead 
case (2.3 percent vs. 2 percent). Therefore, the only difference between the empirical 
and simulation results is regarding the MSE of six-step ahead forecasts, which has 
not been improved compared to the one-step ahead forecasts. 
The results of three-step and six-step forecasts for INARMA(0,0), INMA(1) and 
INARMA(1,1) for both 16,000 and 3,000 series have also been found. Since these 
results also agree with INAR(1) results, we do not present them here (see Appendix 
9.B). In general, the performance of INARMA in relation to the benchmarks 
improves for h-step ahead compared to one-step ahead forecasts. 
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Table ?9-27 Six-step-ahead YW-INAR(1) for all points in time (3000 series) 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INAR(1) 
ME -0.3948 -0.4292 -0.0939 0.3318 -0.0604 0.5855 -0.3495 
MSE 5.3005 6.5011 5.0488 5.7594 5.0366 5.9095 5.0277 
MASE 0.9254 1.0090 0.8865 0.9179 0.8832 0.9130 0.9041 
PB of MASE 
INAR(1)/Benchmark 
0.5194 0.5640 0.4667 0.4994 0.4603 0.4865 - 
RGRMSE 
INAR(1)/Benchmark 
1.0012 0.9946 1.0789 1.1489 1.0845 1.1834 - 
 
Table ?9-28 Six-step-ahead YW-INAR(1) for issue points (3000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INAR(1) 
ME -0.4144 -0.4415 -0.1157 0.3120 -0.0825 0.5632 -0.4031 
MSE 5.3790 6.6227 5.1032 5.8224 5.0885 5.9554 5.1182 
MASE 0.9566 1.0448 0.9147 0.9451 0.9112 0.9381 0.9393 
PB of MASE 
INAR(1)/Benchmark 
0.5107 0.5585 0.4594 0.4928 0.4532 0.4810 - 
RGRMSE 
INAR(1)/Benchmark 
1.0245 1.0320 1.1112 1.1790 1.1168 1.2345 - 
 
9.5.6 The Effect of Length of History   
It has been shown in chapter 8 that when more observations are available, the 
accuracy of INARMA forecasts improves at a greater rate than benchmark methods. 
The effect of length of history on the accuracy of forecasts produced by different 
methods is examined in this section. In order to do so, we need a data set with more 
than 24 periods; therefore we are able to use only the 16,000 series. The last 12 
periods have been assigned as the performance period and the length of estimation 
period changes from 12 to 60 periods. This is shown in Table  9-29.    
Table ?9-29 The estimation and performance periods   
Cases Estimation period Performance period 
Case 1 49-60 61-72 
Case 2 13-60 61-72 
Case 3 1-60 61-72 
 
The INARMA results are based on all-INAR(1) forecasts with YW estimates. The 
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results for each of the above cases are presented in Table  9-30 to Table  9-35.    
Table ?9-30 The forecasting accuracy for all points in time for case 1 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.2043 -0.2139 -0.1501 -0.0760 -0.1441 -0.0300 -0.0225 
MSE 0.6827 0.7154 0.6408 0.6157 0.6369 0.6027 0.5201 
MASE 1.9684 1.9757 1.8422 1.6583 1.8283 1.5553 1.2098 
PB of MASE 
(INARMA/Benchmark) 
0.6364 0.6426 0.5951 0.5328 0.5912 0.4969 - 
RGRMSE 
(INARMA/Benchmark) 
0.8312 0.7989 0.8715 0.9580 0.8784 1.0404 - 
 
Table ?9-31 The forecasting accuracy for issue points for case 1 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.1664 -0.1652 -0.1163 -0.0403 -0.1108 0.0014 -0.1321 
MSE 1.0008 1.0671 0.9692 0.9866 0.9668 0.9887 0.9688 
MASE 0.4875 0.4858 0.4646 0.4290 0.4621 0.4122 0.4738 
PB of MASE 
(INARMA/Benchmark) 
0.4921 0.4517 0.4300 0.3440 0.4232 0.3207 - 
RGRMSE 
(INARMA/Benchmark) 
1.0452 1.0694 1.1223 1.3284 1.1313 1.4529 - 
 
Table ?9-32 The forecasting accuracy for all points in time for case 2 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.0709 -0.0948 -0.0381 -0.0070 -0.0345 0.0223 0.0258 
MSE 0.4257 0.4616 0.4146 0.4244 0.4138 0.4237 0.3867 
MASE 2.2628 2.2784 2.1383 1.9623 2.1245 1.8590 1.5077 
PB of MASE 
(INARMA/Benchmark) 
0.6714 0.6761 0.6154 0.5377 0.6086 0.4873 - 
RGRMSE 
(INARMA/Benchmark) 
0.8032 0.7836 0.8632 0.9692 0.8716 1.0617 - 
 
Table ?9-33 The forecasting accuracy for issue points for case 2 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.0417 -0.0626 -0.0073 0.0288 -0.0034 0.0592 -0.0552 
MSE 0.8668 0.9500 0.8574 0.9024 0.8572 0.9097 0.8655 
MASE 0.3620 0.3713 0.3482 0.3335 0.3467 0.3226 0.3820 
PB of MASE 
(INARMA/Benchmark) 
0.4452 0.4417 0.3827 0.3158 0.3742 0.2835 - 
RGRMSE 
(INARMA/Benchmark) 
1.2041 1.2695 1.3042 1.5976 1.3173 1.7591 - 
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Table ?9-34 The forecasting accuracy for all points in time for case 3 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.0523 -0.0788 -0.0218 0.0041 -0.0184 0.0317 0.0330 
MSE 0.4057 0.4415 0.3980 0.4117 0.3976 0.4127 0.3838 
MASE 2.2626 2.2831 2.1493 1.9939 2.1368 1.8996 1.6285 
PB of MASE 
(INARMA/Benchmark) 
0.6816 0.6874 0.6243 0.5507 0.6176 0.4966 - 
RGRMSE 
(INARMA/Benchmark) 
0.7986 0.7771 0.8592 0.9630 0.8675 1.0552 - 
 
Table ?9-35 The forecasting accuracy for issue points for case 3 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.0313 -0.0560 0.0021 0.0337 0.0058 0.0636 -0.0464 
MSE 0.8615 0.9447 0.8531 0.8985 0.8529 0.9060 0.8621 
MASE 0.3519 0.3636 0.3389 0.3274 0.3375 0.3170 0.3743 
PB of MASE 
(INARMA/Benchmark) 
0.4436 0.4571 0.3787 0.3269 0.3717 0.2889 - 
RGRMSE 
(INARMA/Benchmark) 
1.2297 1.2857 1.3336 1.6196 1.3467 1.7840 - 
 
The results confirm that when the length of estimation period is longer, the accuracy 
of all methods in terms of MSE improves. The PB of MASE and RGRMSE also 
improve when more data are available.  
The results show that when more observations become available, the MASE of all 
methods increases. However, the PB of MASE increases when the length of history 
increases. As argued in section  9.5.1, the results of MASE are not reliable for highly 
intermittent data and, therefore, we will not pursue these results.  
 
9.5.7 Lead Time Forecasting for INAR(1) Series   
The conditional expected values of the over-lead-time-aggregated INARMA series 
were obtained in chapter 6. The results for the four INARMA processes are 
summarized in Equation  9-7. 
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 ? 
Equation  9-7 
The accuracy of INARMA lead time forecasts has been compared to that of 
benchmark methods. This has been done for each INARMA model of section  9.5.4, 
individually. Based on the previous findings, the parameters of INAR(1) and 
INMA(1) processes are estimated using YW and those of an INARMA(1,1) process 
are estimated by CLS. 
The lead time forecast for benchmark methods is simply the length of lead time 
multiplied by the one-step-ahead forecast. Two values for lead time have been 
considered: ?= 3, 6. 
In order to test the benefit by using the INARMA lead time forecasts (hereafter 
abbreviated as INARMA-LT), these results have been compared to the results of 
using cumulative h-step ahead forecasts over lead time (hereafter abbreviated as 
INARMA-h). The latter is given by ? ??+?
 ?+1
 ?=1 , where ??+? is the ?-step ahead forecast.  
The results of lead time forecasting for INAR(1) series of both 16,000 and 3,000 
series are presented in this section. The results for INARMA(0,0), INMA(1) and 
INARMA(1,1) series are provided in Appendix 9.C. 
The results of Table  9-36 for INAR(1) series of 16,000 series show that when ?= 3, 
INAR(1)-LT improves the MSE by 22.8 percent and MASE by 16.1 percent 
compared to the best benchmark (which is SBJ 0.5). It can be seen that the results of 
INAR(1)-h are worse than INAR(1)-LT. However, these results still improve the 
MSE by 19.8 percent and the MASE by 14.9 percent compared to the best 
benchmark. 
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Table ?9-36 Lead-time forecasts  for INAR(1) series for all points in time (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.3884 -0.5232 -0.1922 0.0010 -0.1704 0.1757 0.1159 0.1304 
MSE 3.9820 4.7702 3.7116 3.7566 3.6895 3.6534 2.8205 2.9269 
MASE 2.9812 3.1303 2.8159 2.6880 2.8002 2.5686 2.1538 2.1860 
PB of MASE  
INARMA-LT/Benchmark 
0.5597 0.5779 0.5389 0.5545 0.5381 0.5467   
PB of MASE  
INARMA-h/Benchmark 
0.5337 0.5839 0.5260 0.5692 0.5234 0.5398   
RGRMSE  
INARMA-LT/Benchmark 
0.9078 0.8863 0.9913 0.9647 0.9642 0.9824   
RGRMSE  
INARMA-h/Benchmark 
0.9574 0.9345 1.0452 1.0139 1.0141 1.0352   
 
Table ?9-37 Lead-time forecasts  for INAR(1) series for issue points (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.0871 -0.2020 0.0755 0.2332 0.0936 0.3783 -0.3597 0.1188 
MSE 3.3138 4.1399 3.3198 3.7409 3.3277 3.8344 3.6080 3.5530 
MASE 1.0419 1.0990 1.0122 1.0145 1.0103 1.0022 1.2490 1.0374 
PB of MASE  
INARMA-LT/Benchmark 
0.3662 0.4498 0.3512 0.3813 0.3473 0.3851   
PB of MASE  
INARMA-h/Benchmark 
0.5130 0.5206 0.5140 0.4813 0.5068 0.4395   
RGRMSE  
INARMA-LT/Benchmark 
1.4421 1.9523 1.5540 2.3331 1.5482 2.5471   
RGRMSE  
INARMA-h/Benchmark 
1.0805 1.2766 1.1410 1.4439 1.1287 1.5435   
 
Table ?9-38 Lead-time forecasts  for INAR(1) series for all points in time (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.8168 -1.0621 -0.4219 -0.0134 -0.3780 0.3362 0.2380 0.2553 
MSE 12.5629 15.6078 11.3849 11.3478 11.2858 10.8684 7.2081 7.9582 
MASE 4.7715 5.0536 4.4861 4.2692 4.4574 4.0743 3.1157 3.2439 
PB of MASE  
INARMA-LT/Benchmark 
0.5901 0.5873 0.5844 0.5996 0.5825 0.5930   
PB of MASE  
INARMA-h/Benchmark 
0.5503 0.5901 0.5427 0.6034 0.5465 0.5721   
RGRMSE  
INARMA-LT/Benchmark 
0.9137 0.8081 0.8685 0.9215 0.8673 0.9763   
RGRMSE  
INARMA-h/Benchmark 
0.9746 0.8833 0.9340 1.0050 0.9331 1.0669   
 
When ?= 6, INAR(1)-LT improves the MSE by 33.7 percent and the MASE by 23.5 
)( 3?l
 )( 3?l
 )( 6?l
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percent compared to the best benchmark (which is SBJ 0.5). Again, the INAR(1)-h 
results are worse than those of INAR(1)-LT. But, these results still improve the MSE 
by 26.7 percent and the MASE by 20.4 percent compared to the best benchmark. 
Table ?9-39 Lead-time forecasts  for INAR(1) series for issue points (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.1007 -0.3119 0.2208 0.5447 0.2566 0.8302 -0.2983 0.2971 
MSE 8.3539 11.4468 8.4132 9.9329 8.4479 10.3190 8.8087 9.7652 
MASE 1.5914 1.7284 1.5548 1.5932 1.5524 1.5935 1.7465 1.6419 
PB of MASE  
INARMA-LT/Benchmark 
0.4394 0.4688 0.4617 0.4303 0.4485 0.4475   
PB of MASE  
INARMA-h/Benchmark 
0.4776 0.5107 0.4886 0.5087 0.4972 0.4975   
RGRMSE  
INARMA-LT/Benchmark 
1.4130 1.6212 1.3792 1.9236 1.4565 2.1010   
RGRMSE  
INARMA-h/Benchmark 
1.2483 1.2921 1.2192 1.4892 1.3122 1.6324   
 
According to the results of Table  9-39, when only issue points are considered, the 
INARMA results are again worse than the best benchmark method. In this case, the 
INAR(1)-h produces better forecasts than INAR(1)-LT in terms of MASE but the 
MSE of INAR(1)-LT is smaller. 
Table ?9-40 Lead-time forecasts  for INAR(1) series for all points in time (3000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.6244 -0.5881 0.2594 1.6123 0.3576 2.3458 -0.5794 -0.6386 
MSE 19.5567 27.2937 18.6953 25.3595 18.7301 27.9187 17.8177 18.3578 
MASE 1.5641 1.8153 1.5005 1.6966 1.4973 1.7523 1.5021 1.5179 
PB of MASE  
INARMA-LT/Benchmark 
0.5416 0.6002 0.4866 0.5491 0.4832 0.5575   
PB of MASE  
INARMA-h/Benchmark 
0.5241 0.5737 0.4800 0.5394 0.4772 0.5556   
RGRMSE  
INARMA-LT/Benchmark 
0.9835 0.9097 1.0562 1.0638 1.0655 1.0872   
RGRMSE  
INARMA-h/Benchmark 
1.0312 0.9614 1.1130 1.1243 1.1232 1.1483   
 
The results for INAR(1) series of 3,000 series show that when ?= 3, INAR(1)-LT 
improves the MSE of forecast by 4.7 percent compared to the best benchmark (which 
is SBA 0.2). The same is not true for MASE which is 0.32 percent worse than that of 
SBJ 0.2. The results of INAR(1)-h are worse than those of INAR(1)-LT. But, these 
)( 6?l
 )( 3?l
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results still improve the MSE by 1.8 percent. The MASE of INAR(1)-h is worse than 
the best benchmark by 1.3 percent. 
Table ?9-41 Lead-time forecasts  for INAR(1) series for issue points (3000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.6199 -0.5765 0.2576 1.6065 0.3551 2.3342 -0.7597 -0.6880 
MSE 20.0611 27.9048 19.1931 25.9631 19.2274 28.5220 18.5668 18.9400 
MASE 1.6365 1.8978 1.5715 1.7717 1.5683 1.8269 1.5926 1.5973 
PB of MASE  
INARMA-LT/Benchmark 
0.5316 0.5891 0.4704 0.5417 0.4653 0.5481   
PB of MASE  
INARMA-h/Benchmark 
0.5169 0.5739 0.4750 0.5361 0.4725 0.5511   
RGRMSE  
INARMA-LT/Benchmark 
1.0259 0.9565 1.0988 1.1158 1.1065 1.1248   
RGRMSE  
INARMA-h/Benchmark 
1.0557 0.9906 1.1326 1.1485 1.1421 1.1604   
 
Based on the results of Table  9-41, when only issue points are considered, the 
INARMA results are still better than the best benchmark method in terms of MSE. 
Again, the INAR(1)-LT produces better forecasts than INAR(1)-h in terms of MSE 
and MASE, although the benefit is slight.  
It can be seen from Table  9-42 that when ?= 6, INAR(1)-LT improves the MSE of 
forecast by 3.6 percent compared to the best benchmark (which is SBJ 0.2). 
However, MASE is 3.3 percent worse than that of SBJ 0.2. The results of INAR(1)-h 
are worse than those of INAR(1)-LT. These results are worse than the best 
benchmark by 4.1 percent in terms of MSE and 5.9 percent in terms of MASE. 
Table ?9-42 Lead-time forecasts  for INAR(1) series for all points in time (3000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -1.9213 -2.1274 -0.1155 2.4386 0.0852 3.9606 -1.6259 -1.6279 
MSE 55.4939 93.3985 48.8035 73.9507 48.6269 81.7715 46.8761 50.7215 
MASE 2.4988 3.1026 2.2948 2.7640 2.2829 2.8890 2.3615 2.4279 
PB of MASE  
INARMA-LT/Benchmark 
0.5551 0.6192 0.4751 0.5579 0.4695 0.5665   
PB of MASE  
INARMA-h/Benchmark 
0.5179 0.5887 0.4671 0.5493 0.4655 0.5591   
RGRMSE  
INARMA-LT/Benchmark 
1.0384 0.9309 1.1841 1.1827 1.1810 1.1967   
RGRMSE  
INARMA-h/Benchmark 
1.1664 1.0574 1.3307 1.3041 1.3402 1.2950   
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Table ?9-43 Lead-time forecasts  for INAR(1) series for issue points (3000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -1.9801 -2.1428 -0.1878 2.3786 0.0113 3.8857 -2.0011 -1.7986 
MSE 58.5370 97.4990 51.2152 76.6573 50.9742 84.1030 50.6760 53.9097 
MASE 2.6665 3.2866 2.4389 2.9059 2.4247 3.0262 2.5553 2.6023 
PB of MASE  
INARMA-LT/Benchmark 
0.5419 0.6074 0.4578 0.5401 0.4499 0.5457   
PB of MASE  
INARMA-h/Benchmark 
0.5148 0.5840 0.4629 0.5383 0.4586 0.5447   
RGRMSE  
INARMA-LT/Benchmark 
1.0680 0.9990 1.2407 1.3281 1.2650 1.3375   
RGRMSE  
INARMA-h/Benchmark 
1.1846 1.1087 1.3696 1.4120 1.4009 1.3771   
 
 
According to the results of Table  9-43, when only issue points are considered, the 
INARMA results are still slightly better than the best benchmark method in terms of 
MSE (only 0.58 percent). The INAR(1)-LT results are again better than those of  
INAR(1)-h in terms of MSE and MASE. 
In general, the results show that the difference between the lead time forecasts for 
INAR(1)-LT and the benchmarks is greater than that of one-step ahead forecasts. 
Although the MASE of INAR(1) is worse than the best benchmark (only for 3,000 
series), the difference is less than that of one-step ahead. This is true for both 3,000 
and 16,000 series, although the improvement is greater for the latter. This could 
suggest that with a longer length of history, INARMA performance improves with a 
greater rate compared to the benchmarks.  
Comparing the results of using the lead time forecasts of Equation  9-7 with the 
results of using the cumulative h-step ahead forecasts shows that the former produces 
better forecasts using MSE and MASE. 
The results of Appendix 9.C for INARMA(0,0) and INMA(1) series are similar to 
the above results for INAR(1) series. This means that for both processes the 
INARMA method produces more accurate lead time forecasts than benchmarks. For 
INMA(1) series, the INMA(1)-LT results are better than those of INMA(1)-h. 
However, the same is not true for INARMA(1,1) series. For these series, 
INARMA(1,1)-h beats INARMA(1,1)-LT forecasts and only the former is better 
than the best benchmark. It should be noted that only a few series were identified as 
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INARMA(1,1) for both 16,000 and 3,000 series. Also because it has been shown 
both in simulation and empirical analysis that an all-INAR(1) approach is promising, 
we will not pursue the poor performance of INARMA-LT compared to INARMA-h 
for INARMA(1,1) series and leave it for further research. 
The following section focuses on comparing the lead time forecasts of the all-
 INAR(1) method and benchmark methods for all 16,000 and 3,000 series.     
  
9.5.8 Lead Time Forecasting for all-INAR(1)   
The previous section only focused on those series identified as INAR(1). In this 
section, an all-INAR(1) approach is used for all 16,000 and 3,000 series (5,168 and 
1,943 filtered series).  
According to the results of section  9.5.3, the forecasts produced by the all-INAR(1) 
approach are close to those based on identification. Here we compare the accuracy of 
lead time forecasts of all-INAR(1) and benchmarks for ?= 3, 6. 
Again, the lead time forecasts of Equation  9-7 will be compared to results of using 
the cumulative h-step ahead forecasts over lead time.  
The results for 16,000 series show that for ?= 3, when an all-INAR(1) approach is 
used, the INARMA-LT forecasts are better than the best benchmark by 18.7 percent 
using MSE and 13.5 percent using MASE. Although INARMA-h forecasts are not as 
good as INARMA-LT forecasts, they still outperform the best benchmark by 17.1 
percent using MSE and 13.1 using MASE. 
The results of Table  9-45 show that when only issue points are considered, the 
INAR(1)-h results are better than those of INAR(1)-LT in terms of both MSE and 
MASE. The INAR(1)-h forecasts have also smaller MSE and MASE than the best 
benchmark method. 
Comparing these results with the results of the previous section shows that 
INARMA-LT and INARMA-h forecasts are close when all the data series (and not 
only INAR(1) series as in the previous section) are considered. This is because, as 
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discussed in section  9.5.3, the majority of the 16,000 series are INARMA(0,0) and, 
for them, the two methods are the same.  
Table ?9-44 Lead-time forecasts  for all-INAR(1) series for all points in time (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.2283 -0.2909 -0.1326 -0.0359 -0.1219 0.0491 0.0840 0.0958 
MSE 1.6254 1.8912 1.5207 1.5625 1.5126 1.5458 1.2287 1.2534 
MASE 5.5815 5.6849 5.2803 4.9029 5.2476 4.6645 4.0331 4.0511 
PB of MASE  
INARMA-LT/Benchmark 
0.6145 0.6338 0.5831 0.5450 0.5790 0.5143   
PB of MASE  
INARMA-h/Benchmark 
0.6121 0.6335 0.5793 0.5411 0.5751 0.5081   
RGRMSE  
INARMA-LT/Benchmark 
7.0337 0.8043 0.8923 0.9406 0.8960 1.0031   
RGRMSE  
INARMA-h/Benchmark 
10.4127 0.8161 0.9049 0.9550 0.9089 1.0159   
 
Table ?9-45 Lead-time forecasts  for all-INAR(1) series for issue points (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.1423 -0.1925 -0.0535 0.0419 -0.0437 0.1201 -0.0426 0.0971 
MSE 2.0187 2.3511 1.9216 2.0165 1.9149 2.0183 1.7136 1.7048 
MASE 0.7046 0.7305 0.6765 0.6520 0.6737 0.6335 0.6610 0.6087 
PB of MASE  
INARMA-LT/Benchmark 
0.4965 0.4841 0.4584 0.3937 0.4533 0.3744   
PB of MASE  
INARMA-h/Benchmark 
0.6060 0.5935 0.5628 0.4786 0.5587 0.4411   
RGRMSE  
INARMA-LT/Benchmark 
33.7864 1.0793 1.1154 1.2958 1.1179 1.3940   
RGRMSE  
INARMA-h/Benchmark 
55.3399 0.8959 0.9387 1.0608 0.9408 1.1276   
 
Table ?9-46 Lead-time forecasts  for all-INAR(1) series for all points in time (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.4821 -0.6036 -0.2889 -0.0902 -0.2674 0.0809 0.1601 0.1812 
MSE 4.6554 5.7420 4.2290 4.3957 4.1954 4.3210 3.0028 3.1387 
MASE 8.6367 8.7812 8.1212 7.4458 8.0658 7.0571 5.9356 6.0057 
PB of MASE  
INARMA-LT/Benchmark 
0.6020 0.6131 0.5776 0.5511 0.5746 0.5358   
PB of MASE  
INARMA-h/Benchmark 
0.5950 0.6092 0.5680 0.5457 0.5657 0.5275   
RGRMSE  
INARMA-LT/Benchmark 
1.3096 0.8281 0.9230 0.9579 1.2292 1.0088   
RGRMSE  
INARMA-h/Benchmark 
1.3410 0.8558 0.9518 0.9889 1.2503 1.0608   
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Table ?9-47 Lead-time forecasts  for all-INAR(1) series for issue points (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.3373 -0.4344 -0.1573 0.0399 -0.1373 0.1980 -0.0422 0.1717 
MSE 5.4407 6.8987 5.0715 5.5465 5.0477 5.5698 4.2465 4.3950 
MASE 1.1607 1.2270 1.1085 1.0758 1.1035 1.0463 1.0254 0.9807 
PB of MASE  
INARMA-LT/Benchmark 
0.5209 0.5093 0.4899 0.4399 0.4857 0.4317   
PB of MASE  
INARMA-h/Benchmark 
0.5806 0.5728 0.5476 0.4944 0.5450 0.4768   
RGRMSE  
INARMA-LT/Benchmark 
1.0349 1.0374 1.1060 1.2321 1.1167 1.3288   
RGRMSE  
INARMA-h/Benchmark 
0.9532 0.9344 1.0082 1.0947 1.0153 1.2132   
 
For ?= 6, when an all-INAR(1) approach is used, the INARMA-LT forecasts are 
better than the best benchmark by 28.4 percent using MSE and 15.9 percent using 
MASE. The INARMA-h results are worse than those of INARMA-LT, but they still 
outperform the best benchmark by 25.1 percent using MSE and 14.8 percent using 
MASE. 
The results of Table  9-47 show that when only issue points are considered, the 
INAR(1)-LT results are better than those of  INAR(1)-h in terms of MSE. The 
INARMA forecasts have also smaller MSE and MASE than the best benchmark 
method. 
Table ?9-48 Lead-time forecasts  for all-INAR(1) series for all points in time (3000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.2024 -0.3862 0.4237 1.2251 0.4933 1.7622 -0.0196 -0.0042 
MSE 12.6178 17.2396 12.3577 16.1478 12.4000 17.6000 11.9562 12.2358 
MASE 1.5991 1.8379 1.5665 1.7416 1.5664 1.7936 1.5594 1.5723 
PB of MASE  
INARMA-LT/Benchmark 
0.5286 0.5818 0.5020 0.5714 0.5027 0.5849   
PB of MASE  
INARMA-h/Benchmark 
0.5151 0.5671 0.4927 0.5622 0.4948 0.5806   
RGRMSE  
INARMA-LT/Benchmark 
0.9587 0.8979 1.0093 0.9785 1.0148 0.9763   
RGRMSE  
INARMA-h/Benchmark 
1.0324 0.9716 1.0961 1.0560 1.0996 1.0518   
 
The results for 3,000 series show that when ?= 3, all-INAR(1)-LT improves the 
MSE by 3.2 percent and MASE by 0.5 percent compared to the best benchmark. The 
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INARMA-h is worse than INARMA-LT using MSE and MASE, but it slightly 
outperforms the best benchmark by one percent using MSE. However, the MASE of 
INARMA-h is worse than that of SBJ 0.2 by 0.4 percent.    
Table ?9-49 Lead-time forecasts  for all-INAR(1) series for issue points (3000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.2533 -0.4123 0.3668 1.1778 0.4357 1.7078 -0.2270 -0.1060 
MSE 13.0190 17.7481 12.6853 16.5018 12.7198 17.9045 12.3828 12.6429 
MASE 1.6838 1.9347 1.6453 1.8215 1.6447 1.8703 1.6472 1.6584 
PB of MASE  
INARMA-LT/Benchmark 
0.5229 0.5795 0.4919 0.5636 0.4911 0.5733   
PB of MASE  
INARMA-h/Benchmark 
0.5098 0.5659 0.4886 0.5569 0.4905 0.5733   
RGRMSE  
INARMA-LT/Benchmark 
1.0066 0.9629 1.0841 1.0607 1.0866 1.0617   
RGRMSE  
INARMA-h/Benchmark 
1.0574 1.0119 1.1363 1.1058 1.1355 1.1061   
 
The results of Table  9-49 show that when only issue points are considered, the 
INAR(1)-LT results are still better than those of  INAR(1)-h in terms of both MSE 
and MASE. The INAR(1)-LT forecasts have also smaller MSE and MASE than the 
best benchmark method. 
When ?= 6, all-INAR(1)-LT improves the MSE by 2.9 percent and MASE by 0.3 
percent compared to the best benchmark. Here, the INARMA-h is not only worse 
than INARMA-LT, but also than the best benchmark by 3.6 using MSE and 1.8 
using MASE. 
Table ?9-50 Lead-time forecasts  for all-INAR(1) series for all points in time (3000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.6658 -1.1833 0.5971 2.1033 0.7374 3.1988 -0.2114 -0.0701 
MSE 35.6315 57.2224 33.3025 48.0324 33.3483 52.8916 32.3335 34.5719 
MASE 2.5195 3.0745 2.4368 2.8806 2.4360 3.0082 2.4278 2.4818 
PB of MASE  
INARMA-LT/Benchmark 
0.5408 0.6026 0.5060 0.5911 0.5081 0.6097   
PB of MASE  
INARMA-h/Benchmark 
0.5109 0.5783 0.4917 0.5720 0.4911 0.5914   
RGRMSE  
INARMA-LT/Benchmark 
1.0251 0.9393 1.1143 1.0638 1.0950 1.0876   
RGRMSE  
INARMA-h/Benchmark 
1.1465 1.0590 1.2257 1.1703 1.2227 1.2285   
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Table ?9-51 Lead-time forecasts  for all-INAR(1) series for issue points (3000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.7413 -1.1618 0.5076 2.0657 2.0657 3.1415 -0.5750 -0.2601 
MSE 37.5495 59.7750 34.8230 50.0080 50.0080 54.7176 34.2621 36.3839 
MASE 2.7269 3.3355 2.6232 3.0858 3.0858 3.2041 2.6189 2.6774 
PB of MASE  
INARMA-LT/Benchmark 
0.5420 0.6085 0.4995 0.5841 0.5005 0.5977   
PB of MASE  
INARMA-h/Benchmark 
0.5138 0.5799 0.4905 0.5692 0.4884 0.5851   
RGRMSE  
INARMA-LT/Benchmark 
0.5977 1.0566 0.9881 1.1776 1.1725 1.1722   
RGRMSE  
INARMA-h/Benchmark 
1.1776 1.0943 1.2778 1.2446 1.2821 1.6062   
 
Based on the results of Table  9-51, when only issue points are considered, the 
INAR(1)-LT still produces better forecasts than INAR(1)-h in terms of both MSE 
and MASE. The INAR(1)-LT forecasts have also smaller MSE and MASE than the 
best benchmark method. 
In general, the results of this section show that an all-INAR(1) method always yields 
much more accurate lead time forecasts. This is true for both data sets and lengths of 
lead time. The INAR(1)-LT forecasts are more accurate than the INAR(1)-h 
forecasts; however, the latter still outperforms the benchmarks in most cases.   
 
9.6 Conclusions  
In this chapter, the results of the empirical analysis have been presented. The purpose 
of the empirical analysis was to assess the empirical validity of the findings 
suggested by theoretical and simulation results.  
Analysing two data sets with different properties (such as length of history and the 
sparsity of data) enabled us to investigate the sensitivity of the results to such factors. 
Both data sets have been filtered to eliminate lumpy series. 
Four approaches to determine the autoregressive and moving average orders of 
INARMA models have been tested: treating all series as INAR(1) processes, treating 
all series as INARMA(1,1) processes, and one-stage and two-stage identification 
)( 6?l
M.Mohammadipour, 2009, Chapter 9   239 
 
procedures. The results show that although the two-stage identification produces the 
best results, treating all as INAR(1) also seems a promising approach.  
The INARMA one-step ahead forecasts have been compared to the benchmark 
methods which are: Croston, SBA and SBJ with smoothing parameters 0.2 and 0.5. 
The results show that for the sparser data set with longer history (called the 16,000 
series), there is a substantial improvement in using INARMA over the benchmarks in 
terms of MSE and MASE. However, for the faster intermittent series with shorter 
history (called the 3,000 series), the improvement is narrow. The simulation results 
in the previous chapter also confirm that for short length of history, only when the 
autoregressive parameter is high, the INARMA method outperforms the benchmarks. 
However, for low autoregressive parameters, the superiority of INARMA method is 
subject to availability of more observations.   
When the forecasts are made for h-step ahead, the improvement of INARMA over 
benchmarks is greater compared to the one-step ahead forecasts, confirming the 
simulation results.  
The effect of using different estimation methods on the accuracy of INARMA 
forecasts has also been tested. These methods include CLS, YW and CML for the 
INAR(1) model, and YW and CLS for INMA(1) and INARMA(1,1) models. The 
empirical results confirm the simulation results in that for INAR(1) series with low 
autoregressive parameter (which is true for both 16,000 and 3,000 series), YW 
estimation method produces better results than CLS and CML. The YW estimates are 
also better than CLS for an INMA(1) model. But for an INARMA(1,1) model, the 
CLS estimates produces better forecasts than YW, agreeing with simulation results.  
In order to assess the sensitivity of forecasts to the length of history, the 16,000 data 
set which contains 72 periods of demand data has been used. The results show that 
when more observations are available, all of the forecasting methods improve. 
However, the benchmark methods improve at a greater rate than INARMA.            
The empirical results of this chapter also show that for very sparse data, the absolute 
error (AE) of the na?ve method is very close to zero which results in very high 
MASE for all of the competing forecasting methods. When only issue points are 
considered, because the chance of observing a zero demand after a positive demand 
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is high, the AE of the na?ve method increases considerably which results in very 
small MASE for INARMA and other benchmark forecasts. Therefore, it seems that 
for highly intermittent data, the MASE does not produce reliable results. 
The lead time forecasts are also compared for INARMA and benchmark methods. 
Two approaches have been followed regarding INARMA lead time forecasts. The 
first approach is based on the conditional expected value of the lead time aggregated 
INARMA model. The second approach is based on the cumulative h-step ahead 
forecasts. The results show a considerable improvement over benchmark methods in 
terms of MSE and MASE for both approaches with the former approach producing 
better results than the latter. 
M.Mohammadipour, 2009, Chapter 10   241 
 
 
 
 
 
 
 
Chapter 10 CONCLUSIONS AND FURTHER 
RESEARCH 
 
 
 
 
 
 
 
 
10.1 Introduction 
This chapter summarizes the contributions and conclusions of this PhD thesis. Also, 
the limitations of this research are identified and future research avenues are 
suggested.  
The initial problem of this research was to assess the potential gain (in forecast 
accuracy) by modelling and forecasting intermittent demand using INARMA models 
compared to simpler methods.  
In order to solve the above problem, the following research questions were identified 
in chapter 1: 
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1. How can the appropriate integer autoregressive moving average (INARMA) 
model be identified for a time series of counts? 
2. How can the parameters of integer autoregressive moving average 
(INARMA) models be estimated? 
3. How can an INARMA process be forecasted over a lead time? 
4. Do INARMA models provide more accurate forecasts for intermittent 
demand than non-optimal smoothing-based methods? 
All of the above questions have been answered and the contributions of this thesis 
are summarized in the following section.  
 
10.2 Contributions 
The contributions of this thesis are as follows: 
? The unconditional variance and the autocorrelation function of an 
INARMA(p,q) process are found in this research. It is shown that the 
autocorrelation and partial autocorrelation functions of an INARMA(p,q) 
process have the same structure as those of ARMA processes. Therefore, the 
estimates of these functions can be used to identify the moving average and 
autoregressive orders of the process, respectively (question 1).  
? Two automated identification approaches are also suggested. A two-stage 
approach first uses a Ljung-Box test to find if the series has any serial 
dependence. Then the AIC is used to select among the possible INARMA 
models. On the other hand, a one-stage approach ignores the first step and 
only uses the AIC. These two approaches are compared in terms of the 
percentage of series for which the INARMA model is identified correctly and 
also in terms of the accuracy of forecasts. The results show that although the 
two stage method performs better when data is i.i.d. Poisson, for other 
INARMA models the one-stage method produces better results (question 1).  
? The effect of misidentification on the forecast accuracy is checked. It is found 
that misidentification has a great impact if the autoregressive parameter is high. 
However, for moving average processes, this effect is smaller (question 1).  
? It has been found, through simulation and empirical analysis, that ignoring 
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the identification step and forecasting with an INAR(1) or an INARMA(1,1) 
method produces promising results. It is shown that the former outperformers 
the latter both for simulation and empirical data (question 1).  
? Three estimation methods are used in this research namely, YW, CLS and 
CML (CML only for INAR(1) process). The performance of these estimators 
has been compared in the literature in terms of the bias and MSE of the 
parameter estimates (Al-Osh and Alzaid, 1987; Bu, 2006; Bu et al., 2008). 
These studies only consider large sample sizes, which is not common for 
intermittent demand data. Therefore, we look at the performance of these 
estimators for small samples including ?= 24, 36. Our comparison also 
includes the impact of different estimation methods on forecast accuracy. It is 
shown that large differences in accuracy of parameter estimates do not 
necessarily translate to large differences in forecasting accuracy (question 2).   
? As shown in chapter 5, finding the ACF of the INARMA(p,q) process has 
enabled us to obtain the YW estimates for such processes. These estimators 
are derived for the INARMA(1,1) and INARMA(2,2) processes (question 2).  
? It is shown that the aggregation of an INARMA(p,q) process over lead time 
results in an INARMA(p,q) process with the same autoregressive and moving 
average parameters but with a different innovation parameter. The 
conditional expected value of the aggregated process is obtained which is 
used for lead time forecasting (question 3).  
? INARMA models have had applications in many areas including medical 
science and economics. This research is the first attempt to use these models 
for intermittent demand modelling and forecasting. In order to find if there is 
any benefit in terms of forecast accuracy in using INARMA methods, the 
forecasts are compared to those of some benchmark methods namely, 
Croston?s method, SBA, and SBJ method. The simulation results show that 
when data has a high autocorrelation, there is a considerable improvement. The 
validity of this result is also confirmed by two empirical data sets (question 4).  
 
10.3 Conclusions from the Theoretical Part of the Thesis 
In this section the main theoretical findings of this PhD research are discussed. 
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10.3.1 The Unconditional Variance of an INARMA(p,q) Model 
As discussed in chapter 3, although many studies focused on finding the stochastic 
properties of INAR(p) and INMA(q) processes, the same is not true for the mixed 
INARMA(p,q) process. It can be easily shown that, assuming stationarity, the 
unconditional mean of the INARMA(p,q) process is given by: 
?(??) =?
 1 +? ??
 ?
 ?=1
 1?? ??
 ?
 ?=1
 ??? 
Equation  10-1 
where ?? is the mean of the innovations in Equation  3-50. As the first result of this 
research, the unconditional variance of this process is obtained. 
var????=
 ??
 1?? ??
 2?
 ?=1
 ?
 1 +? ??
 ?
 ?=1
 1?? ??
 ?
 ?=1
 ? ??1???
 ?
 ?=1
 +? ??1???
 ?
 ?=1
 ? 
+
 ??
 2
 1?? ??
 2?
 ?=1
 ?1 +? ??
 2
 ?
 ?=1
 + 2 ? ???
 min (?,?)
 ?=1
  
+
 2? ? ???+???
 ???
 ?=1
 ??1
 ?=1 + 2? ? ???????
 ???
 ?=?+1
 min (?,?)
 ?=1
 1?? ??
 2?
 ?=1
  
Equation  10-2 
where ?? can be obtained in terms of var???? (or ?0) from Equation  10-4 and ??
 ?? is 
the cross-covariance at lag ? derived in Appendix 3.C to be: 
??
 ??=????
 2 +? ?????
 ??
 ?
 ?=1
  
Equation  10-3 
It can be seen that when ?= 0, the unconditional mean and variance of the INAR(p) 
process are not equal for the case of Poisson innovations, confirming the literature 
(Bu and McCabe, 2008). As explained in section  3.3.2, this is because of the extra 
assumption of independence between thinning operations at different times made by 
Du and Li (1991). 
When ?= 0, the Equation  10-2 reduces to the unconditional variance of an 
INMA(q) process agreeing with the result of Br?nn?s and Hall (2001). It can be 
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shown that, for Poisson innovations, the mean and variance of the INMA(q) process 
are equal which again confirms the results in the literature (Br?nn?s and Hall, 2001). 
 
10.3.2 The Autocorrelation Function of an INARMA(p,q) Model 
The autocovariance of an INARMA(p,q) process has been found in section  3.3.8.2 to 
be: 
?
 ?
 =?
 ?1???1 +?2???2 +?+??????+???0
 ??+??+1?1
 ??+?+??????
 ?? ???
 ?1???1 +?2???2 +?+?????? ?>?
 ? 
Equation  10-4 
where ??
 ?? is the cross-covariance at lag ? given by Equation  10-3. Therefore, as the 
second finding of this research, the autocorrelation function of an INARMA(p,q) 
process is as follows: 
??=?
 ?1???1 +?2???2 +?+??????+???0
 ??+??+1?1
 ??+?+??????
 ??
 ?0
 ???
 ?1???1 +?2???2 +?+?????? ?>?
 ? 
Equation  10-5 
where ?0 is the unconditional variance of the process and is given by Equation  10-2. 
It is shown that if ?= 0, the Equation  10-5 reduces to the ACF of an INAR(p) 
process given by Du and Li (1991). Also if ?= 0, the Equation  10-5 provides the 
ACF of an INMA(q) process which is given by Br?nn?s and Hall (2001) (see section 
 3.3.8.2). 
It is also shown is section  4.3.1 that the ACF structure of the INARMA(p,q) process 
is analogous to that of an ARMA(p,q) process. Also, based on the discussion in 
section  4.3.2.3, the partial autocorrelation function of an INARMA(p,q) process is 
the analogue of that of an ARMA process, is infinite and behaves like the PACF of a 
pure integer moving average process. 
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10.3.3 The YW Estimators of an INARMA(1,1) Model 
Based on Equation  10-2 and Equation  10-5, we have found the YW estimators for an 
INARMA(1,1) process to be: 
?=
 ?2
 ?1
 =
 ? ??????(???2??)
 ?
 ?=3
 ? ??????(???1??)
 ?
 ?=2
  
Equation  10-6 
?=
 ?1 +??(???1)
 ?1?1 + 3???1???2?2
  
Equation  10-7 
where ?? is the estimate of the autocorrelation at lag ?, ??. The innovation parameter 
is then estimated from the expected value of the process 
?=
 1??
 1 +?
 ? ??
 ?
 ?=1
 ?
  
 Equation  10-8 
We have also derived the YW estimators for an INARMA(2,2) process for 
presentational purposes (see section  5.8). 
 
10.3.4 Lead Time Forecasting of an INARMA(p,q) Model 
It is shown in chapter 6 that aggregation of an INARMA(p,q) process over a lead 
time results in an INARMA(p,q) process. The aggregated process has the same 
autoregressive and moving average parameters but a different innovation parameter. 
When the innovations of the original process are ??~???(?) , the innovations of the 
aggregated process are ??~???(??+ 1??).  
It is also found that the aggregated process can be written in terms of the last ? 
observations as follows: 
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? ??+?
 ?+1
 ?=1
 =? ? ??
 1 ???
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 1
 ?=1
 ?+1
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 ?=1
  
Equation  10-9 
where all the parameters are defined in Table  6-4. The above result is then used to 
find the conditional expected value of the aggregated process which is: 
??? ??+?
 ?+1
 ?=1
 |????+1,?,???1 ,???=?? ? ??
 1
 ??
 1
 ?=1
 ?+1
 ?=1
 ???+?? ? ??
 2
 ??
 2
 ?=1
 ?+1
 ?=1
 ????1 +? 
+?? ? ??
 ?
 ??
 ?
 ?=1
 ?+1
 ?=1
 ?????+1 +?? ? ??
 ?+1
 ??
 ?+1
 ?=1
 ?+1
 ?=1
 ?? 
Equation  10-10 
Based on the above results, the lead time forecasts for the specific INARMA 
processes used in this research are derived as follows: 
??? ??+?
 ?+1
 ?=1
 |???=
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 (?+ 1)? for INARMA(0,0)
 ?(1???+1)
 1??
 ??+
 ?
 1??
 ???+ 1??? ??
 ?+1
 ?=1
 ? for INAR(1)
 ??+ 1?(1 +?)? for INMA(1)
 ?(1???+1)
 1??
 ??+
 ?(1 +?)
 1??
 ???+ 1??? ??
 ?+1
 ?=1
 ? for INARMA(1,1)
 ? 
Equation  10-11 
 
10.4 Conclusions from the Simulation Part of the Thesis 
In this section, the main findings of the simulation part of this research are 
summarized. Four INARMA models are used in this thesis which are: 
INARMA(0,0), INAR(1), INMA(1) and INARMA(1,1). The range of parameters 
chosen for these processes is shown in Table  7-1. 
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10.4.1 The Performance of Different Estimation Methods 
The performance of YW, CLS, and CML (only for INAR(1) process) is compared. 
The simulation results show that, for an INAR(1) process, the MSE of estimates 
produced by CML is generally less than that of YW and CLS. However, the accuracy 
of forecasts produce by CML is not very far from those by YW and CLS. The YW 
and CLS estimators are close when the number of observations is high. But, for small 
samples, the difference is high when the autoregressive parameter is high. In such 
cases, CLS produces much better estimates for both ? and ? in terms of MSE than 
YW. On the other hand, for small values of ?, YW results in better estimates. This is 
also true for the accuracy of forecasts produced by these estimation methods.  
For an INMA(1) process, for small number of observations, CLS generally has 
smaller MSEs than YW except for very high values of ?. For large number of 
observations, YW has smaller MSEs than CLS for high values of ?. However, this 
does not have a great effect on the accuracy of forecasts produced by each method. 
The MSE of ? for both YW and CLS estimates increases with an increase in ? but the 
same is not necessarily true for the MSE of ?.  
Finally, for an INARMA(1,1) process, CLS generally produces better estimates 
especially when the number of observations is small and the autoregressive 
parameter is high. This is also true for the accuracy of forecasts produced by CLS 
compared to those by YW. 
The results of three-step and six-step ahead forecasts show that the forecasts based 
on YW and CLS estimation methods are generally very close for all of the three 
INARMA processes, but YW-based results are slightly better in many cases. 
 
10.4.2 The Croston-SBA Categorization 
Syntetos et al. (2005) provide a categorization scheme for Croston and SBA based on 
MSE to establish the areas that each method should be used over the other. They use 
the squared coefficient of variation (??2) of demand size and the average inter-
 demand interval (?) to identify different regions shown in Figure  8-1. Because this 
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categorization is based on the assumption that demand occurs as an i.i.d. Bernoulli 
process, it is worth testing if it also holds for an i.i.d. Poisson (an INARMA(0,0)) 
process. The simulation results show that not only the Croston-SBA categorization 
based on MSE holds for i.i.d. Poisson demand, but it also generally holds using 
MASE.   
The simulation results also show that when the number of observation increases, the 
advantage of SBA over Croston decreases. This is also shown by direct mathematical 
calculations in section  8.5.  
MSESBA ?MSECroston ???1?
 ?
 2
 ?
 2
 ?1??
 ?+ 2(1??)2?+1
 2??
 ??
 (??1)2?2
 ?4
 +
 ?2
 ?2
 ? 
Equation  10-12 
Based on the Equation  10-12, when the smoothing parameter is small (?= 0.2), the 
above coefficient decreases when ? increases; therefore the difference between MSE 
of Croston and SBA also decreases. However, because the above coefficient reaches 
a limit of ?
 ?2
 4
 ????
 ?
 2??
 ?, the advantage of SBA over Croston does not change 
noticeably when the number of observations is high. On the other hand, when the 
smoothing parameter is high (?= 0.5), the difference between the MSE of Croston 
and SBA changes little with changes in ?. 
Although the Croston-SBA categorization is for i.i.d. demand, we have also tested it 
when demand is produced by an INAR(1), INMA(1) or an INARMA(1,1) process. 
The results show that the Croston-SBA categorization generally holds for all of these 
processes. 
 
10.4.3 Identification in INARMA Models 
We test the two identification approaches mentioned in section  10.2. The simulation 
results show that when the data is produced by an INARMA(0,0) process, the two-
 stage method produces better results than the one-stage method. This is true in terms 
of the percentage of time that the model is identified correctly and also in terms of 
the accuracy of forecasts. However, when data is produced by INAR(1), INMA(1) or 
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INARMA(1,1) processes, the one-stage method outperforms the two-stage method.  
For INAR(1) and INARMA(1,1) processes, when the autoregressive parameter is 
low, the process is misidentified in most cases for both identification methods. But 
when the autoregressive parameter is high, the performance of both identification 
methods improves. Obviously, when more observations are available, the percentage 
of correct identification increases for both methods. 
The INMA(1) process is misidentified in most of the cases. However, the results 
show that it does not affect the forecasting accuracy to a great extent. In general, the 
performance of both identification methods improves for higher moving average 
parameters and longer length of history.  
The simulation results also show that, for INAR(1) and INARMA(1,1) processes, 
misidentification has a great impact on the accuracy of forecasts when the 
autoregressive parameter is high. When the autoregressive parameter is small, or the 
process is an INMA(1) process, the effect of misidentification on forecasting 
accuracy is small.  
We also test the case that the identification step is ignored and an INAR(1) or an 
INARMA(1,1) method is used for forecasting. The results show that when the 
number of observations is small, this approach produces better forecasts for INAR(1) 
and INMA(1) series. The results also show that the all-INAR(1) approach produces 
better forecasts than the all-INARMA(1,1) approach for all four INARMA series.  
 
10.4.4 Comparing INARMA with the Benchmark Methods 
The results show that when the order of the INARMA model is known, the 
INARMA method almost always produces the lowest MSE when all points in time is 
considered. When only issue points are considered, the INARMA forecasts are 
biased and therefore are not always better than the benchmark methods.  
For INARMA(0,0) and INMA(1) processes, the improvement over benchmarks is 
not considerable. However, for the INAR(1) and INARMA(1,1) processes, the 
improvement is considerable when the autoregressive parameter is high. This is true 
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for both MSE and MASE of forecasts.  
The degree of improvement (by using INARMA over the benchmark methods) for 
the ?-step ahead forecasts does not change for INARMA(0,0) process. But for an 
INMA(1) process, the performance of INARMA compared to benchmark methods is 
improved for h-step ahead forecasts compared to one-step ahead forecasts. For 
INAR(1) and INARMA(1,1) processes, the performance of INARMA over the 
benchmark methods is improved compared to the one-step ahead case when the 
autoregressive parameter is low. But when the autoregressive parameter is high, the 
fact that the forecasts converge to the mean of the process results in poor forecasts 
compared to the one-step ahead case. 
All of the above results were for the case that the order of the INARMA model is 
known. This is obviously not true in practice and the INARMA model needs to be 
identified. The results of identification show that treating all as an INAR(1) model is a 
promising approach especially for high autoregressive parameters and short length of 
history. Therefore, we compare an all-INAR(1) method with the benchmark methods. 
The results show that for INARMA(0,0) and INMA(1) processes, the benchmark 
methods outperform INARMA especially for more sparse demand. For INARMA(1,1) 
series, when the autoregressive parameter is high, INARMA is considerably better 
than the benchmark methods in terms of MSE and MASE. Obviously, the results for 
INAR(1) series are the same as the case that the order is known.   
We also compare the lead time forecasts produced by an all-INAR(1) method with 
the benchmark methods. The results show that, for INARMA(0,0) and INMA(1) 
series, the all-INAR(1) forecasts are better than the best benchmark in most of the 
cases. For INAR(1) and INARMA(1,1) series, when the autoregressive parameter is 
high, the improvement of INARMA over the best benchmark is narrow for short 
length of history. However with more observations, the improvement also increases. 
For small autoregressive parameters, the INAR(1) method always outperforms the 
benchmark methods. Again, the improvement increases with an increase in the length 
of history. 
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10.5 Conclusions from the Empirical Part of the Thesis 
The simulation analysis of this research compared the accuracy of forecasts (in terms 
of MSE and MASE) by an INARMA method with those produced by benchmark 
methods when the data is generated by an INARMA model. Empirical analysis is 
performed to validate the theoretical and simulation results for real data. Two data 
sets used in this research are the Royal Air Force (RAF) individual demand histories 
of 16,000 SKUs over a period of 6 years (monthly observations) and demand history 
of 3,000 SKUs from the automotive industry over a period of 2 years (24 months). 
Both data sets are filtered to eliminate lumpy series, since the INARMA models with 
Poisson marginal distribution are not appropriate for lumpy demand. The PB of 
MASE and the RGRMSE are used to measure the forecast error in addition to ME, 
MSE and MASE.  
 
10.5.1 Identification in INARMA Models 
The two identification methods (two-stage and one-stage) are compared. The 
empirical results for both 16,000 and 3,000 series show that the two-stage method 
produces more accurate forecasts. This is not surprising because the identification 
shows that the majority of series in both data sets are identified as INARMA(0,0) and 
the simulation results show that for INARMA(0,0) series the two-stage method is 
better than the one-stage method.  
The empirical results also confirm the simulation results that ignoring the 
identification step, and forecasting with an INARMA(1,1) or an INAR(1) process, is 
a promising approach. It is also confirmed that the latter outperforms the former.   
 
10.5.2 The Performance of Different Estimation Methods 
After the appropriate INARMA model is identified for all the series in each data set, 
different INARMA series are separated and forecasted by the corresponding 
INARMA method. The performance of different estimation methods in terms of the 
accuracy of forecasts are tested for each INARMA model.  
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The empirical results agree with the simulation results for all three INARMA 
models. For INAR(1) series (with ? around 0.1 and ? around 2), the YW produces 
better forecasts than CLS and CML agreeing with the simulation results for similar 
parameters. For INMA(1) series, YW produces slightly better results than CLS. 
However, for INARMA(1,1) series, CLS outperforms YW, which again confirms the 
simulation results.  
 
10.5.3 Comparing INARMA with the Benchmark Methods 
The forecast accuracy of INARMA (based on all identification methods) is compared 
to that of the benchmark methods for both 16,000 and 3,000 series. The results show 
that, for the former data set, there is an improvement by using INARMA methods for 
one-step ahead forecasts for all accuracy measures. The improvement is narrow for 
3,000 series which is expected because of the short length of history and low 
autocorrelation. This slight improvement is based on MSE and, in fact, the MASE of 
INARMA is worse than the benchmarks for 3,000 series.  
The accuracy of ?-step ahead INARMA forecasts are even better than the 
benchmarks compared to the one-step ahead forecasts. This is true for both data sets.  
The lead time forecasts are obtained based on the conditional expected value of the 
aggregated INARMA process and also from the cumulative ?-step ahead forecasts. 
The empirical results show that for INAR(1) series of both data sets, both of these 
methods produce considerably better forecasts than the benchmark methods with the 
former outperforming the latter. The same is true for INMA(1) series of both data 
sets but not for INARMA(1,1) series. For INARMA(1,1) series, the cumulative ?-
 step ahead forecasts are better than those based on conditional expected value of the 
aggregated process. It should be borne in mind that the number of INARMA(1,1) for 
both data sets are very small.  
 
10.5.4 The Problem with MASE 
The empirical results show that when the data series is highly intermittent (which is 
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the case for most of the 16,000 series), the MASE of all forecasting methods is very 
high. This would suggest that all methods are worse than na?ve. Because the data 
series contain many zeros in the estimation period, the error of na?ve in most of the 
time periods is zero. Therefore the in-sample MAE is very small and the MASE is 
very large. This is true when all points in time are considered.  
However, for the case of issue points, because it is more likely that a nonzero 
demand is followed with a zero demand, the absolute error of na?ve and therefore the 
in-sample MAE is large. As a result, the MASE of the forecasting methods is smaller 
compared to the all points in time case. The empirical results confirm this. As a 
result, for highly intermittent data, MASE does not provide reliable results. 
 
10.6 Practical and Software implications  
In this thesis we have applied an INARMA method to model and forecast non-erratic 
intermittent demand (see the classification by Boylan et al., 2008). Four models have 
been assumed to include autoregressive, moving average, mixed models and also an 
i.i.d. Poisson process. All simulation and empirical results are based on the following 
assumptions: 
? The intermittent demand can be modelled with either an INARMA(0,0), 
INAR(1), INMA(1) or an INARMA(1,1) process with Poisson marginal 
? The benchmark methods to compete against INARMA method are: Croston, 
SBA and SBJ 
? The forecast accuracy measures are: ME, MSE, MASE, RGRMSE, and PB, 
with the last two only used for empirical analysis 
It has been shown that INARMA performs best when data has high autocorrelation. 
Even with low autocorrelation INARMA outperforms the benchmarks when the 
length of history is large. However, we cannot claim that when the above 
assumptions are violated, these results still hold. For example, the empirical data of 
this research were filtered to comply with the first assumption.  
Therefore, in order to use the INARMA method, the distribution that fits the demand 
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data of the organization should first be found. All discrete self-decomposable 
distributions can be used as marginal distributions of INARMA models. This 
includes: Poisson, generalized Poisson, and negative binomial distributions. The 
generalized Poisson allows for both under and overdispersion (Br?nn?s, 1994), and 
the negative binomial allows for overdispersion (McCabe and Martin, 2005).  
The results of this research suggest that although identification of the autoregressive 
and moving average orders of the INARMA models results in more accurate 
forecasts, using simple models such as an INAR(1) model also produces good 
forecasts. This is an especially useful method when the length of history is not long 
enough for identification. However, it should be mentioned that the simulation 
results of this research were based on limited INARMA models and the empirical 
data did not support higher order models. Therefore, for higher order models, the 
performance of using a simple model instead of identification needs to be tested first 
through simulation.  
The YW and CLS estimation methods are not based on distributional assumptions 
and therefore can be used for all cases. However, the maximum likelihood estimators 
for the corresponding distribution should be obtained. The results of this research can 
be used, at least for the specific INARMA models and parameters, as a guide to 
when one estimation method should be used over another.  
Although the lead time forecasts in this thesis are restricted to Poisson, the findings 
can be easily amended for other distributions.  
The conventional ARIMA models are offered by standard forecasting programmes 
such as Autobox (Automatic Forecasting Systems) and Forecast Pro (Business 
Forecast Systems). These programmes provide automated identification, estimation 
and forecasting for ARIMA models. For instance, Forecast Pro uses the Bayesian 
information criterion (BIC) along with some other rules for identification and 
unconditional least squares for estimation (Goodrich, 2000). Autobox matches the 
SACF with theoretical ACF for some starting ARIMA models and then uses AIC to 
select the best model (Reilly, 2000).  
Although INARMA models have had applications in many areas (see section  3.3.9), 
there is currently no software based on these models. This research suggested a new 
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application area for INARMA models in intermittent demand forecasting. The 
improvement in forecast accuracy by using INARMA over the benchmark methods 
such as Croston (which is offered in some forecasting programmes such as Forecast 
Pro), also urges the need to develop forecasting software for these models.   
In doing so, this research can be considered a starting point. We have addressed 
issues of whether AIC produces satisfactory results, which estimation method is best 
in what case, and ?-step ahead and lead time forecasting for a limited number of 
INARMA models.  
 
10.7 Limitations and Further Research 
Throughout this research we have made assumptions that can be relaxed in future 
studies. Although most of the theoretical findings are not based on any marginal 
distribution, for simulation and empirical analyses we restricted the research to a 
specific distribution. As previously discussed in section  7.2, the Poisson distribution 
was selected due to its interesting properties. However, it does not allow for 
overdispersion in data and in such cases other distributions should be assumed. For 
example, Alzaid and Al-Osh (1993) show that the Generalized Poisson INAR(1) 
process has more variability than PoINAR(1) because its variance is twice that of 
PoINAR(1). This could be useful for modelling moderately lumpy demand. 
Other adaptations of INARMA models to take into account non-stationarity, 
seasonality and trend can also be used. For example the signed binomial thinning 
models introduced by Kim and Park (2008) allow for negative values and negative 
autocorrelations and also use the differencing operator to remove the trend and 
seasonality.  
As mentioned in section  7.3.1, the simulation and empirical results of this research 
have been based on INARMA models with ?,??1. A natural extension would be to 
use higher order models. As seen in chapter 9, our empirical data did not support 
such models; however, other data sets may be better fitted by higher order INARMA 
models.  
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This research has only focused on aggregation of INARMA models over lead time. 
The temporal and cross-sectional aggregation in INARMA models were briefly 
reviewed in chapter 3. A problem is identified with the result of temporal 
aggregation of an INAR(1) process provided by Br?nn?s et al. (2002). More studies 
should be carried out in both temporal and cross-sectional aggregation fields.   
As mentioned in section  4.5, the complexity of the likelihood function has restricted 
the use of penalty functions for INARMA models. We have used the AIC based on 
the likelihood function of ARIMA models and shown that the results are satisfactory. 
However, there is still a need for finding the AIC based on INARMA models.  
As confirmed in chapters 8 and 9, the INARMA forecasts are biased when only issue 
points are considered. The estimates, and as a result, forecasts, can be revised to 
reduce such bias. For example, the CLS of an INAR(1) process is based on the 
following criterion: 
?????=? [??????????1?]
 2
 ?
 ?=1
  
Equation  10-13 
where ?= (?,?)?. Now, when only issue points are considered, the estimates of the 
parameters will be updated after observing a positive demand. Therefore, in Equation 
 10-13 the last observation which is ?? is definitely positive and its conditional 
expected value should be ???????1,??> 0? instead of ???????1?. As a result, the 
new least squares criterion will be: 
??
 ????=? [??????????1?]
 2
 ??1
 ?=1
 + [??????????1,??> 0?]
 2 
Equation  10-14 
The revised CLS estimates of parameters can be obtained by minimization of the 
above criterion. Numerical methods are needed to find these estimates. The new 
estimates can be compared to CLS estimates in terms of their impact on forecast 
accuracy when only issue points are considered. Other estimation methods that allow 
for such revisions such as maximum likelihood could also be considered.  
Another limitation of this study is that we have used the conditional expectation to 
produce forecasts. This enabled us to compare the MMSE INARMA forecasts to 
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point forecasts from benchmark methods. The natural next step is to forecast the 
whole distribution instead. This has been done in a number of studies in the 
INARMA literature (Freeland and McCabe, 2004b; McCabe and Martin, 2005; Bu 
and McCabe, 2008). This will then enable us to compare INARMA method with 
bootstrapping methods in an IDF context.  
Incorporating explanatory variables in INARMA models has been the subject of 
some studies (Br?nn?s, 1995; Br?nn?s and Quoreshi, 2004). As discussed in section 
 2.3.3, causal models for IDF have not yet been well developed in the literature and 
the integration of these models with INARMA models would be an interesting line of 
research.  
The benchmark methods of this research were Croston, SBA and SBJ. We have used 
two arbitrary values for the smoothing parameter of these methods. This could be 
replaced by the optimum smoothing parameter. Also, different smoothing parameters 
could be used for updating demand size and inter-arrival time.  
Although this study has only focused on forecasting and not inventory control, it is 
expected that the improvement in the mean (forecasts) would translate to better 
percentile estimates and better inventory results. Obviously, this could be tested in 
future studies to find whether using INARMA method would result in better 
inventory measures such as service level and inventory level that have been 
suggested by Teunter and Duncan (2009).  
Different inventory models need different estimation of parameters, i.e. mean, 
percentiles, or estimates of demand sizes and inter-demand invervals. Syntetos et al. 
(2008) develop a modified periodic order-up-to-level inventory policy for 
intermittent demand which relies upon demand sizes and inter-demand intervals. 
Depending on what inventory model is applied, INARMA methods can provide all of 
these estimates. For example, in the case where demand follows an INAR(1) model: 
??demand size?=
 ?/(1??)
 1????/(1??)
  
Equation  10-15 
??demand interval?=
 1??
 ?
  
Equation  10-16 
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Finally, the empirical results of this research have been restricted to two data sets. 
More empirical analyses can be done to further assess the sensitivity of results to the 
length of history and the level of intermittence.  
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Appendix 3.A Autocorrelation Function of an INARMA(1,1) Model 
In this appendix, we show how to obtain the ACF of an INARMA(1,1) process of 
??=?????1 +??+?????1. The unconditional variance of the INARMA(1,1) 
process can be obtained from: 
var????= var??????1?+ var????+ var??????1?+ 2cov(?????1,?????1) 
Considering the fact that cov????,????=??cov(?,?), the above equation can 
be written as: 
var????=?
 2var????1?+??1????????1?+??
 2 +?2??
 2 +??1????? 
+2cov???2????2 +?????1 +??????2?,?????1? 
=?2var????1?+??1???
 ??(1 +?)
 1??
 +??
 2 +?2??
 2 +??1?????
 + 2????
 2 
Hence, the unconditional variance of an INARMA(1,1) process is: 
var????=
 1
 1??2
 [??+?+????2???+ (1 +?
 2 + 2??)??
 2] 
Equation 3.A-1 
If a Poisson distribution is assumed for innovations (??=??
 2 =?), the above result 
can be simplified to: 
var????=
 ?
 1??2
 [1 +?+?+ 3??] 
Equation 3.A-2 
The INARMA(1,1) process, ??, can be written in terms of ???? as follows: 
??=?
 ??????+? ?
 ??????
 ??1
 ?=0
 +? ?????????1
 ??1
 ?=0
  
Equation 3.A-3 
The autocovariance at lag ? is defined as: 
??= cov(??,????) 
Equation 3.A-4 
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Therefore, the autocovariance at lag ? is: 
??= cov?????,??
 ??????+? ?
 ??????
 ??1
 ?=0
 +? ?????????1
 ??1
 ?=0
 ?? 
=??var??????+ cov?????,? ?
 ??????
 ??1
 ?=0
 ?+ cov?????,? ?
 ????????1
 ??1
 ?=0
 ? 
=??var??????+ cov?????,?
 ??1??????? 
=??var??????+ cov????????1 +????+???????1,?
 ??1??????? 
 
By substitution from Equation 3.A-1: 
??=
 ??
 1??2
 ???+?+????2???+?1 +?
 2 + 2?????
 2?+???1???
 2 
=???1??
 ?(?+?+????2)
 1??2
 ???+?
 ?(1 +?2 + 2??)
 1??2
 +????
 2? 
As a result: 
??=?
 ??1??
 ?2 +??+?2????2
 1??2
 ???+?
 ?+??2 +?2?+?
 1??2
 ???
 2? 
Equation 3.A-5 
Consequently, the ACF of an INARMA(1,1) is: 
??=?
 ??2 +??+?2????2???+ (?+??
 2 +?2?+?)??
 2
 ??+?+????2???+ (1 +?2 + 2??)??
 2 for ?= 1
 ????1 for ?> 1
 ? 
Equation 3.A-6 
For a PoINARMA(1,1) with ??=??
 2 =?, the ACF would be:  
??=?
 ?+?+??+?2 + 2?2?
 1 +?+?+ 3??
 for ?= 1
 ????1 for ?> 1
 ? 
Equation 3.A-7 
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Appendix 3.B The Unconditional Variance of an INARMA(p,q) 
Model 
The unconditional variance of an INARMA(p,q) process of ??=? ???????
 ?
 ?=1 +
 ??+? ???????
 ?
 ?=1 , can be written as follows, where all the covariance terms, to be 
found later, have been summarized using the expression ??cov? terms?: 
var????= var??1????1?+?+ var?????????+ var???? 
+var??1????1?+?+ var?????????+?cov? terms 
Equation 3.B-1 
var????=?1
 2var????1?+?1?1??1??????1?+?+??
 2var?????? 
+???1???????????+??
 2 +?1
 2??
 2 +?1?1??1???+?+??
 2??
 2 
+???1??????+?cov? terms 
Equation 3.B-2 
Hence, assuming stationarity of the process, we have: 
var????=
 1
 1?? ??
 2?
 ?=1
 ??
 1 +? ??
 ?
 ?=1
 1?? ??
 ?
 ?=1
 ? ??1???
 ?
 ?=1
 +? ??1???
 ?
 ?=1
 ???? 
?+?1 +? ??
 2
 ?
 ?=1
 ???
 2 +?cov? terms? 
Equation 3.B-3 
Next, we focus on finding the covariance terms. There are two types of covariance: 
1. The covariance between {??}s at different lags: cov(??,??) for ???. 
2. The covariance between {??}s and {??}s: cov(??,??) for ???. 
For ?>?, the random disturbance terms are independent of previous 
observations.  
 
 
 
M.Mohammadipour, 2009, Appendix 3.B   275 
 
The first group of covariance terms is given by: 
first Cov = 2cov??1????1,?2????2?+ 2cov??1????1,?3????3?+? 
+2cov??1????1,???????? 
+2cov??2????2,?3????3?+ 2cov??2????2,?4????4?+?
 + 2cov??2????2,????????+? 
+ 2cov????2?????+2,???1?????+1?+ 2cov????2?????+2,????????
 + 2cov????1?????+1,???????? 
first Cov = 2?1?2?1 + 2?1?3?2 +?+ 2?1?????1 
+2?2?3?1 + 2?2?4?2 +?+ 2?2?????2 +? 
+2 ???2???1?1 + 2???2???2 
+2???1???1 
first Cov = 2? ???+1?1
 ??1
 ?=1
 + 2? ???+2?2
 ??2
 ?=1
 +?+ 2 ? ???+???1???1
 ?????1?
 ?=1
  
first Cov = 2? ? ???+???
 ???
 ?=1
 ??1
 ?=1
  
Equation 3.B-4 
Now we focus on the second type of covariance which is cov(??,??) for ???. Here 
there are three cases: 
1. ?<?  
2. ?=? 
3. ?>? 
Each of these cases is discussed here separately. 
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1. cov(??,??) when ?<?  
 
Figure 3.B-1  in an INARMA(p,q) process when  
Second Cov 1 = 2cov??1????1,?1????1?+ 2cov??1????1,?2????2?+? 
+2cov??1????1,???????? 
+2cov??2????2,?2????2?+ 2cov??2????2,?3????3?+?
 + 2cov??2????2,????????+? 
+2cov????????,????????+?+ 2cov????????,???????? 
Then, the first terms in each of the rows are summed vertically, with the remaining 
terms in the rows being summed horizontally (see Figure 3.B-1). 
Second Cov 1 = 2??
 2? ???
 ?
 ?=1
 + 2? ?1?????1
 ??
 ?
 ?=2
 + 2? ?2?????2
 ??
 ?
 ?=3
  
+?+ 2 ? ????????
 ??
 ?
 ?=?+1
  
Second Cov 1 = 2??
 2? ???
 ?
 ?=1
 + 2? ? ???????
 ??
 ?
 ?=?+1
 ?
 ?=1
  
Equation 3.B-5 
where ??
 ?? is the cross-covariance between ? and ? at lag ? [??
 ??=?????????] and 
is analysed further in appendix 3.C.   
 
),cov( ji ZY
 qp ?
 ???1  
???1  
???1  
???2  
?  
???1  
????+1  
???1  
????  
???2  
???2  
?  
???2  
????+1  
???2  
????  
????  
????  
????  
????  
? ? 
? 
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2. cov(??,??) when ?=?  
 
Figure 3.B-2  in an INARMA(p,q) process when  
Second Cov 2 = 2cov??1????1,?1????1?+ 2cov??1????1,?2????2?+? 
+2cov??1????1,???????? 
+2cov??2????2,?2????2?+ 2cov??2????2,?3????3?+?
 + 2cov??2????2,????????+? 
+2cov????1?????+1,???1?????+1?
 + 2cov????1?????+1,???????? 
+2cov????????,???????? 
Then, the first terms in each of the rows are summed vertically, with the remaining 
terms in the rows being summed horizontally (see Figure 3.B-2). 
Second Cov 2 = 2??
 2? ???
 ?
 ?=1
 + 2? ?1?????1
 ??
 ?
 ?=2
 + 2? ?2?????2
 ??
 ?
 ?=3
 +? 
+2? ???1?????(??1)
 ??
 ?
 ?=?
  
Second Cov 2 = 2??
 2? ???
 ?
 ?=1
 + 2? ? ???????
 ??
 ?
 ?=?+1
 ??1
 ?=1
  
Equation 3.B-6 
The Equation 3.B-6 can be written as 2??
 2? ???
 ?
 ?=1 + 2? ? ???????
 ???
 ?=?+1
 ?
 ?=1  for 
),cov( ji ZY qp ?
 ???1  
???1  
???1  
???2  
?  ????+1 
???1  ???1  
????  
???2  
???2  
? 
???2  
????+1  
???2  
????  
????  
????  
? ? 
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generalization purposes because for ?=? the second summation would be (? )??=?+1  
which has zero terms.  
 
3. cov(??,??) when ?>?  
 
Figure 3.B-3  in an INARMA(p,q) process when   
 
Second Cov 3 = 2cov??1????1,?1????1?+ 2cov??1????1,?2????2?+? 
+2cov??1????1,???????? 
+2cov??2????2,?2????2?+ 2cov??2????2,?3????3?+?
 + 2cov??2????2,????????+? 
+2cov????1?????+1,???1?????+1?
 + 2cov????1?????+1,???????? 
+2cov????????,???????? 
Then, the first terms in each of the rows are summed vertically, with the remaining 
terms in the rows being summed horizontally (see Figure 3.B-3). 
Second Cov 3 = 2??
 2? ???
 ?
 ?=1
 + 2? ?1?????1
 ??
 ?
 ?=2
 + 2? ?2?????2
 ??
 ?
 ?=3
 +? 
+2? ???1?????(??1)
 ??
 ?
 ?=?
  
),cov( ji ZY qp ?
 ???1  
???1  
???1  
???2 
? 
???1  
????+1 
???1 
???? 
???2 
???2 
? 
???2  
????+1 
???2  
????  
???? 
???? 
? ? 
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Second Cov 3 = 2??
 2? ???
 ?
 ?=1
 + 2? ? ???????
 ??
 ?
 ?=?+1
 ??1
 ?=1
  
Equation 3.B-7 
The Equation 3.B-7 can be written as 2??
 2? ???
 ?
 ?=1 + 2? ? ???????
 ???
 ?=?+1
 ?
 ?=1  for 
generalization purposes because for ?=? the second summation would be (? )??=?+1  
which has zero terms. 
Therefore, based on the results of Equation 3.B-5, Equation 3.B-6 and Equation 3.B-
 7, the second group of covariance is given by: 
Second Cov = 2 ? ???
 min (?,?)
 ?=1
 ??
 2 + 2 ? ? ???????
 ??
 ?
 ?=?+1
 min (?,?)
 ?=1
  
Equation 3.B-8 
Finally, from the Equation 3.B-3, Equation 3.B-4, and Equation 3.B-8, the 
unconditional variance of an INARMA(p,q) process is: 
var????=
 1
 1?? ??
 2?
 ?=1
 ??
 1 +? ??
 ?
 ?=1
 1?? ??
 ?
 ?=1
 ? ??1???
 ?
 ?=1
 +? ??1???
 ?
 ?=1
 ???? 
+?1 +? ??
 2
 ?
 ?=1
 ???
 2 + 2? ? ???+???
 ???
 ?=1
 ??1
 ?=1
  
?+2 ? ???
 min (?,?)
 ?=1
 ??
 2 + 2 ? ? ???????
 ??
 ?
 ?=?+1
 min (?,?)
 ?=1
  
 
var????=
 ??
 1?? ??
 2?
 ?=1
 ?
 1 +? ??
 ?
 ?=1
 1?? ??
 ?
 ?=1
 ? ??1???
 ?
 ?=1
 +? ??1???
 ?
 ?=1
 ? 
+
 ??
 2
 1?? ??
 2?
 ?=1
 ?1 +? ??
 2
 ?
 ?=1
 + 2 ? ???
 min (?,?)
 ?=1
  
+
 2? ? ???+???
 ???
 ?=1
 ??1
 ?=1 + 2? ? ???????
 ???
 ?=?+1
 min (?,?)
 ?=1
 1?? ??
 2?
 ?=1
  
Equation 3.B-9 
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Appendix 3.C The Cross-Covariance Function between Y and Z for 
an INARMA(p,q) Model 
The cross-covariance function, ??
 ??, is the covariance between ? and ? at lag ? and 
is defined by ??
 ??=?(??????). Therefore, the cross-covariance at lag zero is given 
by: 
?0
 ??= cov???,???= cov?? ???????
 ?
 ?=1
 +??+? ???????
 ?
 ?=1
 ,??? 
Considering the fact that the innovation terms are independent of previous 
observations, we have: 
?0
 ??= cov???,???=???????=??
 2 
The cross-covariance at lag one can be obtained from: 
?1
 ??= cov???,???1? 
= cov??1????1 +?+???????+??+?1????1 +?+???????,???1? 
= cov??1????1,???1?+ cov??1????1,???1?=?1??
 2 +?1??
 2 
The cross-covariance at lag ? (0????) is given by: 
??
 ??= cov???,????? 
= cov??1????1 +?+???????+??+?1????1 +?+???????,????? 
= cov??1????1,?????+?+ cov????1???????1?,????? 
+cov????????,?????+????
 2 
=????
 2 +?1???1
 ?? +?+???1?1
 ??+????
 2 
??
 ??=????
 2 +? ?????
 ??
 ?
 ?=1
  
Equation 3.C-1 
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Appendix 3.D Over Lead Time Aggregation of an INAR(1) Model 
In this appendix, we show how to derive the conditional first and second moments of 
a lead time aggregated PoINAR(1) process (??=??
 2 =?). The aggregated process 
over lead time can be written as:  
? ??+?
 ?+1
 ?=1
 =?????+??+1?+?????+1 +??+2?+?+?????+?+??+?+1? 
=?????+??+1?+????????+??+1?+??+2?+?+?????+?+??+?+1?
 =?????+??+1?+??
 2???+????+1 +??+2?+?
 +???+1???+?
 ????+1 +?
 ??1???+2 +?+????+?+??+?+1? 
It can be simplified as 
? ??+?
 ?+1
 ?=1
 =?????+?
 2???+?+?
 ?+1???? 
+???+1 +????+1 +?+?
 ????+1?
 +???+2 +????+2 +?+?
 ??1???+2?+?+???+?+????+? +??+?+1 
Equation 3.D-1 
The conditional expected value of the aggregated process is given by:  
??? ??+?
 ?+1
 ?=1
 |???=????+?
 2??+?+?
 ?+1???+??+??+?+?
 ??? 
+??+??+?+???1??+?+??+???+? 
??? ??+?
 ?+1
 ?=1
 |???=
 ?(1???+1)
 1??
 ??+
 ?
 1??
 ??1???+1?+?1??? +?+?1???? 
Therefore, we have:  
??? ??+?
 ?+1
 ?=1
 |???=
 ?(1???+1)
 1??
 ??+
 ?
 1??
 ???+ 1??? ??
 ?+1
 ?=1
 ? 
Equation 3.D-2 
Now we want to find the conditional variance of the aggregated process. We know 
that: 
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cov?????,?????=???????2??????????????=????var(?) 
Equation 3.D-3 
Hence, we have cov??????,?
 ?????=?
 ????. 
The variance of the Equation 3.D-1 given ?? is: 
var?? ??+?
 ?+1
 ?=1
 |???= var??????+ var??
 2????+?+ var??
 ?+1???? 
+2cov?????,?
 2????+ 2cov?????,?
 3????+?+ 2cov?????,?
 ?+1????
 + 2cov??2???,?
 3????+ 2cov??
 2???,?
 4????+?+ 2cov??
 2???,?
 ?+1???? 
+?+ 2cov????1???,?
 ?????+ 2cov??
 ??1???,?
 ?+1???? 
+2cov??????,?
 ?+1???? 
+var???+1?+ var?????+1?+ var??
 2???+1?+?+ var??
 ????+1? 
+2cov???+1,????+1?+ 2cov???+1 ,?
 2???+1?+?+ 2cov???+1 ,?
 ????+1? 
+2cov?????+1 ,?
 2???+1?+ 2cov?????+1 ,?
 3???+1?+?
 + 2cov?????+1 ,?
 ????+1? 
+?+ 2cov????2???+1 ,?
 ??1???+1?+ 2cov??
 ??2???+1 ,?
 ????+1? 
+2cov????1???+1 ,?
 ????+1? 
+var???+2?+ var?????+2?+?+ var??
 ??1???+2? 
+2cov???+2,????+2?+ 2cov???+2 ,?
 2???+2?+?+ 2cov???+2 ,?
 ??1???+2? 
+2cov?????+2 ,?
 2???+2?+ 2cov?????+2 ,?
 3???+2?+?
 + 2cov?????+2 ,?
 ??1???+2? 
+?+ 2cov????3???+2 ,?
 ??2???+2?+ 2cov??
 ??3???+2 ,?
 ??1???+2? 
+2cov????2???+2 ,?
 ??1???+2?+? 
+var???+??1?+ var?????+??1?+ var??
 2???+??1? 
+2cov???+??1 ,????+??1?+ 2cov???+??1 ,?
 2???+??1?
 + 2cov?????+??1 ,?
 2???+??1? 
+var???+?+ var?????+? 
+2cov???+?,????+? 
+var???+?+1? 
Since ?? is fixed, cov??
 ????,?
 ?????=?
 ???var????= 0, using Equation 3.D-3. 
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var?? ??+?
 ?+1
 ?=1
 |???=?(1??)?????+?
 2(1??2)?????+?+?
 ?+1(1???+1)????? 
+?+??2?+??1?????+??4?+?2?1??2???+?+??2??+???1?????? 
+2??+?2 +?+???+ 2??3 +?4 +?+??+1??+?+ 2??2??3 +?2??2??
 + 2??2??1?? 
+?+??2?+??1?????+??4?+?2?1??2???+?
 +??2??2?+???1?1????1??? 
+2??+?2 +?+???1??+ 2??3 +?4 +?+???+?+ 2??2??5 +?2??4??
 + 2??2??3??+? 
+?+??2?+??1?????+??4?+?2?1??2??? 
+2??+?2??+ 2[?3]? 
+?+??2?+??1????? 
+2?? 
+? 
The above result can be summarized to: 
var?? ??+?
 ?+1
 ?=1
 |???=?(1??)??+?
 2(1??2)??+?+?
 ?+1(1???+1)?? 
+?+????+??2??+?+????? 
+2??+?2 +?+???+ 2??3 +?4 +?+??+1??+?+ 2??2??3 +?2??2??
 + 2??2??1?? 
+?+????+??2??+?+????1?? 
+2??+?2 +?+???1??+ 2??3 +?4 +?+???+?+ 2??2??5 +?2??4??
 + 2??2??3??+? 
+?+????+??2?? 
+2??+?2??+ 2[?3]? 
+?+???? 
+2?? 
+? 
var?? ??+?
 ?+1
 ?=1
 |???=?(1??)??+?
 2(1??2)??+?+?
 ?+1(1???+1)?? 
+??1 +?+?+???+??1 +?+?+???1?+?+??1 +?+?2?+??1 +??
 +? 
+2??+?2 +?+???+ 2??3 +?4 +?+??+1??+?+ 2??2??3 +?2??2??
 + 2??2??1?? 
+2??+?2 +?+???1??+ 2??3 +?4 +?+???+?+ 2??2??5 +?2??4??
 + 2??2??3??+? 
+2??+?2??+ 2[?3]? 
+2?? 
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var?? ??+?
 ?+1
 ?=1
 |???=??? ?
 ??1????
 ?+1
 ?=1
 +
 ?
 1??
 ???+ 1??? ??
 ?+1
 ?=1
 ? 
+2???1 +?+?+??1?+ 2?3??1 +?+?+??2?+? 
+2?2??3??1 +??+ 2?2??1? 
+2???1 +?+?+??2?+ 2?3??1 +?+?+??3?+? 
+2?2??5??1 +??+ 2?2??3?+? 
+2???1 +??+ 2?3? 
+2?? 
So 
var?? ??+?
 ?+1
 ?=1
 |???=??? ?
 ??1????
 ?+1
 ?=1
 +
 ?
 1??
 ???+ 1??? ??
 ?+1
 ?=1
 ? 
+
 2??
 1??
 ?1????+
 2?3?
 1??
 ?1???1?+?+
 2?2??3?
 1??
 ?1??2?+
 2?2??1?
 1??
 [1??] 
+
 2??
 1??
 ?1???1?+
 2?3?
 1??
 ?1???2?+?+
 2?2??5?
 1??
 ?1??2?
 +
 2?2??3?
 1??
 ?1??? 
+? 
+
 2??
 1??
 ?1??2?+
 2?3?
 1??
 ?1??? 
+
 2??
 1??
 ?1??? 
Summing the above expressions vertically results in: 
var?? ??+?
 ?+1
 ?=1
 |???=??? ?
 ??1????
 ?+1
 ?=1
 +
 ?
 1??
 ???+ 1??? ??
 ?+1
 ?=1
 ? 
+
 2??
 1??
 ???(?+?2 +?+??)?+
 2?3?
 1??
 ????1??(?+?2 +?+??1)?
 +?+
 2?2??3?
 1??
 ?2?(?+?2)?+
 2?2??1?
 1??
 [1??] 
Finally, the conditional variance of the aggregated process is: 
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var?? ??+?
 ?+1
 ?=1
 |???=??? ?
 ??1????
 ?+1
 ?=1
 +
 ?
 1??
 ???+ 1??? ??
 ?+1
 ?=1
 ? 
+
 2?
 1??
 ? ?2??1?????+ 1??
 ?(1?????+1)
 1??
 ?
 ?
 ?=1
  
Equation 3.D-4 
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Appendix 4.A Infinite Autoregressive Representation of an 
INARMA(p,q) Model 
It will be shown in this appendix that the Infinite Auto-Regressive Representation 
(IARR) of an INARMA(p,q) process (??=? ???????
 ?
 ?=1 +??+? ???????
 ?
 ?=1 ) is 
as follows: 
??=??+? ? ???????
 ??
 ?=1
 ?
 ?=1
  
    Equation 4.A-1 
where  
??=
 ?
 ?
 ?
 ?
 ?
 ?? ????
 ?
 ?=1
 + 1 0 <???
 ? ????
 ?
 ?=1
 ?>?
 ? 
    Equation 4.A-2 
Then ?? can be expressed in terms of {????}?=0
 ?   as:  
??=???? ? ???????
 ??
 ?=1
 ?
 ?=1
  
    Equation 4.A-3 
where ?? is given by Equation 4.A-2.  
When expressing the INARMA(p,q) process in terms of {????}?=1
 ? , it should be noted 
that because ???+????(?+?)??, these coefficients cannot be added. 
Therefore, another summation over the number of ???? terms has been used (? )
 ??
 ?=1 .  
First, it is shown that the expression for ?? is correct when ?>?. An example will 
motivate the general case. Consider an INARMA(2,1) process of: 
??=?1????1 +?2????2 +??+?1????1 
 
M.Mohammadipour, 2009, Appendix 4.A   287 
 
We are interested to find the number of ???3 terms in the IARR of this process. It can 
be seen that: 
???1 =???1??1????2??2????3??1????2 
???2 =???2??1????3??2????4??1????3 
???3 =???3??1????4??2????5??1????4 
The INARMA(2,1) process can be written as: 
??=?1????1 +?2????2 +??+?1?????1??1????2??2????3??1????2? 
=?1????1 +?2????2 +??+?1????1??1?1????2??2?1????3??1
 2
 ?(???2??1????3??2????4??1????3) 
=?1????1 +?2????2 +??+?1????1??1?1????2??2?1????3??1
 2????2
 +?1?1
 2????3 +?2?1
 2????4 +?1
 3?(???3??1????4??2????5??1????4) 
It can be seen that ???3 terms come from ???1, ???2, and ???3 terms. It can be easily 
shown that ???4 terms come from ???2, ???3, and ???4 terms. Using the same 
argument, it can be shown that when ?>?, ???? terms come from {????+?}?=0
 ?
  terms, 
with each of them producing one ????. 
Now, we want to check if, for ?>?, ?? is in fact ? ????
 ?
 ?=1  (??=???1 +???2 +?+
 ????). We know that ?? is the number of ???? in IARR of an INARMA(p,q) process, 
so: 
 
???1 =
 the number of ????+1  
???2 =
 the number of ????+2  
? 
????=
 the number of ????+?  
which come from which come from  which come from 
? ? ? ? 
{????+1+?}?=0
 ?
   {????+2+?}?=0
 ?
    ? {????+?+?}?=0
 ?
   
 
The above terms can be written as follows: 
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????+1  ????+2  ?  ????+?  
????+2 ????+3 ?  ????+?+1 
????+3 ????+4 ? ????+?+2 
? ?  ? 
????+?+1 ????+?+2 ? ????+?+? 
 
If we look at the elements that produce ???? (which is the set {????+?}?=0
 ? =
 {????,????+1,?,????+?}) we can see that: 
1. the number of ???? comes from {????+1,????+2,?,????+?} and as it can be 
seen in the above table, these are shown by the first rectangle.  
2. the number of ????+1 comes from {????+2,????+3,?,????+?+1} and as it can 
be seen in the above table, these are shown by the second rectangle.  
3. the number of ????+2 comes from {????+3,????+4,?,????+?+2} and as it can 
be seen in the above table, these are shown by the third rectangle. 
4. the number of ????+? comes from {????+?+1,????+?+2,?,????+?+?} and as 
it can be seen in the above table, these are shown by the last rectangle. 
Therefore, ??=???1 +???2 +?+????. 
For the case of 0 <???, the proof is the same except for we have one ???? in the 
autoregressive (AR) part of ?? itself. In the INARMA(2,1) example, if we are interested 
in the number of ???2 terms in the IARR of the process, it can be seen that there is one 
???2 in the ?? expression. In general, for 0 <???,  ??=?? ????
 ?
 ?=1 + 1. 
In conclusion, the IARR for a general INARMA(p,q) process is given by Equation 
4.A-1 with ?? determined by Equation 4.A-2.  
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Appendix 5.A The CLS Estimators of an INARMA(1,1) Model 
In this appendix, the CLS estimates for the parameters of a PoINARMA(1,1) process 
are derived. As mentioned in section  5.7.2, the conditional least squares criterion is 
to minimize the following function with respect to the parameter vector ?=
 (?,?,?)? with other variables being taken as fixed: 
?????=? [???(????1 +?+????1)]
 2
 ?
 ?=1
  
    Equation 5.A-1 
??????
 ??
 =
 ??? ?????????1 +?+????1??
 2?
 ?=1 ?
 ??
  
=?2? ???1[???(????1 +?+????1)]
 ?
 ?=1
 = 0 
    Equation 5.A-2 
??????
 ??
 =
 ??? ?????????1 +?+????1??
 2?
 ?=1 ?
 ??
  
=?2? ???1[???(????1 +?+????1)]
 ?
 ?=1
 = 0 
    Equation 5.A-3 
??????
 ??
 =
 ??? ?????????1 +?+????1??
 2?
 ?=1 ?
 ??
  
=?2? [???(????1 +?+????1)]
 ?
 ?=1
 = 0 
    Equation 5.A-4 
Solving the last equation results in the estimator for ?: 
?=
 ? ??
 ?
 ?=1 ??? ???1
 ?
 ?=1 ??? ???1
 ?
 ?=1
 ?
  
    Equation 5.A-5 
The estimator for ? can be found by substitution of ? in Equation 5.A-3: 
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?=
 ?? ??
 ?
 ?=1 ???1???? ???1???1
 ?
 ?=1 ?? ??
 ?
 ?=1 ? ???1
 ?
 ?=1 +?? ???1
 ?
 ?=1 ? ???1
 ?
 ?=1
 ?? ???1
 2?
 ?=1 ??? ???1
 ?
 ?=1 ?
 2
  
    Equation 5.A-6 
Finally, the estimator for ? can be found by substitution of ? and ? in Equation 5.A-2. 
? ??????1??????1
 2 +????1 +????1???1??
 ?
 ?=1
  
=? ?????1
 ?
 ?=1
 ??? ???1
 2
 ?
 ?=1
 ??? ???1
 ?
 ?=1
 ??? ???1???1
 ?
 ?=1
  
=? ?????1??? ???1
 2 ?
 ?????????1??????1
 ?
 ? ???1??? ???1???1 = 0 
Therefore, 
?? ?????1 ???? ???1
 2 ?? ??? ???1 +??? ???1?
 2
 +
 ???????1???????1???1????????1 +?????1????1
 ?????1
 2 ??????1?2
 ?? ???1? ???1??? ???1???1?= 0 
So 
?2?? ???1
 2 ? ???1
 2 ????? ???1?
 2
 ? ???1
 2 ???? ???1
 2 ?? ???1?
 2
 +??? ???1?
 2
 ?? ???1?
 2
 +??? ???1? ???1? ???1???1???? ???1?
 2
 ?? ???1?
 2
 ??2??? ???1???1?
 2
 +??? ???1? ???1? ???1???1 = 
?2? ?????1? ???1
 2 ??? ??? ???1? ???1
 2 ??? ?????1?? ???1?
 2
  
+? ??? ???1?? ???1?
 2
 +?? ???1? ???1? ?????1 
?? ???1? ???? ???1?
 2
 ??2? ?????1? ???1???1 +?? ??? ???1? ???1???1 
As a result, the estimator for ? is given by: 
?
 =
 ?
 ?2??????1????1
 2 ?????????1????1
 2 ????????1?????1?
 2 +?????1????1??????1
 ??2??????1????1???1 +????????1????1???1
 ?
 ?2????1
 2 ????1
 2 ???????1?2????1
 2 ??????1
 2 ?????1?2 + 2?????1????1????1???1??2?????1???1?2
  
    Equation 5.A-7 
where all the summations are from 1 to ?.
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Appendix 5.B The Unconditional Variance of an INARMA(2,2) 
Model 
 
The unconditional variance of an INARMA(2,2) process can be found from Equation 
 3-52 to be: 
var????=
 ?
 1??1
 2??2
 2 ? 
?
 1 +?1 +?2
 1??1??2
 ??1?1??1?+?2?1??2??+?1?1??1?+?2?1??2?? 
+
 ?
 1??1
 2??2
 2
 ?1 +?1
 2 +?2
 2 + 2?1?1 + 2?2?2?+
 2?1?2?1 + 2?1?2?1
 ??
 1??1
 2??2
 2  
     Equation 5.B-1 
From Equation  3-56, it can be seen that: 
?1 =?1?0 +?2?1 +?1?+?2?1
 ?? 
where ?1
 ?? is the cross-covariance at lag one given by Equation 3.C-1: 
?1
 ??= (?1 +?1)? 
Therefore,  
?1 =
 ?1?0 +?1?+?2(?1 +?1)?
 1??2
  
    Equation 5.B-2 
As a result, the variance of an INARMA(2,2) process is as follows: 
var????=
 ?
 1??1
 2??2
 2 ? 
?
 1 +?1 +?2
 1??1??2
 ??1??1
 2 +?2??2
 2?+ 1 +?1 +?2 + 2?1?1 + 2?2?2? 
+
 2?1?2
 ?1?0 +?1?+?2(?1 +?1)?
 1??2
 + 2?1?2(?1 +?1)?
 1??1
 2??2
 2  
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var????=
 ?
 1??1
 2??2
 2 ? 
?
 1 +?1 +?2
 1??1??2
 ??1??1
 2 +?2??2
 2?+ 1 +?1 +?2 + 2?1?1 + 2?2?2? 
+
 2?1
 2?2?0 + 2?1?2?1?+ 2?1?2?2(?1 +?1)?+ 2?1?2??1 +?1?(1??2)?
 (1??1
 2??2
 2)(1??2)
  
var?????
 2?1
 2?2
 (1??1
 2??2
 2)(1??2)
 var????=
 ?
 1??1
 2??2
 2 ? 
?
 1 +?1 +?2
 1??1??2
 ??1??1
 2 +?2??2
 2?+ 1 +?1 +?2 + 2?1?1 + 2?2?2? 
+
 2?1?2?1?+ 2?1
 2?2?+ 2?1?1?2?
 (1??1
 2??2
 2)(1??2)
  
Finally, the unconditional variance of an INARMA(2,2) process is given by: 
var????=
 ?
 (1??1
 2??2
 2)(1??2)?2?1
 2?2
 ? 
??1??2??
 1 +?1 +?2
 1??1??2
 ??1??1
 2 +?2??2
 2?+ 1 +?1 +?2 + 2?1?1
 + 2?2?2?+ 2?1?2?1 + 2?1
 2?2 + 2?1?1?2? 
    Equation 5.B-3 
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Appendix 6.A Lead Time Forecasting for an INAR(2) Model 
In this appendix, we investigate forecasting of an INAR(2) process over a lead time 
??1. For the INAR(2) process of ??=?1????1 +?2????2 +??, the cumulative ? 
over lead time ? is given by:  
? ??+?
 ?+1
 ?=1
 =??+1 +??+2 +?+??+?+1 =??1???+?2????1 +??+1? 
+??1???+1 +?2???+??+2?+?+??1???+?+?2???+?1 +??+?+1? 
Equation 6.A-1 
In order to find the conditional expectation of the aggregated process, Equation 6.A-1 
should be expressed in terms of ?? and ???1.   
Looking at the Equation 6.A-1, it can be seen that because ??+1 is expressed in terms 
of ?? and ???1, there is no need for further substitution. For ??+2, there is one ??+1  
which should be expressed in terms of ?? and ???1. Therefore, the number of ?? in the 
second element of the RHS of Equation 6.A-1 (obtained by repeated substitution of 
??+2) is the number of ?? in the first element plus one. This argument will be used in 
Appendix 6.C to find the number of {????+1}?=1
 ?
  in each of {??+?}?=1
 ?+1 . For other 
elements in the RHS of Equation 6.A-1, {??+?}?=3
 ?+1 , the number of ?? in each of them 
is equal to the sum of the number of ?? in the previous two terms (??+??1,??+??2). 
The same argument applies for ???1. Repeated substitution in Equation 6.A-1 yields: 
? ??+?
 ?+1
 ?=1
 =??1???+?2????1 +??+1? 
+??1
 2???+?1?2????1 +?1???+1 +?2???+??+2? 
+??1
 3???+?1
 2?
 2
 ????1 +?1
 2???+1 +?1?2???+?1???+2 +?1?2???
 +?2
 2????1 +?2???+1 +??+3?+? 
Equation 6.A-2 
The above expression is not an infinite series but a finite series, where the remaining 
terms can be obtained by repeated substitution. The above equation can be written as: 
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? ??+?
 ?+1
 ?=1
 =? ? ??
 1 ???
 ??
 1
 ?=1
 ?+1
 ?=1
 +? ? ??
 2 ????1
 ??
 2
 ?=1
 ?+1
 ?=1
 +? ? ??
 3 ???+??
 ??
 3
 ?=1
 ?+1
 ?=1
  
Equation 6.A-3 
where ??
 1 is the number of ?? terms in each of {??+?}?=1
 ?+1  in Equation 6.A-3 and ??
 1  is 
the corresponding coefficient for each ??. ??
 2 is the number of ???1 terms in each of 
{??+?}?=1
 ?+1  in Equation 6.A-3 and ??
 2  is the corresponding coefficient for each ???1.  
??
 3 is the number of ??+?? terms in each of {??+?}?=1
 ?+1  in Equation 6.A-3 and ??
 3  is the 
corresponding coefficient for each ??+??. Each of these terms is explained below.  
It can be seen from Equation 6.A-2 that because the process is an integer 
autoregressive of order two, the number of ?? in each of {??+?}?=1
 ?+1  is equal to the sum 
of the number of ?? in the two previous terms (??+??1,??+??2). Therefore            
??
 1 =???1
 1 +???2
 1  for ?> 2. As previously mentioned, when ??2, the number of ?? 
in ??+? is equal to the number of ?? in the two previous terms plus one. 
The corresponding coefficient for ?? in each of {??+?}?=1
 ?+1  (say ??+3) is obtained from 
?1 thinned the coefficient of ?? in the previous term (in this case ??+2) and ?2 
thinned the coefficient of ?? in the next previous term (in this case ??+1). These 
coefficients are shown in Table 6.A-1. 
Table 6.A-1 Coefficients of in each of  for an INAR(2) model 
?= 1,?= 1  ?11
 1 =?1  
?= 2,?= 1,2  
?12
 1 =?1
 2  
?22
 1 =?2  
? ? 
?=?+ 1,?= 1,?,??+1
 1
   
?1(?+1)
 1 =?1
 ?+1  
?2(?+1)
 1 =?1
 ??1?2  
? 
 
The number of ???1 in each of {??+?}?=1
 ?+1  is also equal to the sum of the number of ?? 
in the two previous terms (??+??1,??+??2). Therefore, ??
 2 =???1
 2 +???2
 2  for ?> 1. 
But, for ??1 this is equal to the number of ???1 in the two previous terms plus one.  
tY 11
 ?
 ??
 l
 jjtY }{
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The corresponding coefficient for ???1 in each of {??+?}?=1
 ?+1  (say ??+3) is obtained 
from ?1 thinned the coefficient of ???1 in the previous term (in this case ??+2) and ?2 
thinned the coefficient of ???1 in the next previous term (in this case ??+1). These 
coefficients are shown in Table 6.A-2. 
Table 6.A-2 Coefficients of in each of  for an INAR(2) model 
?= 1,?= 1  ?11
 2 =?2 
?= 2,?= 1  ?12
 2 =?1?2 
?= 3,?= 1,2  
?13
 2 =?1
 2?2 
?23
 2 =?1?2 
? ? 
?=?+ 1,?= 1,?,??+1
 2
  
?1(?+1)
 2 =?1
 ??2 
?2(?+1)
 2 =?1
 ??1?2 
? 
 
It can be seen from Equation 6.A-2 that because the process is an autoregressive 
process of order two, the number of ??+?? increases in each of {??+?}?=1
 ?+1 . For the 
INAR(2) case, this number, shown by ??
 3, can be obtained from the number of ??+?? 
in the two previous terms plus one because each of {??+?}?=1
 ?+1  has one ??+? as well. 
The corresponding coefficient for each ??+??, shown by ??
 3 , is ?1 thinned the 
coefficients of ??+?? in the previous term (??+??1) and ?2 thinned the coefficients of 
??+?? in the next previous term (??+??2). The coefficient for ??+? in each of 
{??+?}?=1
 ?+1  is one. ?+?? is the subscripts of innovation terms in each of {??+?}?=1
 ?+1  
which from Equation 6.A-2 it can be seen that ?? is given by: 
??=?
 ??(??2) for 1??????2
 3
 ??(??1) for ???2
 3 <?????2
 3 +???1
 3
 ? for ???2
 3 +???1
 3 <????
 3
 ?          for ?= 1,?,?+ 1 
Equation 6.A-4 
For example, for ?= 1, the subscript of innovation term is ?11 = 1, because as can 
be seen from Equation 6.A-1, there is only ??+1 in the expression for ??+1. For ?= 2, 
??+??s come from ??+2 and ??+1, and it can be seen from Equation 6.A-2 that 
??2 =?
 1 ?= 1
 2 ?= 2
 ?. For ?> 2, ?? equals to all the subscripts included in the two 
1?tY 11
 ?
 ??
 l
 jjtY }{
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previous {??+?}?=1
 ?+1  plus ?. This means that ?? is as shown in Equation 6.A-4. 
The corresponding coefficient for each ??+?? and the subscript of innovation terms, 
?+?? are shown in Table 6.A-3. 
Based on Equation 6.A-3, the conditional expected value of the aggregated process 
is: 
??? ??+?
 ?+1
 ?=1
 |???=?? ? ??
 1
 ??
 1
 ?=1
 ?+1
 ?=1
 ???+?? ? ??
 2
 ??
 2
 ?=1
 ?+1
 ?=1
 ????1 +?? ? ??
 3
 ??
 3
 ?=1
 ?+1
 ?=1
 ?? 
Equation 6.A-5 
Table 6.A-3 Coefficients of in each of  for an INAR(2) model 
?= 1  
?= 1,?,?1
 3  
where ?1
 3 = 1 
?11
 3 = 1  ?11 = 1  
?= 2  
?= 1,?,?2
 3  
where ?2
 3 = 2 
?12
 3 =?1  
?22
 3 = 1  
?12 = 1  
?22 = 2  
?= 3  
?= 1,?,?3
 3  
where ?3
 3 = 4 
?13
 3 =?1
 2
   
?23
 3 =?1  
?33
 3 =?2  
?43
 3 = 1  
?13 = 1  
?23 = 2  
?33 = 1  
?43 = 3  
? ? ? 
?=?+ 1  
?= 1,?,??+1
 3   
?1(?+1)
 3 =?1
 ?
   
?2(?+1)
 3 =?1
 ??1
   
? 
?1(?+1) = 1  
?2??+1?= 2  
? 
 
ijkt
 Z ?
 1
 1
 ?
 ??
 l
 jjtY }{
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Appendix 6.B Lead Time Forecasting for an INARMA(1,2) Model 
For the INARMA(1,2) process of ??=?????1 +??+?1????1 +?2????2, the 
cumulative ? over lead time ? is given by:  
? ??+?
 ?+1
 ?=1
 =??+1 +??+2 +?+??+?+1 =?????+??+1 +?1???+?2????1? 
+?????+1 +??+2 +?1???+1 +?2????+?+ 
+?????+?+??+?+1 +?1???+?+?2???+?1? 
Equation 6.B-1 
In order to find the conditional expectation of the aggregated process, Equation 6.B-1 
should be expressed in terms of ??.  
? ??+?
 ?+1
 ?=1
 =?????+??+1 +?1???+?2????1? 
+??2???+????+1 +??1???+??2????1 +??+2 +?1???+1 +?2???? 
+??3???+?
 2???+1 +?
 2?1???+?
 2?2????1 +????+2 +??1???+1
 +??2???+??+3 +?1???+2 +?2???+1?+? 
Equation 6.B-2 
The above expression is not an infinite series but a finite series where the remaining 
terms can be obtained by repeated substitution. The above equation can be written as: 
? ??+?
 ?+1
 ?=1
 =? ? ??
 1 ???
 ??
 1
 ?=1
 ?+1
 ?=1
 +? ? ??
 2 ???+??
 ??
 2
 ?=1
 ?+1
 ?=1
  
Equation 6.B-3 
where ??
 1 is the number of ?? terms in each of {??+?}?=1
 ?+1  and ??
 1  is the corresponding 
coefficient for each ??. ??
 2 is the number of ??+?? terms in each of {??+?}?=1
 ?+1 , ??
 2  is 
the corresponding coefficient for each ??+??. Each of these terms is explained below. 
It can be seen from Equation 6.B-2 that because the process is an integer 
autoregressive of order one, each of {??+?}?=1
 ?+1  only has one ?? and therefore ??
 1 = 1  
(because the number of ?? in each of {??+?}?=1
 ?+1  is equal to the number of ?? in the 
previous term (??+??1)).  Therefore, the corresponding coefficient for ?? in each of 
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{??+?}?=1
 ?+1  (say ??+2) is obtained from ? thinned the coefficient of ?? in the previous 
term (in this case ??+1). Therefore, ??
 1 =??. These coefficients are shown in Table 
6.B-1. 
Table 6.B-1 Coefficients of in each of  for an INARMA(1,2) model 
?= 1,?= 1  ?11
 1 =? 
?= 2,?= 1  ?12
 1 =?2 
? ? 
?=?+ 1,?= 1  ?1(?+1)
 1 =??+1
  
 
It can be seen from Equation 6.B-2 that because the process has an autoregressive 
component of order one and also a moving average component of order two, the 
number of ??+?? increases in each of {??+?}?=1
 ?+1 . Each of {??+?}?=1
 ?+1  has three ??+?? 
and also all the ??+?? terms of the previous ? element (??+??1). Therefore, this 
number, shown by ??
 2, can be obtained from ???1
 2 + 3. The same argument applies 
for the INARMA(p,q) case where the number of ??+?? is equal to the number of 
them in the ? previous terms plus ?+ 1 (see section  6.3.4). ?+?? is the subscripts 
of innovation terms in each of {??+?}?=1
 ?+1  which from Equation 6.B-2 it can be seen 
that ?? is given by: 
??=?
 ??(??1) for ?= 1,?,???1
 2  
?,??1,??2 for ?=???1
 2 + 1,?,??
 2
 ?          for ?= 1,?,?+ 1 
Equation 6.B-4 
For example, for ?= 1, the subscript of innovation terms is ??1 =?
 1 ?= 1
 0 ?= 2
 ?1 ?= 3
 ?, 
because as can be seen from Equation 6.B-1, there are three innovation terms in the 
expression for ??+1 which are {??+1,??,???1}. For ?> 1, the ??+??s come from the 
innovation terms included in the previous {??+?}?=1
 ?+1  plus {?,??1,??2}. This means 
that ?? is as shown in Equation 6.B-4. 
The corresponding coefficient for each ??+?? and the subscript of innovation terms, 
?+?? are shown in Table 6.B-2. 
tY 11
 ?
 ??
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Based on Equation 6.B-3, the conditional expected value of the aggregated process 
is: 
??? ??+?
 ?+1
 ?=1
 |???=?? ? ??
 1
 ??
 1
 ?=1
 ?+1
 ?=1
 ???+?? ? ??
 2
 ??
 2
 ?=1
 ?+1
 ?=1
 ?? 
Equation 6.B-5 
Table 6.B-2 Coefficients of in each of  for an INARMA(1,2) model 
?= 1  
?= 1,?,?1
 2  
where ?1
 2 = 3 
?11
 2 = 1  
?21
 2 =?1  
?31
 2 =?2  
?11 = 1  
?21 = 0  
?31 =?1  
?= 2  
?= 1,?,?2
 2  
where ?2
 2 = 6 
?12
 2 =?  
?22
 2 =??1  
?32
 2 =??2  
?42
 2 = 1  
?52
 2 =?1  
?62
 2 =?2  
 ?12 = 1  
?22 = 0  
?32 =?1  
?42 = 2  
?52 = 1  
?62 = 0  
?= 3  
?= 1,?,?3
 2  
where ?3
 2 = 9 
?13
 2 =?2  
?23
 2 =?2?1  
?33
 2 =?2?2  
?43
 2 =?  
?53
 2 =??1  
?63
 2 =??2  
?73
 2 = 1  
?83
 2 =?1  
?93
 2 =?2  
?13 = 1  
?23 = 0  
?33 =?1  
?43 = 2  
?53 = 1  
?63 = 0  
?73 = 3  
?83 = 2  
?93 = 1  
?  ?  ?  
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Appendix 6.C Lead Time Forecasting for an INARMA(p,q) Model 
In order to find the conditional mean of the over-lead-time-aggregated process, we 
need to express the aggregated INARMA(p,q) process in terms of the last ? 
observations (????+1,????+2,?,???1,??). The aggregated process is given by: 
? ??+?
 ?+1
 ?=1
 =??+1 +??+2 +?+??+?+1 
Equation 6.C-1 
Each of the {??+?}?=1
 ?+1  in the RHS of the above equation needs to be expressed in 
terms of {????+1}?=1
 ?
  by repeated substitution of ??+? in Equation  3-50. Because the 
autoregressive order of the process is ?, ??+? can be expressed in terms of ? previous 
observations by ?1???+??1 +?+?????+???. Now, if ????(??1), as 
mentioned in Appendix 6.A, there is one ???(??1) when we express the ?th 
observation in the RHS of the Equation 6.C-1 (??+?) without any need for repeated 
substitution. Repeated substitution of (??+1,?,??+?????1?) by their ? previous 
observations would result in obtaining more ???(??1). Therefore, in total, the number 
of ???(??1) in each of {??+?}?=1
 ?+1  when ????(??1) is equal to the number of  
???(??1) in its ? previous observations plus one. 
However, as explained in Appendix 6.A, when ?>??(??1), each ??+? from 
Equation 6.C-1 should be substituted by Equation  3-50 in order to reach ???(??1), 
and the number of ???(??1) in each of {??+?}?=1
 ?+1  would be equal to the number of 
???(??1) in its ? previous observations. 
For ????(??1), the corresponding coefficient of ???(??1) in the ?th observation 
in the RHS of the Equation 6.C-1 (??+?) is ??+(??1) because: 
??+?=?1???+??1 +?+??+(??1)????(??1) +?+?????+???+??+?+? ?????+???
 ?
 ?=1
  
For other ???(??1) the coefficient in each of {??+?}?=1
 ?+1  is ?? thinned the coefficient of 
???(??1) in the ?th previous observation for ?= 1,?,?.  
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For ?>??(??1), again, the coefficient of ???(??1) in each of {??+?}?=1
 ?+1  is ??  
thinned the coefficient of ???(??1) in the ?th previous observation for ?= 1,?,? (the 
difference with the previous case is that we do not have ??+(??1)). 
Now we come back to Equation 6.C-1 to find the ? terms in each of {??+?}?=1
 ?+1  in the 
RHS of the equation when they expressed in terms of {????+1}?=1
 ?
 . As the process 
has a moving average component of order ?, each {??+?}?=1
 ?+1  has ?+ 1 innovation 
terms {??+?,??+??1,?,??+???}. However, as mentioned in Appendix 6.B, by 
repeated substitution each {??+?}?=1
 ?+1  can be expressed in terms of ? previous 
observations, each also with ?+ 1 innovation terms.  
Therefore, the total number of innovation terms in each of {??+?}?=1
 ?+1  is equal to the 
number of innovation terms in the ? previous observations, plus ?+ 1. The 
corresponding coefficients for the ?+ 1 terms {??+?,??+??1,?,??+???} are 
{1,?1,?,??}, respectively. For the innovation terms that come from the ? previous 
observations, coefficients would be ?? thinned the coefficient of ??+?? in the ?th 
previous observation for ?= 1,?,?.  
?+?? denotes the subscript of ? for each ?,? (?= 1,?,?+ 1 and ?= 1,?,??
 ?+1
 ). 
As previously mentioned, each {??+?}?=1
 ?+1  has ?+ 1 innovation terms 
{??+?,??+??1,?,??+???}. Therefore, the subscripts for the last ?+ 1 innovation 
terms in each {??+?}?=1
 ?+1  are {???,??1,?,?}. This is shown in Table 6.C-1 by 
?=???1
 ?+1 + 1,?,???1
 ?+1 +??
 ?+1
 .  
The other subscripts of innovation terms in each of {??+?}?=1
 ?+1  simply are the 
subscripts of the innovation terms of ? previous observations.  
As a result, the aggregated process can be expressed as Equation  6-26 with the 
associated parameters as defined in Table 6.C-1.  
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Table 6.C-1 Parameters of the over-lead-time-aggregated INARMA(p,q) model 
fo
 r 
?
 =
 1
 ,?
 ,?
  
??
 ?=?
 ?? ????
 ??
 ?=1 + 1 ????(??1)
 ? ????
 ??
 ?=1 ?>??(??1)
 ?  ??
 ?=
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ????(???)
 ? ?= 1,?,????
 ?
 ? ?
 ?1??(??1)
 ? ?=???2
 ? + 1,?,???2
 ? +???1
 ?
 ??+(??1) ?=???1
 ? + 1
 ?????(??1)
 ?
 ????(???)
 ? ?= 1,?,????
 ?
 ? ?
 ?1??(??1)
 ? ?=???2
 ? + 1,?,???2
 ? +???1
 ?
 ??>??(??1)
 ?  
 ??
 ?+1 =?? ????
 ?+1?
 ?=1 ?+ (?+ 1)  
??
 ?+1 =
 ?
 ?
 ?
 ?
 ?
 ????(???)
 ?+1 ?= 1,?,????
 ?+1
 ? ?
 ?1??(??1)
 ?+1 ?=???2
 ?+1 + 1,?,???2
 ?+1 +???1
 ?+1
 ??,?,?1 , 1 ?=???1
 ?+1 + 1,?,???1
 ?+1 +??
 ?+1
 ?  
 
??=
 ?
 ?
 ?
 ?
 ?
 {??(???)} ?= 1,?,????
 ?+1
 ? ?
 {??(??1)} ?=? ????
 ?+1?
 ?=2 + 1,?, (? ????
 ?+1?
 ?=2 ) +???1
 ?+1
 ???,?,??1,? ?=? ????
 ?+1?
 ?=1 + 1,?,??
 ?+1
 ?  
 
 
   
  
M.Mohammadipour, 2009, Appendix 8.A   303 
 
Appendix 8.A The MSE of YW and CLS Estimates for INAR(1), 
INMA(1) and INARMA(1,1) Processes 
In this appendix, the two estimation methods used in this research are compared 
using MSE. Earlier in chapter 8, these methods have been compared in terms of their 
impact on forecast accuracy. The results for ?= 24, 36, 48, 96, 500 are presented as 
follows.  
Table 8.A-1 MSE of YW and CLS estimates of 
 
for an INAR(1) process  
Parameters  
YW CLS 
?=?? ?=?? ?=?? ?=?? ?=??? ?=?? ?=?? ?=?? ?=?? ?=??? 
?= 0.1,?= 0.5  0.0184 0.0167 0.0144 0.0097 0.0031 0.0219 0.0186 0.0154 0.0100 0.0031 
?= 0.5,?= 0.5  0.0742 0.0495 0.0359 0.0165 0.0030 0.0721 0.0481 0.0352 0.0161 0.0030 
?= 0.9,?= 0.5  0.1460 0.0700 0.0435 0.0129 0.0009 0.1120 0.0519 0.0333 0.0104 0.0008 
?= 0.1,?= 1  0.0196 0.0154 0.0138 0.0094 0.0026 0.0230 0.0167 0.0147 0.0097 0.0026 
?= 0.5,?= 1  0.0725 0.0450 0.0333 0.0144 0.0028 0.0707 0.0440 0.0324 0.0140 0.0028 
?= 0.9,?= 1  0.1546 0.0756 0.0456 0.0134 0.0008 0.1145 0.0582 0.0350 0.0109 0.0007 
?= 0.1,?= 3  0.0192 0.0152 0.0136 0.0084 0.0026 0.0223 0.0167 0.0145 0.0087 0.0026 
?= 0.5,?= 3  0.0679 0.0445 0.0319 0.0137 0.0021 0.0658 0.0430 0.0312 0.0135 0.0021 
?= 0.9,?= 3  0.1468 0.0725 0.0442 0.0119 0.0008 0.1105 0.0555 0.0339 0.0095 0.0007 
?= 0.1,?= 5  0.0192 0.0155 0.0129 0.0088 0.0027 0.0222 0.0170 0.0137 0.0091 0.0027 
?= 0.5,?= 5  0.0709 0.0446 0.0320 0.0142 0.0022 0.0689 0.0429 0.0313 0.0139 0.0022 
?= 0.9,?= 5  0.1455 0.0712 0.0437 0.0125 0.0008 0.1095 0.0550 0.0333 0.0101 0.0007 
 
Table 8.A-2 Comparison of YW and CLS estimates of 
 
for an INAR(1) process  
Parameters  
YW CLS 
?=?? ?=?? ?=?? ?=?? ?=??? ?=?? ?=?? ?=?? ?=?? ?=??? 
?= 0.1,?= 0.5  0.0375 0.0243 0.0179 0.0100 0.0023 0.0380 0.0245 0.0181 0.0100 0.0023 
?= 0.5,?= 0.5  0.1072 0.0712 0.0473 0.0224 0.0034 0.1030 0.0692 0.0464 0.0220 0.0034 
?= 0.9,?= 0.5  3.9136 1.8446 1.1551 0.3370 0.0224 2.9900 1.3812 0.8930 0.2709 0.0206 
?= 0.1,?= 1  0.0867 0.0608 0.0452 0.0272 0.0060 0.0898 0.0625 0.0463 0.0275 0.0060 
?= 0.5,?= 1  0.3934 0.2350 0.1580 0.0713 0.0118 0.3852 0.2271 0.1545 0.0697 0.0118 
?= 0.9,?= 1  16.5122 7.6779 4.7735 1.3540 0.0790 12.1860 5.8605 3.6707 1.1016 0.0721 
?= 0.1,?= 3  0.3945 0.3001 0.2438 0.1413 0.0370 0.4275 0.3185 0.2528 0.1441 0.0372 
?= 0.5,?= 3  2.8535 1.6850 1.2493 0.5244 0.0824 2.7658 1.6303 1.2121 0.5149 0.0822 
?= 0.9,?= 3  132.6483 66.7297 40.2510 10.8786 0.6995 99.9406 51.2825 30.9385 8.7135 0.6386 
?= 0.1,?= 5  0.8928 0.6958 0.5521 0.3577 0.0968 0.9817 0.7426 0.5772 0.3659 0.0972 
?= 0.5,?= 5  7.4580 4.6569 3.4168 1.4914 0.2219 7.2026 4.4779 3.3367 1.4616 0.2204 
?= 0.9,?= 5  368.6249 180.0181 111.2582 31.8673 2.0634 278.5108 139.5061 84.8648 25.7175 1.8826 
 
 
 
 
 
?
 ?
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Table 8.A-3 Comparison of YW and CLS estimates of  for an INMA(1) process  
Parameters  
YW CLS 
?=?? ?=?? ?=?? ?=?? ?=??? ?=?? ?=?? ?=?? ?=?? ?=??? 
?= 0.1,?= 0.5  0.0516 0.0421 0.0349 0.0193 0.0039 0.0251 0.0216 0.0171 0.0097 0.0028 
?= 0.5,?= 0.5  0.1349 0.1008 0.0843 0.0493 0.0110 0.1147 0.0781 0.0721 0.0436 0.0211 
?= 0.9,?= 0.5  0.2161 0.1374 0.1024 0.0604 0.0121 0.2683 0.2008 0.1647 0.1131 0.0518 
?= 0.1,?= 1  0.0459 0.0364 0.0310 0.0166 0.0040 0.0236 0.0179 0.0152 0.0096 0.0029 
?= 0.5,?= 1  0.1233 0.0939 0.0822 0.0469 0.0106 0.1038 0.0805 0.0673 0.0417 0.0198 
?= 0.9,?= 1  0.2010 0.1485 0.1019 0.0548 0.0117 0.2752 0.2180 0.1726 0.1182 0.0517 
?= 0.1,?= 3  0.0468 0.0376 0.0297 0.0179 0.0038 0.0205 0.0172 0.0139 0.0096 0.0026 
?= 0.5,?= 3  0.1245 0.0960 0.0784 0.0474 0.0102 0.1110 0.0822 0.0696 0.0436 0.0207 
?= 0.9,?= 3  0.2141 0.1446 0.1156 0.0511 0.0113 0.3103 0.2391 0.2041 0.1321 0.0592 
?= 0.1,?= 5  0.0517 0.0400 0.0343 0.0154 0.0038 0.0214 0.0165 0.0151 0.0082 0.0027 
?= 0.5,?= 5  0.1222 0.0972 0.0829 0.0458 0.0095 0.1154 0.0902 0.0734 0.0427 0.0205 
?= 0.9,?= 5  0.2081 0.1388 0.0996 0.0563 0.0120 0.3434 0.2682 0.2226 0.1598 0.0695 
 
Table 8.A-4 Comparison of YW and CLS estimates of  for an INMA(1) process  
Parameters  
YW CLS 
?=?? ?=?? ?=?? ?=?? ?=??? ?=?? ?=?? ?=?? ?=?? ?=??? 
?= 0.1,?= 0.5  0.0364 0.0240 0.0194 0.0103 0.0021 0.0370 0.0238 0.0189 0.0098 0.0020 
?= 0.5,?= 0.5  0.0599 0.0419 0.0280 0.0137 0.0025 0.0665 0.0456 0.0310 0.0160 0.0041 
?= 0.9,?= 0.5  0.0739 0.0461 0.0305 0.0153 0.0025 0.0781 0.0541 0.0376 0.0193 0.0050 
?= 0.1,?= 1  0.0830 0.0576 0.0467 0.0240 0.0057 0.0834 0.0562 0.0444 0.0220 0.0052 
?= 0.5,?= 1  0.1637 0.1042 0.0851 0.0393 0.0074 0.1831 0.1152 0.0948 0.0448 0.0124 
?= 0.9,?= 1  0.2442 0.1441 0.0993 0.0397 0.0065 0.2823 0.1737 0.1229 0.0540 0.0162 
?= 0.1,?= 3  0.3812 0.2835 0.2296 0.1407 0.0371 0.3530 0.2541 0.1971 0.1166 0.0314 
?= 0.5,?= 3  1.0334 0.7039 0.5304 0.2635 0.0507 1.1603 0.7754 0.5886 0.3137 0.1004 
?= 0.9,?= 3  1.5474 0.9868 0.7012 0.2655 0.0430 1.9331 1.3063 0.9528 0.4364 0.1303 
?= 0.1,?= 5  0.8853 0.6958 0.5688 0.3405 0.0880 0.7923 0.5717 0.4578 0.2725 0.0737 
?= 0.5,?= 5  2.6253 1.8145 1.4464 0.6367 0.1212 3.0335 2.1586 1.6302 0.7749 0.2682 
?= 0.9,?= 5  4.1058 2.4764 1.5930 0.7347 0.1130 5.8606 3.9471 2.7201 1.4349 0.4352 
 
 
 
 
 
?
 ?
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Table 8.A-5 Comparison of YW and CLS estimates of  for an INARMA(1,1) process  
Parameters  
YW CLS 
?=?? ?=?? ?=?? ?=?? ?=??? ?=?? ?=?? ?=?? ?=?? ?=??? 
?= 0.1,?= 0.1,?= 0.5  0.2421 0.2299 0.2029 0.1588 0.0474 0.0498 0.0420 0.0334 0.0225 0.0136 
?= 0.1,?= 0.9,?= 0.5  0.0590 0.0423 0.0326 0.0225 0.0085 0.0685 0.0576 0.0484 0.0329 0.0087 
?= 0.5,?= 0.5,?= 0.5  0.1426 0.1129 0.0904 0.0458 0.0065 0.1035 0.0743 0.0586 0.0308 0.0056 
?= 0.9,?= 0.1,?= 0.5  0.2587 0.1328 0.0806 0.0197 0.0011 0.1228 0.0654 0.0425 0.0129 0.0009 
?= 0.1,?= 0.1,?= 1  0.2440 0.2409 0.1968 0.1470 0.0492 0.0490 0.0380 0.0299 0.0246 0.0136 
?= 0.1,?= 0.9,?= 1  0.0666 0.0381 0.0336 0.0212 0.0081 0.0808 0.0643 0.0546 0.0337 0.0093 
?= 0.5,?= 0.5,?= 1  0.1444 0.1108 0.0829 0.0412 0.0062 0.0850 0.0621 0.0478 0.0257 0.0051 
?= 0.9,?= 0.1,?= 1  0.2593 0.1266 0.0744 0.0196 0.0011 0.1093 0.0571 0.0372 0.0111 0.0008 
?= 0.1,?= 0.1,?= 5  0.2295 0.2187 0.2025 0.1606 0.0428 0.0434 0.0334 0.0275 0.0200 0.0127 
?= 0.1,?= 0.9,?= 5  0.0606 0.0418 0.0317 0.0219 0.0082 0.1121 0.0965 0.0858 0.0631 0.0194 
?= 0.5,?= 0.5,?= 5  0.1373 0.1032 0.0843 0.0392 0.0061 0.0618 0.0441 0.0327 0.0183 0.0058 
?= 0.9,?= 0.1,?= 5  0.2611 0.1321 0.0758 0.0184 0.0012 0.1033 0.0554 0.0343 0.0101 0.0008 
 
Table 8.A-6 Comparison of YW and CLS estimates of 
 
for an INARMA(1,1) process  
Parameters  
YW CLS 
?=?? ?=?? ?=?? ?=?? ?=??? ?=?? ?=?? ?=?? ?=?? ?=??? 
?= 0.1,?= 0.1,?= 0.5  0.0470 0.0407 0.0353 0.0226 0.0109 0.0266 0.0205 0.0178 0.0118 0.0067 
?= 0.1,?= 0.9,?= 0.5  0.2646 0.1976 0.1597 0.0864 0.0158 0.4152 0.3694 0.3470 0.2715 0.1502 
?= 0.5,?= 0.5,?= 0.5  0.1520 0.1420 0.1405 0.1259 0.0495 0.1197 0.1128 0.1042 0.0948 0.0831 
?= 0.9,?= 0.1,?= 0.5  0.3237 0.2744 0.2342 0.1288 0.0189 0.0123 0.0100 0.0081 0.0063 0.0049 
?= 0.1,?= 0.1,?= 1  0.0492 0.0333 0.0305 0.0214 0.0106 0.0243 0.0181 0.0173 0.0119 0.0068 
?= 0.1,?= 0.9,?= 1  0.2876 0.2014 0.1632 0.0855 0.0163 0.4813 0.4255 0.3819 0.2880 0.1609 
?= 0.5,?= 0.5,?= 1  0.1488 0.1407 0.1386 0.1196 0.0460 0.1468 0.1280 0.1240 0.1146 0.0895 
?= 0.9,?= 0.1,?= 1  0.3443 0.2641 0.2224 0.1259 0.0164 0.0080 0.0075 0.0071 0.0063 0.0057 
?= 0.1,?= 0.1,?= 5  0.0455 0.0356 0.0296 0.0213 0.0118 0.0181 0.0152 0.0137 0.0108 0.0070 
?= 0.1,?= 0.9,?= 5  0.2685 0.2019 0.1575 0.0872 0.0149 0.6413 0.5912 0.5619 0.4657 0.2561 
?= 0.5,?= 0.5,?= 5  0.1492 0.1453 0.1421 0.1215 0.0483 0.1797 0.1752 0.1676 0.1621 0.1180 
?= 0.9,?= 0.1,?= 5  0.3464 0.2849 0.2332 0.1281 0.0184 0.0076 0.0075 0.0074 0.0074 0.0076 
 
Table 8.A-7 Comparison of YW and CLS estimates of  for an INARMA(1,1) process  
Parameters  
YW CLS 
?=?? ?=?? ?=?? ?=?? ?=??? ?=?? ?=?? ?=?? ?=?? ?=??? 
?= 0.1,?= 0.1,?= 0.5  0.1007 0.0847 0.0731 0.0534 0.0124 0.0486 0.0315 0.0234 0.0136 0.0033 
?= 0.1,?= 0.9,?= 0.5  0.0993 0.0634 0.0466 0.0213 0.0049 0.0953 0.0643 0.0509 0.0289 0.0151 
?= 0.5,?= 0.5,?= 0.5  0.1929 0.1195 0.0785 0.0312 0.0045 0.1869 0.1295 0.0942 0.0485 0.0179 
?= 0.9,?= 0.1,?= 0.5  3.2137 1.4902 0.8934 0.2528 0.0200 2.6707 1.3440 0.8699 0.2635 0.0230 
?= 0.1,?= 0.1,?= 1  0.3580 0.3299 0.2642 0.1875 0.0484 0.1302 0.0933 0.0670 0.0396 0.0104 
?= 0.1,?= 0.9,?= 1  0.3386 0.2362 0.1530 0.0743 0.0174 0.3246 0.2378 0.1694 0.1023 0.0597 
?= 0.5,?= 0.5,?= 1  0.7878 0.4347 0.2709 0.1015 0.0160 0.7621 0.4629 0.3235 0.1661 0.0654 
?= 0.9,?= 0.1,?= 1  14.3119 6.4062 3.7534 1.0360 0.0795 12.9766 6.1504 3.9367 1.1341 0.0898 
?= 0.1,?= 0.1,?= 5  7.4699 6.9473 6.3751 4.8796 0.9735 1.6871 1.2283 0.9607 0.5643 0.1710 
?= 0.1,?= 0.9,?= 5  6.4788 4.2740 2.8742 1.5911 0.3502 5.7193 4.0864 2.9201 2.0613 1.3153 
?= 0.5,?= 0.5,?= 5  15.0720 9.3556 6.3524 2.3258 0.3487 15.1315 9.4722 6.8444 3.3042 1.3018 
?= 0.9,?= 0.1,?= 5  325.6348 154.4483 89.1639 25.0749 2.1841 300.4573 163.8322 101.8301 30.2243 2.5295 
?
 ?
 ?
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Appendix 8.B Impact of YW and CLS Estimates on Accuracy of 
Forecasts using MASE 
The comparison of YW and CLS estimates for INAR(1), INMA(1) and 
INARMA(1,1) in terms of their impact on forecast accuracy using MASE is 
presented in this appendix.   
Table 8.B-1 Forecast error comparison (YW and CLS) for INAR(1) series  
Parameters 
??????/???????  ??????/???????  
?= 24  ?= 36  ?= 48 ?= 96  ?= 500  ?= 24  
?= 0.1,?= 0.5  0.9888 0.9935 0.9975 0.9991 1.0000 0.9893 
?= 0.5,?= 0.5  0.9983 1.0009 1.0001 1.0008 1.0002 1.0116 
?= 0.9,?= 0.5  1.0837 1.0663 1.0483 1.0247 1.0038 1.1998 
?= 0.1,?= 1  0.9858 0.9955 0.9973 0.9989 0.9999 0.9810 
?= 0.5,?= 1  0.9942 0.9999 0.9993 1.0002 1.0001 1.0031 
?= 0.9,?= 1  1.0593 1.0461 1.0364 1.0149 1.0012 1.1401 
?= 0.1,?= 3  0.9916 0.9964 0.9979 0.9992 1.0000 0.9781 
?= 0.5,?= 3  0.9955 1.0007 1.0015 0.9998 1.0000 0.9931 
?= 0.9,?= 3  1.0462 1.0393 1.0265 1.0116 1.0005 1.1241 
?= 0.1,?= 5  0.9914 0.9955 0.9979 0.9992 1.0000 0.9825 
?= 0.5,?= 5  0.9956 0.9996 1.0001 1.0001 1.0000 1.0039 
?= 0.9,?= 5  1.0500 1.0411 1.0292 1.0120 1.0006 - 
 
Table 8.B-2 Forecast error comparison (YW and CLS) for INMA(1) series  
Parameters 
??????/???????  
?=?? ?=?? ?=?? ?=?? ?=??? 
?= 0.1,?= 0.5  1.0029 1.0012 1.0013 1.0004 1.0001 
?= 0.5,?= 0.5  1.0043 1.0053 1.0030 1.0016 1.0001 
?= 0.9,?= 0.5  1.0060 1.0074 1.0050 1.0027 0.9975 
?= 0.1,?= 1  1.0011 1.0019 1.0011 1.0009 1.0005 
?= 0.5,?= 1  1.0092 1.0075 1.0062 1.0053 1.0041 
?= 0.9,?= 1  1.0099 1.0077 1.0083 1.0025 0.9971 
?= 0.1,?= 3  1.0004 1.0010 1.0015 1.0008 1.0003 
?= 0.5,?= 3  1.0025 1.0049 1.0032 1.0048 1.0020 
?= 0.9,?= 3  1.0001 0.9991 1.0006 1.0035 1.0007 
?= 0.1,?= 5  0.9993 1.0005 1.0006 1.0005 1.0001 
?= 0.5,?= 5  1.0004 1.0001 1.0003 1.0020 1.0019 
?= 0.9,?= 5  0.9933 0.9960 0.9972 0.9980 1.0018 
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Table 8.B-3 Comparison error comparison (YW and CLS) for INARMA(1,1) series  
Parameters 
??????/???????  
?=?? ?=?? ?=?? ?=?? ?=??? 
?= 0.1,?= 0.1,?= 0.5  0.9956 0.9984 1.0069 1.0072 1.0023 
?= 0.1,?= 0.9,?= 0.5  1.0093 1.0250 1.0251 1.0212 1.0072 
?= 0.5,?= 0.5,?= 0.5  1.0233 1.0419 1.0386 1.0246 1.0049 
?= 0.9,?= 0.1,?= 0.5  1.1859 1.1255 1.0907 1.0368 1.0065 
?= 0.1,?= 0.1,?= 1  1.0289 1.0316 1.0336 1.0293 1.0121 
?= 0.1,?= 0.9,?= 1  1.0245 1.0364 1.0361 1.0283 1.0095 
?= 0.5,?= 0.5,?= 1  1.0617 1.0558 1.0478 1.0281 1.0066 
?= 0.9,?= 0.1,?= 1  1.1955 1.1250 1.0889 1.0295 1.0030 
?= 0.1,?= 0.1,?= 5  1.0504 1.0474 1.0474 1.0473 1.0109 
?= 0.1,?= 0.9,?= 5  1.0577 1.0643 1.0662 1.0625 1.0351 
?= 0.5,?= 0.5,?= 5  1.0845 1.0751 1.0749 1.0415 1.0121 
?= 0.9,?= 0.1,?= 5  1.3024 1.1553 1.1013 1.0309 1.0022 
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Appendix 8.C Croston-SBA Categorization for INAR(1), INMA(1) 
and INARMA(1,1) 
The following tables show that the Croston-SBA categorization generally holds for 
INAR(1), INMA(1), and INARMA(1,1) processes although it originally developed 
for i.i.d. processes.  
For INAR(1), when ?= 0.1,?= 0.5, ?= 0.5,?= 0.5, and ?= 0.1,?= 1, SBA 
should outperform Croston based on the corresponding p-value.   
Table 8.C-1 MSE of Croston and SBA with smoothing parameter 0.2 for INAR(1) series 
Parameters  
??????????  ??????  
?=?? ?=?? ?=?? ?=?? ?=??? ?=?? ?=?? ?=?? ?=?? ?=??? 
?= 0.1,?= 0.5  0.6782 0.6370 0.6204 0.6059 0.5888 0.6592 0.6248 0.6122 0.5986 0.5811 
?= 0.5,?= 0.5  1.1889 1.1333 1.1098 1.0575 1.0550 1.1558 1.1027 1.0866 1.0333 1.0302 
?= 0.9,?= 0.5  2.0661 2.1545 2.0588 2.0672 2.0163 2.3534 2.4621 2.3079 2.3119 2.2578 
?= 0.1,?= 1  1.2918 1.2387 1.2419 1.2364 1.2016 1.2686 1.2244 1.2305 1.2236 1.1879 
?= 0.5,?= 1  2.1306 2.0827 2.0617 2.0071 1.9784 2.1198 2.0755 2.0559 1.9977 1.9689 
?= 0.9,?= 1  4.3286 4.1355 4.1565 4.0094 3.9999 5.4842 5.2874 5.2252 5.0125 4.9994 
?= 0.1,?= 3  3.9531 3.8147 3.8414 3.7243 3.6340 4.0050 3.8476 3.8845 3.7627 3.6735 
?= 0.5,?= 3  6.0937 5.8541 5.7937 5.7145 5.6107 6.3761 6.1316 6.0812 5.9983 5.8763 
?= 0.9,?= 3  12.6744 12.5479 12.3444 12.0857 12.0343 21.6630 21.7462 21.4541 21.1452 21.0575 
?= 0.1,?= 5  6.7050 6.3945 6.3156 6.1690 6.0777 6.9397 6.6147 6.5153 6.3704 6.2710 
?= 0.5,?= 5  10.1928 9.6910 9.7351 9.3875 9.2467 11.1322 10.5665 10.6531 10.2523 10.0885 
?= 0.9,?= 5  20.4023 20.8507 20.9265 20.1313 19.9123 48.8346 47.8702 46.9309 46.1660 44.8889 
 
Table 8.C-2 MSE of Croston and SBA with smoothing parameter 0.5 for INAR(1) series 
Parameters  
??????????  ??????  
?=?? ?=?? ?=?? ?=?? ?=??? ?=?? ?=?? ?=?? ?=?? ?=??? 
?= 0.1,?= 0.5  0.7352 0.7163 0.7050 0.6894 0.6711 0.6719 0.6559 0.6474 0.6334 0.6152 
?= 0.5,?= 0.5  1.1981 1.1722 1.1599 1.1137 1.1063 1.1030 1.0661 1.0646 1.0190 1.0096 
?= 0.9,?= 0.5  1.3146 1.3137 1.2846 1.2601 1.2360 3.1301 3.1514 2.9995 2.9740 2.9217 
?= 0.1,?= 1  1.4453 1.4006 1.3999 1.4021 1.3642 1.3495 1.3189 1.3243 1.3199 1.2818 
?= 0.5,?= 1  2.0781 2.0287 2.0136 1.9739 1.9389 2.1293 2.0815 2.0602 2.0147 1.9791 
?= 0.9,?= 1  2.7022 2.5724 2.5546 2.4636 2.4352 9.9577 9.5920 9.5507 9.0077 9.0156 
?= 0.1,?= 3  4.5453 4.4165 4.4184 4.2813 4.1936 4.8183 4.6422 4.6675 4.5205 4.4314 
?= 0.5,?= 3  5.8520 5.6100 5.5535 5.4866 5.3744 7.7889 7.4908 7.4554 7.3408 7.1728 
?= 0.9,?= 3  8.1248 7.7172 7.5610 7.3578 7.3587 68.5686 67.3196 66.2151 65.3240 64.8094 
?= 0.1,?= 5  7.7797 7.4433 7.3601 7.1823 7.0591 9.0522 8.7136 8.5879 8.3941 8.2367 
?= 0.5,?= 5  9.7481 9.2986 9.3367 9.0251 8.8548 15.7458 15.0617 15.1057 14.6590 14.3696 
?= 0.9,?= 5  12.8141 12.8380 12.6929 12.3732 12.1335 186.8114 180.7881 178.0403 175.0332 170.3159 
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For INMA(1), when ?= 0.1,?= 0.5, ?= 0.5,?= 0.5, ?= 0.9,?= 0.5, and ?=
 0.1,?= 1, SBA should outperform Croston based on the corresponding p-value. 
Table 8.C-3 MSE of Croston and SBA with smoothing parameter 0.2 for INMA(1) series 
Parameters  
??????????  ??????  
?=?? ?=?? ?=?? ?=?? ?=??? ?=?? ?=?? ?=?? ?=?? ?=??? 
?= 0.1,?= 0.5  0.6682 0.6264 0.6169 0.5950 0.5826 0.6468 0.6148 0.6095 0.5876 0.5754 
?= 0.5,?= 0.5  0.9637 0.9103 0.8507 0.8495 0.8195 0.9285 0.8867 0.8324 0.8315 0.8030 
?= 0.9,?= 0.5  1.2077 1.1498 1.1031 1.0834 1.0584 1.1547 1.1164 1.0764 1.0562 1.0325 
?= 0.1,?= 1  1.3089 1.2502 1.2256 1.2002 1.1860 1.2915 1.2344 1.2120 1.1869 1.1729 
?= 0.5,?= 1  1.7781 1.6990 1.6832 1.6235 1.6365 1.7507 1.6803 1.6615 1.6031 1.6171 
?= 0.9,?= 1  2.2710 2.1981 2.1295 2.0714 2.0319 2.2540 2.1770 2.1101 2.0549 2.0131 
?= 0.1,?= 3  4.0167 3.8200 3.7213 3.6679 3.6364 4.0619 3.8592 3.7651 3.7018 3.6722 
?= 0.5,?= 3  5.1518 4.9393 4.9167 4.7959 4.6883 5.2691 5.0550 5.0298 4.9097 4.8008 
?= 0.9,?= 3  6.2893 6.1923 6.0164 5.8912 5.8008 6.5575 6.4307 6.2320 6.1184 6.0191 
?= 0.1,?= 5  6.5944 6.5473 6.2777 6.1716 6.0266 6.8133 6.7225 6.4675 6.3628 6.2156 
?= 0.5,?= 5  8.4587 8.1070 8.0842 7.9465 7.7757 8.9173 8.5772 8.5611 8.3625 0.5754 
?= 0.9,?= 5  10.6487 10.1183 10.1251 9.8462 9.6391 11.4393 10.8493 10.8578 10.5863 0.8030 
 
Table 8.C-4 MSE of Croston and SBA with smoothing parameter 0.5 for INMA(1) series 
Parameters  
??????????  ??????  
?=?? ?=?? ?= 48 ?=?? ?=??? ?=?? ?=?? ?=?? ?=?? ?=??? 
?= 0.1,?= 0.5  0.7150 0.7091 0.6930 0.6787 0.6620 0.6528 0.6465 0.6407 0.6232 0.6088 
?= 0.5,?= 0.5  1.0583 1.0341 0.9870 0.9845 0.9506 0.9453 0.9228 0.8816 0.8793 0.8504 
?= 0.9,?= 0.5  1.3103 1.2889 1.2476 1.2304 1.2033 1.1635 1.1542 1.1219 1.0987 1.0740 
?= 0.1,?= 1  1.4580 1.4187 1.3924 1.3648 1.3498 1.3746 1.3317 1.3083 1.2818 1.2684 
?= 0.5,?= 1  1.9305 1.8791 1.8557 1.7775 1.7988 1.8414 1.7931 1.7662 1.6996 1.7163 
?= 0.9,?= 1  2.3641 2.3151 2.2397 2.1726 2.1380 2.3223 2.2708 2.2024 2.1439 2.1031 
?= 0.1,?= 3  4.6389 4.4053 4.2831 4.2405 4.2051 4.8967 4.6412 4.5360 4.4624 4.4243 
?= 0.5,?= 3  5.5047 5.3033 5.2630 5.1602 5.0283 6.3117 6.1039 6.0345 5.9233 5.7804 
?= 0.9,?= 3  6.4306 6.2870 6.1180 5.9501 5.8768 8.0736 7.8664 7.6395 7.4564 7.3493 
?= 0.1,?= 5  7.6307 7.6316 7.3059 7.1697 7.0108 8.8930 8.7858 8.4906 8.3299 8.1573 
?= 0.5,?= 5  9.0566 8.6844 8.6661 8.4742 8.3162 11.9868 11.6011 11.5405 11.2015 11.0221 
?= 0.9,?= 5  10.8019 10.1784 10.2150 9.9558 9.7360 15.8961 15.1546 15.1366 14.7591 14.4960 
 
Finally, for INARMA(1,1), when ?= 0.1,?= 0.1,?= 0.5, ?= 0.1,?= 0.9,?=
 0.5, ?= 0.5,?= 0.5,?= 0.5, and ?= 0.1,?= 0.1,?= 1, SBA should outperform 
Croston and the opposite is true for the rest. 
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Table 8.C-5 MSE of Croston and SBA with smoothing parameter 0.2 for INARMA(1,1) series 
Parameters  
??????????  ??????  
?=?? ?=?? ?= 48 ?=?? ?=??? ?=?? ?=?? ?= 48 ?=?? ?=??? 
?= 0.1,?= 0.1,?= 0.5  0.7572 0.7285 0.6975 0.6797 0.6672 0.7344 0.7133 0.6858 0.6691 0.6570 
?= 0.1,?= 0.9,?= 0.5  1.4658 1.3971 1.2976 1.2855 1.2758 1.4061 1.3529 1.2653 1.2548 1.2440 
?= 0.5,?= 0.5,?= 0.5  2.0666 1.9352 1.9751 1.8888 1.8780 2.0127 1.8915 1.9394 1.8472 1.8370 
?= 0.9,?= 0.1,?= 0.5  2.4911 2.4166 2.4541 2.3439 2.3694 2.9636 2.7476 2.7803 2.6402 2.6659 
?= 0.1,?= 0.1,?= 1  1.4875 1.4329 1.3832 1.3637 1.3459 1.4650 1.4128 1.3656 1.3466 1.3300 
?= 0.1,?= 0.9,?= 1  2.5633 2.6071 2.5802 2.4522 2.4170 2.5445 2.5750 2.5632 2.4316 2.3971 
?= 0.5,?= 0.5,?= 1  3.8122 3.5193 3.5507 3.4400 3.3913 3.8405 3.5307 3.5720 3.4446 3.4046 
?= 0.9,?= 0.1,?= 1  4.9377 4.9217 4.8844 4.9002 4.6510 6.4337 6.3152 6.2141 6.1640 5.8469 
?= 0.1,?= 0.1,?= 5  7.3304 7.0908 6.9961 6.8049 6.6737 7.6299 7.3524 7.2568 7.0638 6.9243 
?= 0.1,?= 0.9,?= 5  12.2581 11.8649 11.8106 11.4788 11.3795 13.3116 12.8960 12.7726 12.3983 12.2912 
?= 0.5,?= 0.5,?= 5  17.0179 16.6291 16.8486 16.3143 16.1399 19.2541 18.8518 18.9279 18.3672 18.1258 
?= 0.9,?= 0.1,?= 5  25.9712 23.8322 24.3298 24.2873 23.3176 57.2282 56.2972 55.9089 54.7003 53.6411 
 
Table 8.C-6 MSE of Croston and SBA with smoothing parameter 0.5 for INARMA(1,1) series 
     Parameters  
??????????  ??????  
?=?? ?=?? ?= 48 ?=?? ?=??? ?=?? ?=?? ?= 48 ?=?? ?=??? 
?= 0.1,?= 0.1,?= 0.5  0.8278 0.8255 0.7996 0.7832 0.7660 0.7468 0.7457 0.7237 0.7103 0.6956 
?= 0.1,?= 0.9,?= 0.5  1.5852 1.5845 1.4591 1.4463 1.4452 1.4111 1.3976 1.3085 1.2966 1.2900 
?= 0.5,?= 0.5,?= 0.5  1.9839 1.8595 1.9022 1.8264 1.8119 1.8514 1.7625 1.8132 1.7249 1.7129 
?= 0.9,?= 0.1,?= 0.5  1.4987 1.4757 1.4697 1.4072 1.4056 3.7822 3.5755 3.5684 3.4579 3.4478 
?= 0.1,?= 0.1,?= 1  1.6598 1.6111 1.5495 1.5359 1.5132 1.5622 1.5098 1.4599 1.4443 1.4251 
?= 0.1,?= 0.9,?= 1  2.6260 2.7332 2.6587 2.5459 2.5066 2.6141 2.6703 2.6471 2.5198 2.4867 
?= 0.5,?= 0.5,?= 1  3.3841 3.1385 3.1717 3.0929 3.0331 3.7330 3.4326 3.4858 3.3582 3.3188 
?= 0.9,?= 0.1,?= 1  3.0666 2.9571 2.9202 2.8722 2.7725 12.0092 11.4371 11.2427 10.9966 10.6574 
?= 0.1,?= 0.1,?= 5  8.2959 7.9922 7.8299 7.6759 7.5434 10.0345 9.6419 9.4752 9.2596 9.0982 
?= 0.1,?= 0.9,?= 5  12.2479 11.7657 11.7342 11.4066 11.3330 18.7567 18.1540 17.8894 17.4457 17.2565 
?= 0.5,?= 0.5,?= 5  14.8220 14.5978 14.7661 14.3685 14.1216 29.0148 28.5701 28.2932 27.7230 27.1435 
?= 0.9,?= 0.1,?= 5  15.6201 14.5525 14.5893 14.4396 13.9223 220.0655 216.2880 212.1152 207.3633 205.4631 
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Appendix 8.D Comparing the Accuracy of INARMA Forecasts for all points in time and issue points 
In this appendix, the forecast accuracy of INARMA methods when all points in time are considered is compared to the case of issue points.  
Table 8.D-1 Forecast accuracy for all points in time and issue points for INAR(1) series (known order)  
Parameters 
?=??  ?=??  ?=??  ?=??  
All points in time Issue Points All points in time Issue Points All points in time Issue Points All points in time Issue Points 
ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE 
?= 0.1,?= 0.5  0.0026 0.6614 1.1418 -0.1034 0.8816 0.8592 -0.0089 0.6286 1.0555 -0.0840 0.7817 0.8115 0.0052 0.6047 1.0237 -0.0491 0.7214 0.7881 0.0045 0.5822 0.9822 -0.0247 0.6703 0.7545 
?= 0.5,?= 0.5  -0.0026 0.9466 1.3290 -0.0241 1.2146 1.2289 -0.0089 0.8743 1.1807 -0.0316 1.0876 1.1100 0.0044 0.8532 1.1570 -0.0153 1.0373 1.0915 -0.0054 0.7834 1.0534 -0.0107 0.9473 0.9871 
?= 0.9,?= 0.5  0.0017 1.2082 1.3901 -0.0028 1.2116 1.3893 0.0042 1.1489 1.2894 0.0013 1.1517 1.2895 -0.0043 1.0811 1.2176 -0.0058 1.0841 1.2172 -0.0033 1.0164 1.1486 -0.0047 1.0200 1.1492 
?= 0.1,?= 1  -0.0149 1.2880 0.9376 -0.0962 1.4564 0.9781 -0.0059 1.2072 0.8496 -0.0582 1.2943 0.8580 0.0052 1.1967 0.8382 -0.0333 1.2759 0.8390 0.0029 1.1663 0.8057 -0.0132 1.2258 0.8090 
?= 0.5,?= 1  -0.0195 1.8846 1.0837 -0.0428 2.0093 1.1169 -0.0018 1.7244 1.0202 -0.0126 1.8430 1.0457 -0.0045 1.6745 1.0059 -0.0104 1.7796 1.0307 0.0026 1.5905 0.9618 0.0002 1.6749 0.9852 
?= 0.9,?= 1  -0.0121 2.5216 1.2401 -0.0125 2.5205 1.2400 0.0054 2.2655 1.1594 0.0053 2.2655 1.1594 -0.0146 2.1925 1.1262 -0.0147 2.1926 1.1262 -0.0105 2.0319 1.0686 -0.0107 2.0319 1.0686 
?= 0.1,?= 3  0.0100 3.9224 0.8544 -0.0101 3.9851 0.8781 -0.0176 3.6703 0.8228 -0.0242 3.7034 0.8448 -0.0010 3.6641 0.8136 -0.0101 3.7006 0.8353 0.0085 3.4701 0.7846 0.0050 3.4883 0.8019 
?= 0.5,?= 3  -0.0308 5.6926 1.0126 -0.0325 5.6986 1.0139 -0.0035 5.1557 0.9491 -0.0057 5.1609 0.9514 -0.0078 4.9742 0.9331 -0.0086 4.9801 0.9350 0.0143 4.7749 0.9160 0.0135 4.7793 0.9177 
?= 0.9,?= 3  -0.0906 7.5862 1.1509 -0.0906 7.5862 1.1509 -0.0298 6.7494 1.1026 -0.0298 6.7494 1.1026 -0.0243 6.4376 1.0658 -0.0243 6.4376 1.0658 -0.0093 6.0230 1.0205 -0.0093 6.0230 1.0205 
?= 0.1,?= 5  0.0371 6.6926 0.8565 0.0335 6.6920 0.8580 0.0209 6.1869 0.8143 0.0179 6.1929 0.8176 0.0282 6.0095 0.7973 0.0260 6.0176 0.8016 0.0139 5.7529 0.7742 0.0133 5.7586 0.7778 
?= 0.5,?= 5  0.0123 9.3467 0.9840 0.0121 9.3479 0.9843 0.0082 8.6581 0.9653 0.0082 8.6597 0.9655 0.0116 8.3583 0.9392 0.0116 8.3583 0.9393 -0.0034 7.8699 0.9011 -0.0035 7.8699 0.9012 
?= 0.9,?= 5  -0.0013 11.9986 1.1483 -0.0013 11.9986 1.1483 -0.0126 11.2051 1.0914 -0.0126 11.2051 1.0914 -0.0467 10.8985 1.0720 -0.0467 10.8985 1.0720 0.0185 10.1102 1.0272 0.0185 10.1102 1.0272 
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Table 8.D-2 Forecast accuracy for all points in time and issue points for INMA(1) series (known order)  
Parameters 
?=??  ?=??  ?=??  ?=??  
All points in time Issue Points All points in time Issue Points All points in time Issue Points All points in time Issue Points 
ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE 
?= 0.1,?= 0.5  -0.0031 0.6295 1.1297 -0.0392 0.7823 0.8062 0.0027 0.6035 1.0473 0.0117 0.7134 0.7866 0.0114 0.5993 1.0493 0.0249 0.6832 0.7875 0.0007 0.5702 0.9736 0.0480 0.6570 0.7351 
?= 0.5,?= 0.5  0.0395 0.8793 1.3407 0.1612 1.1706 1.1189 0.0279 0.8552 1.2527 0.1975 1.1200 1.0541 0.0229 0.7997 1.1494 0.1969 1.0123 0.9901 0.0031 0.7885 1.0948 0.2116 0.9847 0.9574 
?= 0.9,?= 0.5  0.0767 1.1019 1.5472 0.2912 1.4609 1.3594 0.0671 1.0609 1.3632 0.2997 1.3175 1.2363 0.0628 1.0229 1.2606 0.3007 1.2400 1.1211 0.0445 0.9878 1.1797 0.3103 1.1874 1.0683 
?= 0.1,?= 1  0.0234 1.2748 0.9163 0.0114 1.3964 0.9335 0.0000 1.2038 0.8547 0.0050 1.2923 0.8731 0.0082 1.1724 0.8365 0.0223 1.2557 0.8414 0.0048 1.1313 0.7957 0.0391 1.2009 0.7956 
?= 0.5,?= 1  0.0347 1.7554 1.0666 0.1211 1.9307 1.1132 0.0440 1.6455 1.0247 0.1414 1.7795 1.0523 0.0310 1.6074 1.0005 0.1429 1.7315 1.0136 0.0204 1.5302 0.9648 0.1512 1.6235 0.9718 
?= 0.9,?= 1  0.1249 2.2869 1.2485 0.2374 2.4432 1.2942 0.1025 2.1650 1.1687 0.2334 2.2741 1.1922 0.1148 2.0762 1.1223 0.2549 2.1785 1.1295 0.1116 1.9944 1.0920 0.2551 2.0664 1.0959 
?= 0.1,?= 3  0.0452 3.9039 0.8547 0.0376 3.9375 0.8748 0.0402 3.6622 0.8158 0.0408 3.6950 0.8347 0.0150 3.5353 0.7960 0.0174 3.5579 0.8157 0.0062 3.4237 0.7767 0.0129 3.4386 0.7954 
?= 0.5,?= 3  0.1260 5.2415 0.9971 0.1379 5.2750 1.0039 0.0781 4.9565 0.9450 0.0896 4.9647 0.9540 0.0929 4.8942 0.9424 0.1089 4.9067 0.9486 0.0608 4.6821 0.9036 0.0760 4.6843 0.9094 
?= 0.9,?= 3  0.2970 6.7422 1.1268 0.3041 6.7525 1.1288 0.3209 6.5993 1.1023 0.3271 6.6089 1.1045 0.2796 6.2599 1.0587 0.2873 6.2574 1.0596 0.2718 6.0678 1.0364 0.2801 6.0598 1.0369 
?= 0.1,?= 5  0.0838 6.4549 0.8431 0.0830 6.4710 0.8465 0.0132 6.2194 0.8182 0.0129 6.2335 0.8213 0.0226 5.9292 0.7937 0.0239 5.9364 0.7972 0.0111 5.7446 0.7806 0.0138 5.7500 0.7836 
?= 0.5,?= 5  0.1407 8.7278 0.9676 0.1413 8.7273 0.9679 0.1984 8.3020 0.9417 0.1991 8.3003 0.9416 0.1738 8.0993 0.9245 0.1751 8.1031 0.9250 0.1269 7.8404 0.9063 0.1281 7.8395 0.9067 
?= 0.9,?= 5  0.4387 11.6802 1.1864 0.4387 11.6802 1.1865 0.4081 10.9042 1.0713 0.4083 10.9074 1.0714 0.4804 10.7677 1.0895 0.4807 10.7679 1.0895 0.4479 10.1863 1.0242 0.4481 10.1860 1.0243 
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Table 8.D-3 Forecast accuracy for all points in time and issue points for INARMA(1,1) series (known order)  
Parameters 
?=??  ?=??  ?=??  ?=??  
All points in time Issue Points All points in time Issue Points All points in time Issue Points All points in time Issue Points 
ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE 
?= 0.1,?= 0.1,
 ?= 0.5  
-0.0007 0.7482 1.2163 -0.0700 1.0393 0.9354 -0.0066 0.7138 1.1186 -0.0382 0.9399 0.9074 0.0019 0.6777 1.0787 0.0039 0.8785 0.8779 -0.0047 0.6468 1.0076 0.0172 0.7936 0.8191 
?= 0.1,?= 0.9,
 ?= 0.5  
0.0401 1.2112 1.4173 0.1570 1.5961 1.3111 0.0336 1.1340 1.2974 0.1877 1.4754 1.1898 0.0267 1.0734 1.1958 0.1686 1.3287 1.0998 0.0163 1.0429 1.1248 0.2050 1.2677 1.0215 
?= 0.5,?= 0.5,
 ?= 0.5  
0.0485 1.5791 1.4864 0.1213 1.9469 1.3908 0.0209 1.4070 1.2666 0.0948 1.6876 1.2107 0.0445 1.3825 1.1924 0.1280 1.6513 1.1484 0.0261 1.2261 1.1137 0.1174 1.4511 1.0591 
?= 0.9,?= 0.1,
 ?= 0.5  
0.0920 1.4003 1.4228 0.0903 1.4066 1.4232 0.0532 1.2843 1.3142 0.0514 1.2898 1.3152 0.0487 1.2226 1.2608 0.0482 1.2273 1.2634 0.0324 1.1110 1.1489 0.0317 1.1134 1.1492 
?= 0.1,?= 0.1,
 ?= 1  
-0.0041 1.4908 0.9689 -0.0435 1.6925 1.0017 -0.0108 1.4146 0.9145 -0.0350 1.5629 0.9390 -0.0129 1.3358 0.8925 -0.0158 1.4591 0.9120 -0.0119 1.2833 0.8575 0.0018 1.3808 0.8725 
?= 0.1,?= 0.9,
 ?= 1  
0.0192 2.3265 1.1462 0.0618 2.5072 1.1789 -0.0185 2.2569 1.0930 0.0507 2.4059 1.1171 0.0368 2.2224 1.0713 0.1105 2.3482 1.0744 0.0149 2.0900 1.0210 0.1107 2.1709 1.0172 
?= 0.5,?= 0.5,
 ?= 1  
0.0296 3.1322 1.1914 0.0338 3.2529 1.2063 0.0250 2.7101 1.1033 0.0443 2.8128 1.1132 0.0409 2.6748 1.0798 0.0617 2.7683 1.0860 0.0220 2.4363 1.0245 0.0523 2.5181 1.0290 
?= 0.9,?= 0.1,
 ?= 1  
0.0665 2.8324 1.2617 0.0665 2.8324 1.2617 0.0494 2.5623 1.1748 0.0492 2.5623 1.1747 0.0640 2.4301 1.1219 0.0640 2.4301 1.1219 0.0413 2.2588 1.0786 0.0413 2.2587 1.0786 
?= 0.1,?= 0.1,
 ?= 5  
0.0279 7.4165 0.8824 0.0270 7.4271 0.8849 -0.0070 6.9501 0.8502 -0.0086 6.9563 0.8519 0.0011 6.7534 0.8307 -0.0008 6.7600 0.8323 0.0006 6.4253 0.8079 0.0011 6.4307 0.8101 
?= 0.1,?= 0.9,
 ?= 5  
0.0436 11.2147 1.0506 0.0436 11.2147 1.0506 0.0580 10.5085 0.9941 0.0580 10.5096 0.9942 0.0521 10.1101 0.9589 0.0521 10.1101 0.9589 0.0606 9.7366 0.9338 0.0606 9.7366 0.9338 
?= 0.5,?= 0.5,
 ?= 5  
0.1082 14.0754 1.0425 0.1082 14.0754 1.0425 0.1239 13.0227 1.0240 0.1239 13.0227 1.0240 0.1074 12.7060 0.9952 0.1074 12.7060 0.9952 0.1065 11.8259 0.9556 0.1065 11.8261 0.9556 
?= 0.9,?= 0.1,
 ?= 5  
0.1214 13.8720 1.1795 0.1214 13.8720 1.1795 0.1895 12.4636 1.0932 0.1895 12.4636 1.0932 0.1569 12.0389 1.0813 0.1569 12.0389 1.0813 0.0906 11.2782 1.0311 0.0906 11.2782 1.0311 
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Appendix 8.E Comparison of MASE of INARMA (known order) 
with Benchmarks 
In this appendix, the degree of improvement by INARMA over benchmarks, using the 
MASE measure, is presented. The results are for the case where all points in time are 
taken into account. 
Table 8.E-1  for INARMA(0,0) series (known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.3  0.8905 0.9259 0.9350 0.9269 0.9610 0.9658 0.9499 0.9841 0.9882 0.9670 1.0007 1.0046 
?= 0.5  0.9622 0.9837 0.9868 0.9795 0.9987 1.0010 0.9852 1.0033 1.0053 0.9866 1.0053 1.0074 
?= 0.7
   
0.9836 0.9954 0.9961 0.9873 0.9955 0.9961 0.9894 0.9969 0.9974 0.9881 0.9960 0.9966 
?= 1  0.9773 0.9944 0.9953 0.9698 0.9851 0.9858 0.9591 0.9750 0.9758 0.9448 0.9605 0.9613 
?= 3  0.9766 0.9853 0.9844 0.9669 0.9760 0.9753 0.9631 0.9722 0.9715 0.9538 0.9622 0.9614 
?= 5  0.9756 0.9753 0.9726 0.9649 0.9623 0.9593 0.9631 0.9620 0.9591 0.9544 0.9535 0.9508 
?= 20  0.9792 0.9146 0.8987 0.9652 0.9056 0.8906 0.9633 0.9011 0.8857 0.9564 0.8957 0.8803 
 
Table 8.E-2  for INMA(1) series (known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.9606 0.9810 0.9847 0.9775 0.9938 0.9956 0.9826 0.9981 0.9998 0.9867 1.0024 1.0041 
?= 0.5,?= 0.5  0.9459 0.9640 0.9665 0.9601 0.9751 0.9762 0.9660 0.9795 0.9805 0.9627 0.9772 0.9784 
?= 0.9,?= 0.5  0.9500 0.9717 0.9733 0.9453 0.9657 0.9679 0.9433 0.9617 0.9630 0.9243 0.9438 0.9453 
?= 0.1,?= 1  0.9757 0.9941 0.9953 0.9694 0.9900 0.9914 0.9603 0.9796 0.9808 0.9453 0.9657 0.9671 
?= 0.5,?= 1  0.9826 1.0020 1.0032 0.9828 1.0021 1.0034 0.9812 1.0010 1.0024 0.9796 1.0009 1.0026 
?= 0.9,?= 1  0.9955 1.0093 1.0098 0.9830 0.9974 0.9980 0.9786 0.9930 0.9935 0.9719 0.9864 0.9870 
?= 0.1,?= 3  0.9870 0.9934 0.9923 0.9740 0.9812 0.9802 0.9714 0.9796 0.9785 0.9675 0.9753 0.9743 
?= 0.5,?= 3  1.0073 1.0087 1.0060 0.9990 1.0010 0.9985 0.9977 0.9971 0.9943 0.9868 0.9878 0.9853 
?= 0.9,?= 3  1.0303 1.0191 1.0142 1.0296 1.0210 1.0164 1.0148 1.0087 1.0046 1.0089 1.0017 0.9973 
?= 0.1,?= 5  0.9883 0.9809 0.9771 0.9758 0.9756 0.9724 0.9690 0.9665 0.9632 0.9666 0.9625 0.9590 
?= 0.5,?= 5  1.0126 0.9957 0.9895 1.0091 0.9920 0.9855 0.9996 0.9825 0.9762 0.9906 0.9760 0.9700 
?= 0.9,?= 5  1.0493 1.0174 1.0084 1.0361 1.0119 1.0033 1.0252 1.0016 0.9933 1.0123 0.9875 0.9792 
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Table 8.E-3  for INAR(1) series (known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Cros  
0.2 
Cros  
0.5 
SBA  
0.2 
SBA  
0.5 
SBJ 
0.2 
SBJ 
0.5 
Cros  
0.2 
Cros  
0.5 
SBA  
0.2 
SBA  
0.5 
SBJ 
0.2 
SBJ 
0.5 
Cros  
0.2 
Cros  
0.5 
SBA  
0.2 
SBA  
0.5 
SBJ 
0.2 
SBJ 
0.5 
Cros  
0.2 
Cros  
0.5 
SBA  
0.2 
SBA  
0.5 
SBJ 
0.2 
SBJ 
0.5 
?= 0.1,?= 0.5  0.9787 0.9505 0.9965 1.0121 0.3777 0.4554 0.9825 0.9381 0.9987 1.0027 1.0003 1.0329 0.9778 0.9312 0.9933 0.9957 0.9950 1.0273 0.9805 0.9342 0.9957 0.9979 0.9974 1.0279 
?= 0.5,?= 0.5  0.8685 0.8610 0.8837 0.9055 0.8851 0.8811 0.8619 0.8470 0.8772 0.8956 0.8784 0.8728 0.8595 0.8365 0.8745 0.8857 0.8755 0.8672 0.8435 0.8218 0.8598 0.8714 0.8610 0.8552 
?= 0.9,?= 0.5  0.7325 0.9403 0.6868 0.5770 0.6771 0.4419 0.7060 0.9252 0.6606 0.5598 0.6510 0.4228 0.6921 0.8938 0.6521 0.5511 0.6429 0.4191 0.6694 0.8741 0.6350 0.5394 0.6265 0.4093 
?= 0.1,?= 1  0.9966 0.9365 1.0161 0.9858 1.0175 1.0012 0.9812 0.9161 1.0012 0.9632 1.0025 0.9828 0.9710 0.9071 0.9895 0.9545 0.9907 0.9708 0.9570 0.8934 0.9773 0.9415 0.9787 0.9612 
?= 0.5,?= 1  0.9349 0.9482 0.9451 0.9571 0.9450 0.8936 0.9028 0.9227 0.9123 0.9256 0.9121 0.8622 0.8942 0.9079 0.9059 0.9180 0.9060 0.8574 0.8805 0.8954 0.8928 0.9039 0.8929 0.8467 
?= 0.9,?= 1  0.7581 0.9606 0.6670 0.4577 0.6496 0.3447 0.7313 0.9358 0.6460 0.4430 0.6295 0.3328 0.7165 0.9215 0.6402 0.4357 0.6239 0.3283 0.7004 0.9012 0.6266 0.4306 0.6111 0.3247 
?= 0.1,?= 3  0.9924 0.9297 0.9980 0.9202 0.9966 0.8996 0.9817 0.9136 0.9895 0.9117 0.9886 0.8982 0.9775 0.9152 0.9845 0.9078 0.9834 0.8899 0.9657 0.9028 0.9738 0.8988 0.9727 0.8794 
?= 0.5,?= 3  0.9629 0.9835 0.9480 0.8547 0.9427 0.7377 0.9354 0.9586 0.9263 0.8362 0.9214 0.7231 0.9233 0.9463 0.9104 0.8199 0.9053 0.7095 0.9121 0.9333 0.9007 0.8129 0.8958 0.7042 
?= 0.9,?= 3  0.7737 0.9664 0.5807 0.2813 0.5483 0.2114 0.7292 0.9333 0.5477 0.2692 0.5179 0.2021 0.7170 0.9195 0.5328 0.2631 0.5037 0.1975 0.7035 0.9023 0.5219 0.2572 0.4933 0.1930 
?= 0.1,?= 5  1.0011 0.9328 0.9919 0.8695 0.9879 0.8169 0.9861 0.9142 0.9803 0.8533 0.9764 0.8033 0.9765 0.9051 0.9729 0.8484 0.9692 0.7991 0.9651 0.8974 0.9627 0.8415 0.9594 0.7954 
?= 0.5,?= 5  0.9530 0.9735 0.9213 0.7596 0.9118 0.6289 0.9439 0.9638 0.9153 0.7520 0.9062 0.6239 0.9249 0.9464 0.8917 0.7361 0.8826 0.6100 0.9159 0.9355 0.8855 0.7255 0.8765 0.6026 
?= 0.9,?= 5  0.7668 0.9666 0.4736 0.2105 0.4388 0.1575 0.7357 0.9335 0.4633 0.2066 0.4301 0.1548 0.7213 0.9263 0.4623 0.2057 0.4294 0.1541 0.7078 0.9048 0.4473 0.1990 0.4151 0.1491 
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Table 8.E-4  for INARMA(1,1) series (known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Cros  
0.2 
Cros  
0.5 
SBA  
0.2 
SBA  
0.5 
SBJ 
0.2 
SBJ 
0.5 
Cros  
0.2 
Cros  
0.5 
SBA  
0.2 
SBA  
0.5 
SBJ 
0.2 
SBJ 
0.5 
Cros  
0.2 
Cros  
0.5 
SBA  
0.2 
SBA  
0.5 
SBJ 
0.2 
SBJ 
0.5 
Cros  
0.2 
Cros  
0.5 
SBA  
0.2 
SBA  
0.5 
SBJ 
0.2 
SBJ 
0.5 
?= 0.1,?= 0.1,
 ?= 0.5  
0.9814 0.9497 1.0001 1.0118 1.0013 1.0305 0.9758 0.9275 0.9914 0.9938 0.9930 1.0190 0.9760 0.9256 0.9898 0.9893 0.9912 1.0136 0.9734 0.9184 0.9879 0.9850 0.9894 1.0135 
?= 0.1,?= 0.9,
 ?= 0.5  
0.8861 0.8480 0.9101 0.9091 0.9105 0.9243 0.8839 0.8263 0.9048 0.8898 0.9065 0.9123 0.8869 0.8315 0.9066 0.8927 0.9082 0.9102 0.8753 0.8185 0.8963 0.8816 0.8980 0.9013 
?= 0.5,?= 0.5,
 ?= 0.5  
0.8580 0.8754 0.8728 0.9157 0.8726 0.8639 0.8286 0.8488 0.8451 0.8887 0.8463 0.8393 0.8177 0.8307 0.8341 0.8720 0.8353 0.8269 0.7894 0.8027 0.8086 0.8470 0.8101 0.8075 
?= 0.9,?= 0.1,
 ?= 0.5  
0.7329 0.9608 0.6755 0.5760 0.6648 0.4308 0.7079 0.9226 0.6649 0.5641 0.6555 0.4252 0.6793 0.8920 0.6412 0.5470 0.6324 0.4125 0.6602 0.8677 0.6275 0.5265 0.6189 0.3984 
?= 0.1,?= 0.1,
 ?= 1  
0.9943 0.9404 1.0155 0.9913 1.0172 1.0070 0.9830 0.9236 1.0034 0.9746 1.0049 0.9951 0.9755 0.9196 0.9971 0.9694 0.9987 0.9868 0.9638 0.9072 0.9856 0.9579 0.9872 0.9777 
?= 0.1,?= 0.9,
 ?= 1  
0.9421 0.9341 0.9531 0.9523 0.9530 0.9069 0.9172 0.9057 0.9325 0.9316 0.9332 0.9008 0.9145 0.9051 0.9283 0.9274 0.9287 0.8919 0.9127 0.9001 0.9282 0.9256 0.9288 0.8931 
?= 0.5,?= 0.5,
 ?= 1  
0.8946 0.9514 0.8971 0.9190 0.8959 0.8149 0.8692 0.9220 0.8757 0.8987 0.8749 0.7999 0.8575 0.9107 0.8651 0.8892 0.8645 0.7934 0.8356 0.8852 0.8460 0.8682 0.8456 0.7767 
?= 0.9,?= 0.1,
 ?= 1  
0.7502 0.9519 0.6610 0.4423 0.6431 0.3323 0.7118 0.9250 0.6280 0.4284 0.6115 0.3217 0.6924 0.9060 0.6162 0.4199 0.6005 0.3153 0.6693 0.8805 0.6004 0.4114 0.5854 0.3093 
?= 0.1,?= 0.1,
 ?= 5  
1.0032 0.9442 0.9930 0.8617 0.9884 0.7962 0.9894 0.9338 0.9838 0.8610 0.9798 0.7976 0.9832 0.9325 0.9775 0.8558 0.9734 0.7890 0.9693 0.9142 0.9626 0.8407 0.9585 0.7795 
?= 0.1,?= 0.9,
 ?= 5  
0.9532 0.9557 0.9246 0.7662 0.9161 0.6458 0.9347 0.9393 0.9065 0.7504 0.8981 0.6349 0.9226 0.9268 0.8982 0.7448 0.8902 0.6319 0.9176 0.9228 0.8923 0.7385 0.8843 0.6263 
?= 0.5,?= 0.5,
 ?= 5  
0.9041 0.9718 0.8526 0.6689 0.8404 0.5331 0.8796 0.9427 0.8318 0.6528 0.8201 0.5215 0.8640 0.9250 0.8255 0.6533 0.8149 0.5235 0.8477 0.9035 0.8073 0.6340 0.7963 0.5079 
?= 0.9,?= 0.1,
 ?= 5  
0.7328 0.9408 0.4704 0.2077 0.4368 0.1559 0.7219 0.9226 0.4469 0.1978 0.4142 0.1482 0.7002 0.9074 0.4446 0.1971 0.4125 0.1478 0.6810 0.6836 0.2741 0.6155 0.2058 0.1446 
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Appendix 8.F Comparison of six-step ahead MSE of INARMA 
(known order) with Benchmarks 
 
In this appendix the MSE of six-step ahead INARMA forecasts (using YW to 
estimate the parameters) is compared to the MSE of benchmark methods.   
Table 8.F-1 Six-step ahead  for INARMA(0,0) series (known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.3  0.8313 0.8826 0.8879 0.9378 0.9650 0.9675 0.9727 0.9891 0.9906 0.9789 0.9866 0.9873 
?= 0.5  0.9364 0.9695 0.9723 0.9747 0.9907 0.9917 0.9782 0.9891 0.9896 0.9648 0.9744 0.9747 
?= 0.7
   
0.9637 0.9882 0.9901 0.9751 0.9877 0.9880 0.9685 0.9787 0.9790 0.9581 0.9673 0.9674 
?= 1  0.9735 0.9894 0.9898 0.9675 0.9782 0.9780 0.9659 0.9740 0.9736 0.9468 0.9552 0.9549 
?= 3  0.9649 0.9548 0.9505 0.9478 0.9421 0.9382 0.9347 0.9295 0.9257 0.9206 0.9139 0.9100 
?= 5  0.9621 0.9455 0.9384 0.9419 0.9200 0.9125 0.9373 0.9146 0.9070 0.9143 0.8932 0.8860 
?= 20  0.9573 0.8218 0.7942 0.9389 0.8066 0.7794 0.9239 0.7887 0.7619 0.9142 0.7881 0.7619 
 
Table 8.F-2 Six-step ahead 
 
for INMA(1) series (known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.9173 0.9540 0.9572 0.9675 0.9856 0.9866 0.9669 0.9813 0.9821 0.9591 0.9705 0.9710 
?= 0.5,?= 0.5  0.9211 0.9695 0.9737 0.9503 0.9794 0.9815 0.9420 0.9647 0.9660 0.9239 0.9456 0.9470 
?= 0.9,?= 0.5  0.9292 0.9808 0.9853 0.9536 0.9849 0.9870 0.9432 0.9667 0.9681 0.9108 0.9346 0.9361 
?= 0.1,?= 1  0.9682 0.9902 0.9912 0.9622 0.9762 0.9764 0.9499 0.9626 0.9626 0.9368 0.9496 0.9496 
?= 0.5,?= 1  0.9668 0.9801 0.9797 0.9496 0.9675 0.9677 0.9342 0.9488 0.9487 0.9093 0.9231 0.9229 
?= 0.9,?= 1  0.9688 0.9939 0.9944 0.9256 0.9393 0.9388 0.9006 0.9190 0.9189 0.8832 0.8986 0.8982 
?= 0.1,?= 3  0.9577 0.9557 0.9519 0.9377 0.9248 0.9200 0.9216 0.9125 0.9081 0.9124 0.9060 0.9019 
?= 0.5,?= 3  0.9567 0.9403 0.9342 0.9184 0.9130 0.9079 0.9028 0.8885 0.8827 0.8804 0.8729 0.8679 
?= 0.9,?= 3  0.9476 0.9341 0.9269 0.9073 0.8973 0.8909 0.8862 0.8747 0.8683 0.8664 0.8512 0.8445 
?= 0.1,?= 5  0.9542 0.9369 0.9292 0.9301 0.9093 0.9016 0.9177 0.8968 0.8893 0.8990 0.8739 0.8661 
?= 0.5,?= 5  0.9579 0.9239 0.9130 0.9150 0.8823 0.8721 0.8984 0.8680 0.8580 0.8774 0.8470 0.8372 
?= 0.9,?= 5  0.9455 0.8851 0.8710 0.9027 0.8651 0.8529 0.8832 0.8417 0.8293 0.8586 0.8193 0.8075 
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Table 8.F-3 Six-step ahead  with smoothing parameter 0.2 for INAR(1) 
series (known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.9290 0.9705 0.9745 0.9732 0.9921 0.9933 0.9714 0.9835 0.9841 0.9528 0.9655 0.9661 
?= 0.5,?= 0.5  1.0424 1.0900 1.0939 0.9670 0.9962 0.9981 0.9315 0.9587 0.9605 0.8780 0.9073 0.9094 
?= 0.9,?= 0.5  1.1764 1.1710 1.1607 1.0385 1.0363 1.0283 0.9826 0.9879 0.9810 0.8998 0.9066 0.9005 
?= 0.1,?= 1  0.9826 1.0046 1.0055 0.9705 0.9836 0.9836 0.9520 0.9622 0.9619 0.9356 0.9485 0.9486 
?= 0.5,?= 1  1.0263 1.0491 1.0492 0.9406 0.9667 0.9673 0.9170 0.9371 0.9371 0.8620 0.8837 0.8841 
?= 0.9,?= 1  1.1586 1.0883 1.0665 1.0187 0.9664 0.9480 0.9825 0.9356 0.9185 0.8863 0.8386 0.8223 
?= 0.1,?= 3  0.9748 0.9704 0.9664 0.9371 0.9315 0.9274 0.9255 0.9186 0.9143 0.9078 0.9008 0.8967 
?= 0.5,?= 3  0.9864 0.9747 0.9676 0.9131 0.9114 0.9055 0.8737 0.8627 0.8564 0.8393 0.8310 0.8251 
?= 0.9,?= 3  1.1322 0.8947 0.8454 1.0627 0.8301 0.7841 0.9961 0.7865 0.7450 0.8885 0.6957 0.6589 
?= 0.1,?= 5  0.9460 0.9188 0.9108 0.9225 0.8997 0.8919 0.9174 0.8917 0.8837 0.9026 0.8786 0.8708 
?= 0.5,?= 5  1.0105 0.9777 0.9643 0.9255 0.8918 0.8795 0.8862 0.8513 0.8394 0.8337 0.7990 0.7877 
?= 0.9,?= 5  1.1459 0.7273 0.6712 1.0230 0.6764 0.6242 0.9755 0.6680 0.6178 0.8781 0.6001 0.5553 
 
Table 8.F-4 Six-step ahead  with smoothing parameter 0.5 for INAR(1) 
series (known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.8777 0.9762 0.9872 0.8689 0.9483 0.9536 0.8531 0.9259 0.9297 0.8261 0.9035 0.9095 
?= 0.5,?= 0.5  0.9080 1.0391 1.0506 0.8214 0.9280 0.9327 0.7790 0.8829 0.8889 0.7437 0.8469 0.8534 
?= 0.9,?= 0.5  1.1361 0.9462 0.7806 1.0338 0.8704 0.7239 0.9877 0.8391 0.6981 0.9112 0.7704 0.6399 
?= 0.1,?= 1  0.8618 0.9320 0.9216 0.8344 0.8948 0.8832 0.8227 0.8788 0.8664 0.8092 0.8698 0.8589 
?= 0.5,?= 1  0.8658 0.9195 0.8916 0.7825 0.8503 0.8275 0.7727 0.8259 0.8007 0.7184 0.7748 0.7540 
?= 0.9,?= 1  1.1299 0.7420 0.5580 1.0106 0.6642 0.4991 0.9828 0.6461 0.4879 0.8961 0.5772 0.4317 
?= 0.1,?= 3  0.8300 0.8018 0.7387 0.7874 0.7614 0.7013 0.7713 0.7441 0.6846 0.7603 0.7329 0.6749 
?= 0.5,?= 3  0.8072 0.7399 0.6503 0.7424 0.6872 0.6053 0.7155 0.6538 0.5757 0.6844 0.6282 0.5531 
?= 0.9,?= 3  1.1316 0.3808 0.2443 1.0441 0.3545 0.2283 1.0112 0.3477 0.2253 0.9042 0.3097 0.2011 
?= 0.1,?= 5  0.7875 0.6921 0.6079 0.7670 0.6760 0.5899 0.7581 0.6655 0.5807 0.7516 0.6612 0.5766 
?= 0.5,?= 5  0.8134 0.6490 0.5302 0.7560 0.6022 0.4922 0.7214 0.5764 0.4725 0.6793 0.5413 0.4441 
?= 0.9,?= 5  1.1350 0.2570 0.1604 1.0247 0.2351 0.1454 0.9831 0.2347 0.1447 0.8907 0.2120 0.1311 
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Table 8.F-5 Six-step ahead  with smoothing parameter 0.2 for INARMA(1,1) series 
(known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.1,?= 0.5  0.9512 0.9912 0.9943 0.9824 1.0024 1.0038 0.9602 0.9795 0.9808 0.9486 0.9642 0.9650 
?= 0.1,?= 0.9,?= 0.5  0.9665 1.0085 1.0095 0.9345 0.9697 0.9722 0.9384 0.9654 0.9671 0.9016 0.9281 0.9299 
?= 0.5,?= 0.5,?= 0.5  0.9867 1.0228 1.0250 0.9133 0.9481 0.9506 0.8961 0.9309 0.9334 0.8562 0.8870 0.8890 
?= 0.9,?= 0.1,?= 0.5  1.0800 1.0416 1.0297 1.2237 1.2449 1.2379 1.1860 1.1924 1.1841 1.1816 1.1881 1.1794 
?= 0.1,?= 0.1,?= 1  1.0128 1.0355 1.0364 0.9989 1.0145 1.0147 0.9648 0.9791 0.9791 0.9254 0.9384 0.9384 
?= 0.1,?= 0.9,?= 1  0.9784 0.9922 0.9915 0.9274 0.9484 0.9485 0.9126 0.9302 0.9300 0.8686 0.8839 0.8835 
?= 0.5,?= 0.5,?= 1  0.9791 0.9998 0.9994 0.9318 0.9640 0.9648 0.8847 0.9072 0.9073 0.8367 0.8587 0.8588 
?= 0.9,?= 0.1,?= 1  1.2035 1.1125 1.0885 1.2078 1.1521 1.1302 1.2134 1.1574 1.1359 1.2180 1.1413 1.1183 
?= 0.1,?= 0.1,?= 5  0.9730 0.9560 0.9479 0.9283 0.9102 0.9024 0.9171 0.8995 0.8919 0.8933 0.8683 0.8601 
?= 0.1,?= 0.9,?= 5  0.9675 0.9382 0.9261 0.8961 0.8517 0.8392 0.8742 0.8333 0.8212 0.8486 0.8094 0.7974 
?= 0.5,?= 0.5,?= 5  0.9692 0.9024 0.8857 0.8892 0.8508 0.8372 0.8585 0.8164 0.8030 0.8123 0.7740 0.7614 
?= 0.9,?= 0.1,?= 5  1.3878 0.8918 0.8210 1.2591 0.8477 0.7841 1.3093 0.8560 0.7887 1.2348 0.8392 0.7758 
 
Table 8.F-6 Six-step ahead  with smoothing parameter 0.5 for INARMA(1,1) series 
(known order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.1,?= 0.5  0.8927 0.9881 1.0203 0.8549 0.9433 0.9929 0.8271 0.9201 0.9682 0.8163 0.9023 0.9468 
?= 0.1,?= 0.9,?= 0.5  0.8253 0.9380 1.0095 0.7848 0.9007 0.9620 0.7870 0.8911 0.9425 0.7546 0.8594 0.9099 
?= 0.5,?= 0.5,?= 0.5  0.8752 0.9799 1.0064 0.7694 0.8795 0.9363 0.7577 0.8631 0.9183 0.7199 0.8149 0.8674 
?= 0.9,?= 0.1,?= 0.5  1.0323 0.8420 0.6669 1.2382 1.0821 0.8688 1.1947 1.0184 0.8128 1.1831 0.9947 0.7984 
?= 0.1,?= 0.1,?= 1  0.8833 0.9587 0.9878 0.8632 0.9266 0.9517 0.8292 0.8911 0.9180 0.7970 0.8552 0.8796 
?= 0.1,?= 0.9,?= 1  0.8156 0.8712 0.8932 0.7655 0.8308 0.8640 0.7558 0.8083 0.8436 0.7166 0.7668 0.7999 
?= 0.5,?= 0.5,?= 1  0.8055 0.8536 0.8870 0.7681 0.8332 0.8714 0.7397 0.7893 0.8140 0.6923 0.7404 0.7682 
?= 0.9,?= 0.1,?= 1  1.1949 0.7480 0.5465 1.2245 0.7934 0.5744 1.2326 0.8056 0.5853 1.2341 0.7862 0.5707 
?= 0.1,?= 0.1,?= 5  0.8034 0.7148 0.6574 0.7576 0.6714 0.6247 0.7533 0.6665 0.6185 0.7360 0.6413 0.5896 
?= 0.1,?= 0.9,?= 5  0.7717 0.6323 0.5574 0.7140 0.5658 0.4981 0.6934 0.5564 0.4883 0.6811 0.5392 0.4676 
?= 0.5,?= 0.5,?= 5  0.7894 0.5789 0.4843 0.7187 0.5541 0.4678 0.6910 0.5299 0.4482 0.6545 0.5015 0.4242 
?= 0.9,?= 0.1,?= 5  1.3669 0.3068 0.1871 1.2699 0.3015 0.1846 1.3210 0.2945 0.1798 1.2527 0.2946 0.1802 
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Appendix 8.G Comparison of all-INAR(1) and all-INARMA(1,1) 
 
In this appendix, the forecast accuracy of all-INAR(1) and all-INARMA(1,1) is compared. The results are presented for the case of INAR(1), 
INMA(1) and INARMA(1,1) series. The corresponding results for an INARMA(0,0) series can be found from Table ?8-32 and Table ?8-43.  
Table 8.G-1 Accuracy of forecasts by all-INAR(1) and all-INARMA(1,1) approaches for INAR(1) series  
Parameters 
?=??  ?=??  ?=??  ?=??  
All-INAR(1) All-INARMA(1,1) All-INAR(1) All-INARMA(1,1) All-INAR(1) All-INARMA(1,1) All-INAR(1) All-INARMA(1,1) 
ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE 
?= 0.1,?= 0.5  0.0026 0.6614 1.1418 -0.0008 0.6699 1.1275 -0.0089 0.6286 1.0555 0.0049 0.6447 1.0710 0.0052 0.6047 1.0237 0.0111 0.6389 1.0340 0.0045 0.5822 0.9822 0.0010 0.5857 0.9845 
?= 0.5,?= 0.5  -0.0026 0.9466 1.3290 0.0130 1.0056 1.3278 -0.0089 0.8743 1.1807 0.0039 0.9436 1.2602 0.0044 0.8532 1.1570 0.0041 0.9131 1.1864 -0.0054 0.7834 1.0534 -0.0033 0.8186 1.0727 
?= 0.9,?= 0.5  0.0017 1.2082 1.3901 0.0347 1.2681 1.4405 0.0042 1.1489 1.2894 0.0344 1.1681 1.3181 -0.0043 1.0811 1.2176 0.0066 1.0919 1.2150 -0.0033 1.0164 1.1486 0.0206 1.0235 1.1707 
?= 0.1,?= 1  -0.0149 1.2880 0.9376 -0.0152 1.3755 0.9455 -0.0059 1.2072 0.8496 -0.0028 1.2778 0.8819 0.0052 1.1967 0.8382 -0.0066 1.1947 0.8427 0.0029 1.1663 0.8057 0.0045 1.1875 0.8235 
?= 0.5,?= 1  -0.0195 1.8846 1.0837 -0.0092 1.9908 1.1188 -0.0018 1.7244 1.0202 0.0050 1.8491 1.0640 -0.0045 1.6745 1.0059 -0.0046 1.7735 1.0251 0.0026 1.5905 0.9618 0.0052 1.6469 0.9944 
?= 0.9,?= 1  -0.0121 2.5216 1.2401 0.0544 2.4325 1.2304 0.0054 2.2655 1.1594 0.0378 2.3301 1.1748 -0.0146 2.1925 1.1262 0.0484 2.1853 1.1423 -0.0105 2.0319 1.0686 0.0312 2.0343 1.0747 
?= 0.1,?= 3  0.0100 3.9224 0.8544 -0.0275 4.1292 0.8818 -0.0176 3.6703 0.8228 -0.0177 3.7457 0.8236 -0.0010 3.6641 0.8136 -0.0144 3.6442 0.8115 0.0085 3.4701 0.7846 -0.0222 3.4929 0.7828 
?= 0.5,?= 3  -0.0308 5.6926 1.0126 0.0237 5.8020 1.0279 -0.0035 5.1557 0.9491 -0.0291 5.4831 0.9848 -0.0078 4.9742 0.9331 -0.0027 5.2166 0.9710 0.0143 4.7749 0.9160 0.0268 4.9748 0.9319 
?= 0.9,?= 3  -0.0906 7.5862 1.1509 0.1097 7.3168 1.1422 -0.0298 6.7494 1.1026 0.1077 6.9143 1.1046 -0.0243 6.4376 1.0658 0.0627 6.5204 1.0742 -0.0093 6.0230 1.0205 0.0612 6.1440 1.0290 
?= 0.1,?= 5  0.0371 6.6926 0.8565 0.0124 6.5975 0.8522 0.0209 6.1869 0.8143 0.0016 6.3370 0.8206 0.0282 6.0095 0.7973 -0.0078 6.2455 0.8197 0.0139 5.7529 0.7742 -0.0063 5.8121 0.7805 
?= 0.5,?= 5  0.0123 9.3467 0.9840 0.0798 9.5203 1.0114 0.0082 8.6581 0.9653 0.0050 8.8544 0.9603 0.0116 8.3583 0.9392 0.0325 8.4735 0.9460 -0.0034 7.8699 0.9011 -0.0003 7.9638 0.9095 
?= 0.9,?= 5  -0.0013 11.9986 1.1483 0.0773 12.2386 1.1385 -0.0126 11.2051 1.0914 0.1196 11.3739 1.0820 -0.0467 10.8985 1.0720 0.1021 10.9289 1.0679 0.0185 10.1102 1.0272 0.0956 10.1452 1.0232 
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Table 8.G-2 Accuracy of forecasts by all-INAR(1) and all-INARMA(1,1) approaches for INMA(1) series  
Parameters 
?=??  ?=??  ?=??  ?=??  
All-INAR(1) All-INARMA(1,1) All-INAR(1) All-INARMA(1,1) All-INAR(1) All-INARMA(1,1) All-INAR(1) All-INARMA(1,1) 
ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE 
?= 0.1,?= 0.5  -0.0102 0.6916 1.1405 -0.0056 0.6500 1.1831 0.0016 0.6215 1.0690 -0.0038 0.6155 1.0589 -0.0084 0.5981 1.0149 -0.0071 0.6070 1.0025 0.00007 0.5687 0.9692 0.0063 0.5733 0.9809 
?= 0.5,?= 0.5  -0.0058 0.8285 1.2415 0.0205 0.8681 1.3428 0.0085 0.7828 1.1608 -0.0151 0.8047 1.1628 0.0033 0.7599 1.1155 0.0011 0.7815 1.1069 0.0038 0.6959 1.0381 -0.0038 0.7423 1.0637 
?= 0.9,?= 0.5  -0.0324 0.9442 1.2536 0.0430 1.0089 1.3941 -0.0052 0.8721 1.2436 0.0352 0.9383 1.2649 -0.0089 0.8149 1.1243 0.0122 0.9436 1.1917 -0.0063 0.7802 1.0677 0.0250 0.9208 1.1448 
?= 0.1,?= 1  -0.0005 1.3118 0.8950 -0.0202 1.3447 0.9356 -0.0078 1.2120 0.8617 -0.0154 1.2458 0.8487 0.0034 1.1882 0.8419 -0.0017 1.1956 0.8443 -0.0013 1.1519 0.8002 -0.0016 1.1525 0.8117 
?= 0.5,?= 1  -0.0271 1.6581 1.0424 0.0060 1.6743 1.0374 -0.0235 1.5574 0.9788 -0.0128 1.5905 0.9873 -0.0039 1.4772 0.9546 0.0030 1.5879 0.9894 -0.0047 1.4121 0.9168 -0.0077 1.4733 0.9413 
?= 0.9,?= 1  -0.0443 1.9014 1.1317 0.0145 1.9996 1.1350 -0.0203 1.7164 1.0562 0.0180 1.9324 1.0960 -0.0292 1.6602 1.0051 0.0165 1.8242 1.0545 -0.0127 1.5469 0.9562 0.0184 1.7825 1.0406 
?= 0.1,?= 3  0.0169 3.8869 0.8397 -0.0153 3.8953 0.8642 -0.0190 3.6392 0.8194 0.0022 3.7206 0.8211 -0.0208 3.4924 0.7922 0.0041 3.6216 0.7983 0.0136 3.4409 0.7838 -0.0215 3.5003 0.7873 
?= 0.5,?= 3  -0.0436 4.8555 0.9562 -0.0306 4.8945 0.9557 -0.0302 4.6371 0.9278 -0.0137 4.7351 0.9278 -0.0170 4.4562 0.8843 -0.0013 4.6193 0.9143 -0.0039 4.2607 0.8655 0.0061 4.3870 0.8783 
?= 0.9,?= 3  -0.1126 5.4157 1.0076 0.0763 5.8039 1.0545 -0.0603 5.1071 0.9687 0.0192 5.5915 1.0116 -0.0481 4.8830 0.9420 0.0118 5.2638 0.9726 -0.0213 4.7140 0.9137 0.0439 5.1879 0.9612 
?= 0.1,?= 5  -0.0330 6.3471 0.8369 0.0108 6.5867 0.8570 -0.0025 6.1832 0.8223 -0.0108 6.2327 0.8241 -0.0221 6.0512 0.7981 -0.0045 6.0357 0.7906 -0.0054 5.6957 0.7776 -0.0103 5.7236 0.7712 
?= 0.5,?= 5  -0.0071 8.0533 0.9474 -0.0335 8.3565 0.9718 -0.0317 7.5846 0.8934 0.0231 7.7461 0.9228 -0.0207 7.4066 0.8805 0.0136 7.6924 0.8954 -0.0166 6.8773 0.8510 0.0160 7.2509 0.8698 
?= 0.9,?= 5  -0.1464 9.3220 1.0338 0.0927 9.8826 1.0531 -0.0607 8.7192 0.9763 0.0643 8.8871 0.9798 -0.0626 8.1938 0.9370 0.0683 8.9059 0.9673 -0.0218 7.7859 0.9012 0.0524 8.4545 0.9443 
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Table 8.G-3 Accuracy of forecasts by all-INAR(1) and all-INARMA(1,1) approaches for INARMA(1,1) series  
Parameters 
?=??  ?=??  ?=??  ?=??  
All-INAR(1) All-INARMA(1,1) All-INAR(1) All-INARMA(1,1) All-INAR(1) All-INARMA(1,1) All-INAR(1) All-INARMA(1,1) 
ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE ME MSE MASE 
?= 0.1,?= 0.1, ?= 0.5  -0.0078 0.7157 1.1853 -0.0007 0.7482 1.2163 0.0050 0.6776 1.0914 -0.0066 0.7138 1.1186 -0.0037 0.6789 1.0606 0.0019 0.6777 1.0787 0.0034 0.6319 1.0015 -0.0047 0.6468 1.0076 
?= 0.1,?= 0.9, ?= 0.5  -0.0336 1.1234 1.3333 0.0401 1.2112 1.4173 -0.0166 1.0234 1.1892 0.0336 1.1340 1.2974 -0.0108 0.9883 1.1387 0.0267 1.0734 1.1958 -0.0082 0.9030 1.0507 0.0163 1.0429 1.1248 
?= 0.5,?= 0.5, ?= 0.5  -0.0397 1.4167 1.3403 0.0485 1.5791 1.4864 -0.0108 1.3213 1.2244 0.0209 1.4070 1.2666 -0.0025 1.2331 1.1576 0.0445 1.3825 1.1924 -0.0109 1.1697 1.0806 0.0261 1.2261 1.1137 
?= 0.9,?= 0.1, ?= 0.5  0.0022 1.3138 1.3528 0.0920 1.4003 1.4228 -0.0171 1.2480 1.2641 0.0532 1.2843 1.3142 -0.0192 1.2192 1.2223 0.0487 1.2226 1.2608 0.0009 1.1111 1.1593 0.0324 1.1110 1.1489 
?= 0.1,?= 0.1, ?= 1  -0.0092 1.4535 0.9748 -0.0041 1.4908 0.9689 0.0050 1.3592 0.8997 -0.0108 1.4146 0.9145 -0.0022 1.3239 0.8900 -0.0129 1.3358 0.8925 0.0043 1.2502 0.8470 -0.0119 1.2833 0.8575 
?= 0.1,?= 0.9, ?= 1  -0.0421 2.2562 1.1278 0.0192 2.3265 1.1462 -0.0379 1.9904 1.0257 -0.0185 2.2569 1.0930 -0.0301 1.9530 1.0063 0.0368 2.2224 1.0713 -0.0113 1.8374 0.9588 0.0149 2.0900 1.0210 
?= 0.5,?= 0.5, ?= 1  -0.0791 2.9429 1.1710 0.0296 3.1322 1.1914 -0.0416 2.6021 1.0770 0.0250 2.7101 1.1033 -0.0334 2.4496 1.0386 0.0409 2.6748 1.0798 -0.0145 2.3081 0.9957 0.0220 2.4363 1.0245 
?= 0.9,?= 0.1, ?= 1  -0.0718 2.7062 1.2374 0.0665 2.8324 1.2617 -0.0625 2.4894 1.1512 0.0494 2.5623 1.1748 -0.0466 2.3962 1.1273 0.0640 2.4301 1.1219 -0.0156 2.2173 1.0745 0.0413 2.2588 1.0786 
?= 0.1,?= 0.1, ?= 5  -0.0116 7.2720 0.8837 0.0279 7.4165 0.8824 -0.0119 6.7888 0.8526 -0.0070 6.9501 0.8502 0.0285 6.6017 0.8402 0.0011 6.7534 0.8307 -0.0169 6.2483 0.8011 0.0006 6.4253 0.8079 
?= 0.1,?= 0.9, ?= 5  -0.1451 11.3162 1.0522 0.0436 11.2147 1.0506 -0.1048 10.1377 0.9675 0.0580 10.5085 0.9941 -0.0779 9.7491 0.9463 0.0521 10.1101 0.9589 -0.0438 9.1660 0.9021 0.0606 9.7366 0.9338 
?= 0.5,?= 0.5, ?= 5  -0.1845 14.2594 1.0796 0.1082 14.0754 1.0425 -0.1399 12.7866 1.0133 0.1239 13.0227 1.0240 -0.0804 12.2174 0.9767 0.1074 12.7060 0.9952 -0.0521 11.5310 0.9499 0.1065 11.8259 0.9556 
?= 0.9,?= 0.1, ?= 5  -0.3143 14.2380 1.1727 0.1214 13.8720 1.1795 -0.1687 12.8863 1.1125 0.1895 12.4636 1.0932 -0.0959 12.1338 1.0723 0.1569 12.0389 1.0813 -0.0613 11.0139 1.0149 0.0906 11.2782 1.0311 
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Appendix 8.H Comparison of MASE of INARMA (unknown order) 
with Benchmarks 
 
In this appendix, the degree of improvement by using all-INAR(1) over benchmarks, 
in terms of the MASE is presented. The results are for the case where all points in 
time are taken into account. The results for INAR(1) series are the same as the case 
where the order is known (Table 8.E-3).   
Table 8.H-1  for INARMA(0,0) series (unknown order)  
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.3  0.8989 0.9346 0.9438 0.9497 0.9846 0.9895 0.9533 0.9877 0.9918 0.9647 0.9983 1.0023 
?= 0.5  0.9777 0.9995 1.0027 0.9877 1.0071 1.0094 1.0007 1.0192 1.0212 1.0002 1.0192 1.0213 
?= 0.7
   
0.9992 1.0112 1.0119 0.9941 1.0024 1.0030 1.0107 1.0185 1.0189 0.9813 0.9892 0.9898 
?= 1  1.0102 1.0278 1.0287 0.9808 0.9963 0.9970 0.9691 0.9851 0.9860 0.9644 0.9804 0.9813 
?= 3  0.9967 1.0056 1.0047 0.9643 0.9734 0.9727 0.9577 0.9668 0.9660 0.9472 0.9555 0.9548 
?= 5  0.9688 0.9684 0.9658 0.9527 0.9502 0.9472 0.9745 0.9734 0.9704 0.9655 0.9646 0.9618 
?= 20  1.0024 0.9362 0.9199 0.9682 0.9083 0.8932 0.9815 0.9182 0.9025 0.9589 0.8980 0.8826 
 
Table 8.H-2  for INMA(1) series (unknown order) 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.9698 0.9904 0.9941 0.9978 1.0144 1.0163 0.9504 0.9654 0.9670 0.9823 0.9978 0.9996 
?= 0.5,?= 0.5  0.8759 0.8927 0.8950 0.8897 0.9036 0.9045 0.9375 0.9506 0.9516 0.9129 0.9266 0.9277 
?= 0.9,?= 0.5  0.7697 0.7873 0.7886 0.8624 0.8810 0.8830 0.8413 0.8577 0.8589 0.8366 0.8542 0.8556 
?= 0.1,?= 1  0.9530 0.9710 0.9722 0.9773 0.9981 0.9995 0.9665 0.9859 0.9871 0.9507 0.9711 0.9725 
?= 0.5,?= 1  0.9603 0.9792 0.9804 0.9388 0.9572 0.9585 0.9362 0.9551 0.9564 0.9309 0.9511 0.9527 
?= 0.9,?= 1  0.9024 0.9149 0.9153 0.8884 0.9014 0.9019 0.8764 0.8893 0.8898 0.8510 0.8637 0.8642 
?= 0.1,?= 3  0.9696 0.9759 0.9749 0.9783 0.9856 0.9845 0.9668 0.9749 0.9738 0.9763 0.9842 0.9832 
?= 0.5,?= 3  0.9660 0.9673 0.9647 0.9809 0.9827 0.9803 0.9362 0.9357 0.9330 0.9452 0.9461 0.9437 
?= 0.9,?= 3  0.9213 0.9113 0.9069 0.9048 0.8973 0.8932 0.9029 0.8975 0.8938 0.8894 0.8831 0.8792 
?= 0.1,?= 5  0.9810 0.9737 0.9699 0.9807 0.9804 0.9773 0.9744 0.9719 0.9686 0.9629 0.9588 0.9553 
?= 0.5,?= 5  0.9914 0.9749 0.9688 0.9574 0.9411 0.9349 0.9520 0.9357 0.9298 0.9302 0.9164 0.9108 
?= 0.9,?= 5  0.9143 0.8865 0.8787 0.9442 0.9222 0.9143 0.8817 0.8614 0.8543 0.8907 0.8689 0.8616 
BenchmarkINARMA MASEMASE /
 BenchmarkINARMA MASEMASE /
M.Mohammadipour, 2009, Appendix 8.H   324 
 
Table 8.H-3  for INARMA(1,1) series (unknown order)  
Parameters 
?=??  ?=??  ?=??  ?=??  
Cros  
0.2 
Cros  
0.5 
SBA  
0.2 
SBA  
0.5 
SBJ 
0.2 
SBJ 
0.5 
Cros  
0.2 
Cros  
0.5 
SBA  
0.2 
SBA  
0.5 
SBJ 
0.2 
SBJ 
0.5 
Cros  
0.2 
Cros  
0.5 
SBA  
0.2 
SBA  
0.5 
SBJ 
0.2 
SBJ 
0.5 
Cros  
0.2 
Cros  
0.5 
SBA  
0.2 
SBA  
0.5 
SBJ 
0.2 
SBJ 
0.5 
?= 0.1,?= 0.1,?= 0.5  0.9564 0.9255 0.9746 0.9860 0.9758 1.0042 0.9520 0.9050 0.9673 0.9696 0.9688 0.9943 0.9596 0.9101 0.9732 0.9727 0.9745 0.9966 0.9675 0.9129 0.9820 0.9791 0.9834 1.0073 
?= 0.1,?= 0.9,?= 0.5  0.8336 0.7977 0.8562 0.8552 0.8565 0.8695 0.8102 0.7574 0.8293 0.8156 0.8309 0.8362 0.8445 0.7918 0.8633 0.8501 0.8648 0.8667 0.8176 0.7645 0.8372 0.8235 0.8389 0.8419 
?= 0.5,?= 0.5,?= 0.5  0.7737 0.7894 0.7870 0.8257 0.7868 0.7790 0.8010 0.8205 0.8170 0.8591 0.8181 0.8113 0.7938 0.8065 0.8098 0.8465 0.8109 0.8028 0.7659 0.7789 0.7845 0.8219 0.7860 0.7835 
?= 0.9,?= 0.1,?= 0.5  0.6969 0.9135 0.6423 0.5477 0.6321 0.4096 0.6809 0.8874 0.6396 0.5426 0.6305 0.4090 0.6586 0.8647 0.6216 0.5303 0.6131 0.3999 0.6662 0.8756 0.6332 0.5312 0.6245 0.4020 
?= 0.1,?= 0.1,?= 1  1.0003 0.9461 1.0217 0.9973 1.0234 1.0131 0.9671 0.9087 0.9872 0.9589 0.9887 0.9790 0.9728 0.9171 0.9943 0.9667 0.9959 0.9841 0.9520 0.8961 0.9736 0.9462 0.9751 0.9657 
?= 0.1,?= 0.9,?= 1  0.9270 0.9192 0.9378 0.9370 0.9377 0.8924 0.8607 0.8499 0.8751 0.8742 0.8757 0.8454 0.8591 0.8502 0.8720 0.8711 0.8724 0.8377 0.8571 0.8453 0.8716 0.8692 0.8722 0.8387 
?= 0.5,?= 0.5,?= 1  0.8793 0.9351 0.8818 0.9033 0.8806 0.8009 0.8485 0.9001 0.8548 0.8773 0.8540 0.7808 0.8247 0.8759 0.8321 0.8553 0.8315 0.7631 0.8122 0.8603 0.8222 0.8438 0.8218 0.7548 
?= 0.9,?= 0.1,?= 1  0.7358 0.9336 0.6482 0.4337 0.6307 0.3259 0.6975 0.9064 0.6154 0.4198 0.5992 0.3153 0.6958 0.9104 0.6192 0.4219 0.6034 0.3168 0.6667 0.8771 0.5981 0.4099 0.5832 0.3081 
?= 0.1,?= 0.1,?= 5  1.0047 0.9456 0.9945 0.8630 0.9898 0.7973 0.9922 0.9364 0.9866 0.8635 0.9826 0.7998 0.9944 0.9432 0.9887 0.8656 0.9845 0.7980 0.9611 0.9065 0.9545 0.8336 0.9504 0.7730 
?= 0.1,?= 0.9,?= 5  0.9546 0.9572 0.9260 0.7674 0.9175 0.6468 0.9096 0.9142 0.8823 0.7304 0.8741 0.6179 0.9105 0.9147 0.8864 0.7350 0.8785 0.6236 0.8864 0.8915 0.8620 0.7134 0.8543 0.6051 
?= 0.5,?= 0.5,?= 5  0.9363 1.0064 0.8830 0.6927 0.8703 0.5520 0.8704 0.9329 0.8232 0.6460 0.8115 0.5161 0.8479 0.9078 0.8102 0.6411 0.7997 0.5138 0.8426 0.8981 0.8025 0.6302 0.7916 0.5048 
?= 0.9,?= 0.1,?= 5  0.7286 0.9354 0.4676 0.2065 0.4342 0.1550 0.7346 0.9389 0.4548 0.2012 0.4215 0.1508 0.6944 0.8999 0.4409 0.1955 0.4090 0.1465 0.6703 0.8707 0.4273 0.1897 0.3968 0.1423 
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Appendix 8.I Comparison of MASE of INARMA with Benchmarks 
for Lead Time Forecasts 
In this appendix, the lead time forecasts of an all-INAR(1) method are compared to 
those of the benchmarks methods in terms of MASE. The results are presented for 
INARMA(0,0), INAR(1), INMA(1), and INARMA(1,1) series and include both 
cases of ?= 3 and ?= 6. 
Table 8.I-1  of lead-time forecasts  for INARMA(0,0) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.3  0.8692 0.9131 0.9178 0.9420 0.9748 0.9779 0.9692 0.9899 0.9917 0.9603 0.9773 0.9785 
?= 0.5  0.9484 0.9840 0.9874 0.9739 0.9993 1.0013 0.9742 0.9990 1.0010 0.9559 0.9827 0.9849 
?= 0.7
   
0.9755 1.0034 1.0054 0.9722 0.9968 0.9983 0.9622 0.9846 0.9860 0.9364 0.9581 0.9593 
?= 1  0.9824 0.9999 1.0000 0.9629 0.9819 0.9824 0.9516 0.9714 0.9719 0.9247 0.9481 0.9491 
?= 3  0.9624 0.9560 0.9512 0.9303 0.9263 0.9218 0.9121 0.9100 0.9058 0.8984 0.8963 0.8920 
?= 5  0.9567 0.9282 0.9184 0.9299 0.9056 0.8967 0.9112 0.8863 0.8775 0.8923 0.8710 0.8625 
?= 20  0.9552 0.7915 0.7606 0.9198 0.7657 0.7352 0.9044 0.7575 0.7286 0.8822 0.7413 0.7129 
  
Table 8.I-2  of lead-time forecasts  for INMA(1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.9463 0.9858 0.9897 0.9682 0.9978 1.0003 0.9644 0.9914 0.9937 0.9506 0.9789 0.9812 
?= 0.5,?= 0.5  0.9748 1.0102 1.0134 0.9535 0.9838 0.9864 0.9443 0.9735 0.9759 0.9173 0.9462 0.9486 
?= 0.9,?= 0.5  0.9756 1.0186 1.0225 0.9587 0.9907 0.9933 0.9426 0.9727 0.9751 0.9066 0.9363 0.9388 
?= 0.1,?= 1  0.9854 1.0073 1.0082 0.9612 0.9833 0.9843 0.9455 0.9688 0.9699 0.9249 0.9493 0.9505 
?= 0.5,?= 1  0.9848 1.0053 1.0061 0.9577 0.9769 0.9774 0.9437 0.9646 0.9654 0.9120 0.9354 0.9364 
?= 0.9,?= 1  0.9974 1.0177 1.0183 0.9619 0.9824 0.9830 0.9447 0.9630 0.9632 0.9163 0.9376 0.9382 
?= 0.1,?= 3  0.9688 0.9579 0.9523 0.9391 0.9423 0.9386 0.9241 0.9209 0.9166 0.9010 0.9011 0.8972 
?= 0.5,?= 3  0.9849 0.9757 0.9701 0.9481 0.9412 0.9358 0.9369 0.9330 0.9281 0.9062 0.9027 0.8980 
?= 0.9,?= 3  0.9993 0.9771 0.9698 0.9592 0.9415 0.9344 0.9437 0.9346 0.9286 0.9103 0.9009 0.8949 
?= 0.1,?= 5  0.9686 0.9468 0.9378 0.9397 0.9124 0.9029 0.9151 0.8965 0.8882 0.9009 0.8794 0.8708 
?= 0.5,?= 5  0.9822 0.9528 0.9423 0.9451 0.9115 0.9014 0.9356 0.9060 0.8959 0.9077 0.8796 0.8701 
?= 0.9,?= 5  0.9935 0.9527 0.9404 0.9514 0.9110 0.8990 0.9358 0.9018 0.8906 0.9120 0.8763 0.8653 
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Table 8.I-3  of lead-time forecasts  with smoothing parameter 0.2 
for INAR(1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.9691 1.0016 1.0046 0.9605 0.9901 0.9927 0.9635 0.9896 0.9918 0.9461 0.9730 0.9753 
?= 0.5,?= 0.5  0.9392 0.9627 0.9644 0.9229 0.9469 0.9489 0.9013 0.9267 0.9288 0.8690 0.8978 0.9002 
?= 0.9,?= 0.5  0.8990 0.8433 0.8308 0.8421 0.8083 0.7986 0.8296 0.7975 0.7880 0.7843 0.7552 0.7468 
?= 0.1,?= 1  0.9926 1.0157 1.0165 0.9528 0.9751 0.9760 0.9498 0.9743 0.9755 0.9222 0.9469 0.9481 
?= 0.5,?= 1  0.9731 0.9895 0.9895 0.9413 0.9572 0.9572 0.9302 0.9459 0.9458 0.8970 0.9150 0.9152 
?= 0.9,?= 1  0.9012 0.8115 0.7908 0.8522 0.7722 0.7543 0.8198 0.7565 0.7402 0.7881 0.7223 0.7063 
?= 0.1,?= 3  0.9695 0.9666 0.9621 0.9391 0.9385 0.9343 0.9215 0.9226 0.9188 0.8995 0.8993 0.8953 
?= 0.5,?= 3  0.9916 0.9694 0.9617 0.9533 0.9368 0.9297 0.9340 0.9227 0.9164 0.9070 0.8965 0.8905 
?= 0.9,?= 3  0.8966 0.6667 0.6190 0.8333 0.6410 0.5952 0.8571 0.6316 0.6000 0.7975 0.6063 0.5748 
?= 0.1,?= 5  0.9660 0.9418 0.9321 0.9221 0.9014 0.8931 0.9247 0.9028 0.8941 0.8955 0.8747 0.8664 
?= 0.5,?= 5  0.9913 0.9520 0.9390 0.9533 0.9072 0.8942 0.9410 0.9081 0.8963 0.9097 0.8701 0.8580 
?= 0.9,?= 5  0.8966 0.5778 0.5306 0.8571 0.5455 0.5000 0.8214 0.5349 0.5000 0.7857 0.5238 0.4889 
 
Table 8.I-4  of lead-time forecasts  with smoothing parameter 0.5 
for INAR(1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.9137 0.9997 1.0076 0.8495 0.9461 0.9612 0.8498 0.9392 0.9513 0.8287 0.9197 0.9326 
?= 0.5,?= 0.5  0.9021 0.9735 0.9739 0.8617 0.9443 0.9504 0.8390 0.9220 0.9271 0.8090 0.8950 0.9021 
?= 0.9,?= 0.5  1.0239 0.6822 0.5505 1.0005 0.6886 0.5592 0.9720 0.6675 0.5411 0.9348 0.6491 0.5276 
?= 0.1,?= 1  0.8763 0.9355 0.9231 0.8292 0.8940 0.8841 0.8287 0.8959 0.8863 0.8015 0.8664 0.8583 
?= 0.5,?= 1  0.9283 0.9531 0.9171 0.8947 0.9200 0.8878 0.8806 0.9039 0.8682 0.8519 0.8800 0.8473 
?= 0.9,?= 1  1.0284 0.5483 0.4237 1.0036 0.5384 0.4173 0.9687 0.5301 0.4097 0.9332 0.5023 0.3872 
?= 0.1,?= 3  0.8164 0.7827 0.7180 0.7918 0.7595 0.6955 0.7806 0.7501 0.6889 0.7590 0.7305 0.6706 
?= 0.5,?= 3  0.9383 0.8022 0.6979 0.8934 0.7717 0.6728 0.8767 0.7636 0.6670 0.8472 0.7448 0.6519 
?= 0.9,?= 3  1.0400 0.3210 0.2407 1.0000 0.3165 0.2404 1.0000 0.3200 0.2400 0.9341 0.3033 0.2277 
?= 0.1,?= 5  0.8048 0.7006 0.6078 0.7681 0.6762 0.5918 0.7750 0.6764 0.5888 0.7502 0.6559 0.5726 
?= 0.5,?= 5  0.9238 0.7035 0.5795 0.8844 0.6729 0.5568 0.8755 0.6731 0.5566 0.8480 0.6448 0.5321 
?= 0.9,?= 5  1.0400 0.2549 0.1926 1.0000 0.2449 0.1832 0.9583 0.2421 0.1811 0.9167 0.2366 0.1774 
 
Table 8.I-5  of lead-time forecasts  with smoothing parameter 0.2 for 
INARMA(1,1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.1,?= 0.5  0.9599 0.9975 1.0010 0.9618 0.9911 0.9936 0.9600 0.9855 0.9876 0.9372 0.9661 0.9687 
?= 0.1,?= 0.9,?= 0.5  0.9729 1.0118 1.0154 0.9548 0.9863 0.9890 0.9307 0.9603 0.9629 0.9014 0.9314 0.9339 
?= 0.5,?= 0.5,?= 0.5  0.9638 0.9822 0.9833 0.9093 0.9333 0.9351 0.8896 0.9166 0.9186 0.8623 0.8886 0.8906 
?= 0.9,?= 0.1,?= 0.5  0.8905 0.8351 0.8234 0.8429 0.7986 0.7881 0.8129 0.7814 0.7721 0.7725 0.7529 0.7452 
?= 0.1,?= 0.1,?= 1  0.9896 1.0122 1.0133 0.9582 0.9806 0.9816 0.9460 0.9691 0.9701 0.9205 0.9448 0.9461 
?= 0.1,?= 0.9,?= 1  1.0038 1.0170 1.0168 0.9593 0.9787 0.9790 0.9374 0.9554 0.9557 0.9109 0.9314 0.9320 
?= 0.5,?= 0.5,?= 1  0.9807 0.9911 0.9900 0.9378 0.9517 0.9510 0.9083 0.9248 0.9246 0.8828 0.8981 0.8979 
?= 0.9,?= 0.1,?= 1  0.8947 0.7926 0.7720 0.8531 0.7740 0.7558 0.8164 0.7451 0.7283 0.7833 0.7197 0.7038 
?= 0.1,?= 0.1,?= 5  0.9732 0.9490 0.9400 0.9484 0.9245 0.9152 0.9223 0.8989 0.8900 0.9046 0.8841 0.8756 
?= 0.1,?= 0.9,?= 5  0.9920 0.9504 0.9376 0.9518 0.9100 0.8984 0.9261 0.8909 0.8798 0.9080 0.8755 0.8648 
?= 0.5,?= 0.5,?= 5  0.9881 0.9263 0.9112 0.9412 0.8922 0.8781 0.9200 0.8737 0.8606 0.8924 0.8488 0.8359 
?= 0.9,?= 0.1,?= 5  0.9310 0.5625 0.5294 0.8621 0.5435 0.5102 0.8276 0.5333 0.5000 0.7857 0.5116 0.4783 
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Table 8.I-6  of lead-time forecasts  with smoothing parameter 0.5 for 
INARMA(1,1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.1,?= 0.5  0.8966 0.9951 1.0095 0.8618 0.9532 0.9666 0.8410 0.9323 0.9458 0.8194 0.9166 0.9328 
?= 0.1,?= 0.9,?= 0.5  0.8946 0.9929 1.0052 0.8521 0.9468 0.9584 0.8340 0.9284 0.9387 0.8031 0.8964 0.9079 
?= 0.5,?= 0.5,?= 0.5  0.9370 0.9940 0.9853 0.8716 0.9462 0.9462 0.8430 0.9201 0.9190 0.8263 0.8974 0.8935 
?= 0.9,?= 0.1,?= 0.5  1.0438 0.6973 0.5664 0.9928 0.6744 0.5470 0.9687 0.6647 0.5385 0.9267 0.6488 0.5259 
?= 0.1,?= 0.1,?= 1  0.8902 0.9511 0.9374 0.8435 0.9077 0.8970 0.8267 0.8905 0.8809 0.8091 0.8737 0.8649 
?= 0.1,?= 0.9,?= 1  0.9096 0.9439 0.9177 0.8608 0.9032 0.8812 0.8485 0.8884 0.8635 0.8222 0.8629 0.8402 
?= 0.5,?= 0.5,?= 1  0.9459 0.9530 0.9039 0.8983 0.9055 0.8584 0.8810 0.8928 0.8493 0.8492 0.8602 0.8193 
?= 0.9,?= 0.1,?= 1  1.0289 0.5346 0.4123 0.9976 0.5324 0.4109 0.9667 0.5169 0.3985 0.9323 0.5015 0.3862 
?= 0.1,?= 0.1,?= 5  0.8252 0.7119 0.6190 0.8066 0.6912 0.5989 0.7825 0.6771 0.5887 0.7676 0.6695 0.5832 
?= 0.1,?= 0.9,?= 5  0.8871 0.6957 0.5817 0.8536 0.6805 0.5728 0.8240 0.6598 0.5556 0.8071 0.6483 0.5468 
?= 0.5,?= 0.5,?= 5  0.9490 0.6764 0.5492 0.8956 0.6520 0.5311 0.8804 0.6434 0.5246 0.8565 0.6216 0.5054 
?= 0.9,?= 0.1,?= 5  1.0385 0.2523 0.1901 1.0000 0.2475 0.1852 1.0000 0.2424 0.1818 0.9167 0.2292 0.1732 
 
Table 8.I-7  of lead-time forecasts  for INARMA(0,0) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.3  0.9262 0.9793 0.9846 0.8890 0.9311 0.9352 0.9549 0.9871 0.9898 0.9510 0.9776 0.9798 
?= 0.5  0.9864 1.0281 1.0313 0.9468 0.9776 0.9796 0.9496 0.9780 0.9796 0.9138 0.9451 0.9471 
?= 0.7
   
0.9598 1.0038 1.0066 0.9614 0.9907 0.9919 0.9425 0.9644 0.9648 0.8939 0.9233 0.9247 
?= 1  0.9710 1.0065 1.0077 0.9321 0.9571 0.9572 0.9145 0.9361 0.9356 0.8751 0.8965 0.8962 
?= 3  0.9355 0.9117 0.9022 0.8895 0.8703 0.8619 0.8704 0.8593 0.8518 0.8250 0.8159 0.8091 
?= 5  0.9362 0.8819 0.8666 0.8871 0.8368 0.8226 0.8589 0.8142 0.8004 0.8114 0.7758 0.7635 
?= 20  0.9167 0.7097 0.6667 0.8750 0.6774 0.6563 0.8696 0.6667 0.6250 0.7826 0.6000 0.5806 
  
Table 8.I-8  of lead-time forecasts  for INMA(1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.9733 1.0270 1.0317 0.9555 0.9873 0.9895 0.9460 0.9688 0.9699 0.9049 0.9360 0.9382 
?= 0.5,?= 0.5  0.9523 1.0027 1.0072 0.9524 0.9850 0.9874 0.9383 0.9763 0.9792 0.8847 0.9200 0.9227 
?= 0.9,?= 0.5  0.9755 1.0382 1.0438 0.9576 0.9981 1.0012 0.9222 0.9570 0.9594 0.8849 0.9195 0.9219 
?= 0.1,?= 1  0.9687 0.9911 0.9911 0.9277 0.9523 0.9526 0.9085 0.9300 0.9298 0.8799 0.9028 0.9028 
?= 0.5,?= 1  0.9863 1.0066 1.0061 0.9355 0.9576 0.9575 0.9192 0.9416 0.9414 0.8598 0.8835 0.8837 
?= 0.9,?= 1  1.0103 1.0168 1.0145 0.9382 0.9550 0.9541 0.9144 0.9405 0.9405 0.8626 0.8844 0.8842 
?= 0.1,?= 3  0.9560 0.9298 0.9205 0.8952 0.8736 0.8655 0.8626 0.8468 0.8394 0.8220 0.8114 0.8048 
?= 0.5,?= 3  0.9711 0.9415 0.9315 0.9095 0.8958 0.8877 0.8734 0.8574 0.8500 0.8389 0.8249 0.8177 
?= 0.9,?= 3  0.9943 0.9640 0.9526 0.9231 0.9063 0.8971 0.8925 0.8704 0.8609 0.8399 0.8205 0.8119 
?= 0.1,?= 5  0.9580 0.9208 0.9069 0.8882 0.8398 0.8256 0.8529 0.8147 0.8021 0.8188 0.7821 0.7696 
?= 0.5,?= 5  0.9740 0.9160 0.8988 0.9034 0.8376 0.8217 0.8770 0.8353 0.8218 0.8360 0.7921 0.7788 
?= 0.9,?= 5  0.9902 0.9220 0.9034 0.9071 0.8420 0.8254 0.8766 0.8191 0.8032 0.8424 0.7897 0.7751 
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Table 8.I-9  of lead-time forecasts  with smoothing parameter 0.2 
for INAR(1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.9080 0.9615 0.9663 0.9518 0.9839 0.9863 0.9521 0.9779 0.9794 0.9064 0.9400 0.9424 
?= 0.5,?= 0.5  0.9824 1.0279 1.0320 0.9527 0.9852 0.9877 0.9140 0.9488 0.9514 0.8656 0.9005 0.9032 
?= 0.9,?= 0.5  1.0092 0.9926 0.9827 0.9498 0.9300 0.9211 0.9263 0.9104 0.9027 0.8765 0.8602 0.8525 
?= 0.1,?= 1  0.9865 1.0081 1.0078 0.9450 0.9617 0.9612 0.9151 0.9374 0.9374 0.8687 0.8929 0.8933 
?= 0.5,?= 1  1.0050 1.0159 1.0145 0.9551 0.9701 0.9692 0.9125 0.9373 0.9378 0.8690 0.8939 0.8942 
?= 0.9,?= 1  1.0143 0.9115 0.8898 0.9557 0.8725 0.8532 0.9240 0.8675 0.8519 0.8679 0.8054 0.7894 
?= 0.1,?= 3  0.9546 0.9386 0.9306 0.9051 0.8913 0.8837 0.8688 0.8543 0.8468 0.8307 0.8222 0.8158 
?= 0.5,?= 3  0.9990 0.9675 0.9572 0.9385 0.9149 0.9059 0.9088 0.8915 0.8833 0.8642 0.8515 0.8437 
?= 0.9,?= 3  1.0204 0.7576 0.7246 0.9388 0.7419 0.7077 0.9375 0.7258 0.6923 0.8723 0.6949 0.6613 
?= 0.1,?= 5  0.9512 0.9068 0.8926 0.8869 0.8411 0.8280 0.8570 0.8155 0.8028 0.8227 0.7847 0.7726 
?= 0.5,?= 5  1.0021 0.9556 0.9397 0.9286 0.8686 0.8528 0.9026 0.8527 0.8380 0.8573 0.8159 0.8026 
?= 0.9,?= 5  1.0000 0.7143 0.6250 1.0000 0.7143 0.6250 0.8000 0.5714 0.5000 0.8000 0.5714 0.5714 
 
Table 8.I-10  of lead-time forecasts  with smoothing parameter 0.5 
for INAR(1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.5  0.8561 0.9604 0.9661 0.8196 0.9151 0.9187 0.7849 0.8858 0.8931 0.7399 0.8464 0.8567 
?= 0.5,?= 0.5  0.9043 1.0091 1.0141 0.8535 0.9527 0.9551 0.8062 0.9129 0.9190 0.7588 0.8601 0.8668 
?= 0.9,?= 0.5  1.0597 0.8030 0.6621 1.0240 0.7841 0.6514 1.0063 0.7790 0.6469 0.9540 0.7399 0.6155 
?= 0.1,?= 1  0.8545 0.9039 0.8707 0.7854 0.8350 0.8092 0.7494 0.8087 0.7858 0.7065 0.7673 0.7476 
?= 0.5,?= 1  0.8989 0.9150 0.8729 0.8459 0.8734 0.8343 0.8072 0.8468 0.8139 0.7685 0.8075 0.7742 
?= 0.9,?= 1  1.0649 0.6216 0.4873 1.0164 0.6048 0.4736 1.0082 0.6263 0.4909 0.9450 0.5712 0.4472 
?= 0.1,?= 3  0.7493 0.6930 0.6140 0.7068 0.6516 0.5799 0.6679 0.6167 0.5491 0.6462 0.6053 0.5406 
?= 0.5,?= 3  0.8756 0.7363 0.6295 0.8082 0.6997 0.6050 0.7869 0.6843 0.5917 0.7447 0.6508 0.5625 
?= 0.9,?= 3  1.0417 0.3817 0.2874 1.0222 0.3770 0.2822 1.0000 0.3719 0.2795 0.9535 0.3596 0.2715 
?= 0.1,?= 5  0.7364 0.6034 0.5083 0.6842 0.5666 0.4794 0.6585 0.5442 0.4584 0.6361 0.5287 0.4476 
?= 0.5,?= 5  0.8716 0.6526 0.5337 0.7972 0.5955 0.4873 0.7758 0.5884 0.4812 0.7404 0.5633 0.4614 
?= 0.9,?= 5  1.0000 0.2941 0.2273 1.0000 0.3125 0.2381 1.0000 0.2667 0.1905 1.0000 0.2667 0.2105 
 
Table 8.I-11  of lead-time forecasts  with smoothing parameter 0.2 for 
INARMA(1,1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.1,?= 0.5  0.9190 0.9654 0.9696 0.9551 0.9896 0.9920 0.9387 0.9724 0.9748 0.8993 0.9321 0.9346 
?= 0.1,?= 0.9,?= 0.5  1.0104 1.0541 1.0576 0.9574 0.9895 0.9918 0.9131 0.9504 0.9532 0.8746 0.9094 0.9120 
?= 0.5,?= 0.5,?= 0.5  1.0190 1.0438 1.0452 0.9688 0.9964 0.9980 0.9232 0.9541 0.9562 0.8675 0.9024 0.9051 
?= 0.9,?= 0.1,?= 0.5  1.0060 0.9521 0.9398 0.9600 0.9113 0.9004 0.9176 0.8894 0.8806 0.8607 0.8460 0.8388 
?= 0.1,?= 0.1,?= 1  0.9892 1.0070 1.0065 0.8959 0.8533 0.8398 0.9082 0.9370 0.9377 0.8690 0.8946 0.8951 
?= 0.1,?= 0.9,?= 1  1.0118 1.0259 1.0245 0.9382 0.9564 0.9557 0.9108 0.9328 0.9327 0.8610 0.8808 0.8805 
?= 0.5,?= 0.5,?= 1  1.0204 1.0394 1.0385 0.9611 0.9754 0.9741 0.9162 0.9332 0.9325 0.8625 0.8835 0.8833 
?= 0.9,?= 0.1,?= 1  1.0111 0.9258 0.9037 0.9531 0.8750 0.8556 0.9201 0.8685 0.8520 0.8585 0.8062 0.7913 
?= 0.1,?= 0.1,?= 5  0.9550 0.9088 0.8948 0.8946 0.8574 0.8447 0.8537 0.8125 0.8000 0.8299 0.7949 0.7830 
?= 0.1,?= 0.9,?= 5  0.9852 0.9053 0.8866 0.9208 0.8598 0.8429 0.8834 0.8362 0.8213 0.8365 0.7916 0.7778 
?= 0.5,?= 0.5,?= 5  1.0278 0.9487 0.9250 0.9444 0.8718 0.8718 0.9167 0.8462 0.8250 0.8571 0.8108 0.7895 
?= 0.9,?= 0.1,?= 5  1.0000 0.6250 0.6250 1.0000 0.7143 0.6250 0.8000 0.5714 0.5000 0.8000 0.5714 0.5714 
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Table 8.I-12  of lead-time forecasts  with smoothing parameter 0.5 for 
INARMA(1,1) series 
Parameters 
?=??  ?=??  ?=??  ?=??  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
Croston 
?=?.? 
SBA 
?=?.?  
SBJ 
?=?.?  
?= 0.1,?= 0.1,?= 0.5  0.8436 0.9460 0.9554 0.8118 0.9176 0.9250 0.7733 0.8817 0.8922 0.7361 0.8400 0.8521 
?= 0.1,?= 0.9,?= 0.5  0.9077 1.0043 1.0022 0.8329 0.9281 0.9292 0.7716 0.8820 0.8923 0.7343 0.8368 0.8437 
?= 0.5,?= 0.5,?= 0.5  0.9502 1.0183 1.0071 0.8870 0.9706 0.9628 0.8296 0.9157 0.9126 0.7871 0.8756 0.8742 
?= 0.9,?= 0.1,?= 0.5  1.0448 0.7635 0.6331 1.0426 0.7649 0.6361 0.9998 0.7685 0.6390 0.9469 0.7337 0.6099 
?= 0.1,?= 0.1,?= 1  0.8417 0.8799 0.8498 0.6944 0.5712 0.4790 0.7451 0.8140 0.7957 0.7078 0.7706 0.7513 
?= 0.1,?= 0.9,?= 1  0.8727 0.9003 0.8607 0.7934 0.8331 0.8001 0.7713 0.8107 0.7805 0.7290 0.7629 0.7318 
?= 0.5,?= 0.5,?= 1  0.9169 0.9273 0.8766 0.8656 0.8799 0.8314 0.8179 0.8400 0.7997 0.7738 0.7972 0.7581 
?= 0.9,?= 0.1,?= 1  1.0504 0.6051 0.4690 1.0216 0.6003 0.4673 0.9949 0.6140 0.4789 0.9411 0.5804 0.4538 
?= 0.1,?= 0.1,?= 5  0.7387 0.6121 0.5152 0.6994 0.5795 0.4883 0.6619 0.5486 0.4636 0.6480 0.5389 0.4545 
?= 0.1,?= 0.9,?= 5  0.8082 0.5982 0.4868 0.7500 0.5670 0.4637 0.7260 0.5548 0.4544 0.6815 0.5287 0.4350 
?= 0.5,?= 0.5,?= 5  0.9024 0.6379 0.5139 0.8293 0.5965 0.4789 0.8049 0.5789 0.4714 0.7500 0.5556 0.4478 
?= 0.9,?= 0.1,?= 5  1.0000 0.2941 0.2174 1.0000 0.3125 0.2273 1.0000 0.2500 0.1905 1.0000 0.2667 0.2000 
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Appendix 9.A INARMA(0,0), INAR(1), INMA(1) and INARMA(1,1) 
Series of 16,000 Series 
In this appendix, the identified INARMA series of 16,000 data set are separated and 
forecasted with the known INARMA models.  
Investigating the estimated parameter of the INARMA(0,0) process (?), we found 
that in general ? is close to 0.1 (the average is 0.1953 and 69.26 percent are between 
0 and 0.15).   
The estimated autoregressive parameter of the INAR(1) process, ?, is close to 0.2 
(the average is 0.2460 and 52.94 percent are between 0.1 and 0.3) and the estimated 
innovation parameter, ?, is around 0.5 (the average is 0.3562 and 97.06 percent are 
between 0 and 1). 
Looking at the estimated parameter of the INMA(1) process (?,?) reveals that in 
general, ? is close to zero (the average is 0.0898 and 46.29 percent are between 0 
and 0.1) and ? is around 0.3 (the average is 0.3782 and 55.56 percent are between 0.2 
and 0.4). 
In general, the estimated autoregressive parameter of an INARMA(1,1) process is in 
the range 0.1 <?< 0.3 (the average is 0.2988 and 66.67 percent are between 0.05 
and 0.35), the moving average parameter, ?, is close to zero (the average is 0.1405 
and 77.78 percent are between 0 and 0.1) and the innovation parameter, ?, is around 
0.3 (the average is 0.3558 and 44.44 percent are between 0.2 and 0.5). 
Table 9.A-1 Only INARMA(0,0) series for all points in time (16000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.0712 -0.0922 -0.0399 -0.0088 -0.0364 0.0190 0.0340 
MSE 0.3842 0.4127 0.3735 0.3789 0.3727 0.3777 0.3458 
MASE 2.8850 2.9105 2.7293 2.5143 2.7120 2.3846 1.8711 
PB of MASE 
(INARMA/Benchmark) 
0.6661 0.6833 0.6099 0.5447 0.6030 0.4931 - 
RGRMSE 
(INARMA/Benchmark) 
0.8000 0.7595 0.8511 0.9314 0.8593 1.0254 - 
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Table 9.A-2 Only INARMA(0,0) series for issue points (16000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.0271 -0.0443 0.0019 0.0325 0.0051 0.0580 0.0381 
MSE 0.5258 0.5584 0.5165 0.5264 0.5160 0.5278 0.4935 
MASE 0.3255 0.3321 0.3135 0.2997 0.3122 0.2900 0.2963 
PB of MASE 
(INARMA/Benchmark) 
0.5592 0.5266 0.4927 0.3845 0.4841 0.3453 - 
RGRMSE 
(INARMA/Benchmark) 
0.9224 0.9481 0.9998 1.1890 1.0092 1.3078 - 
 
Table 9.A-3 Only INAR(1) series for all points in time (16000 series)  
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INAR(1) 
CLS 
INAR(1) 
YW 
INAR(1) 
CML 
ME -0.1172 -0.1616 -0.0521 0.0122 -0.0449 0.0701 0.0386 0.0422 0.0457 
MSE 0.9495 1.0586 0.9230 0.9502 0.9209 0.9398 0.8827 0.8542 0.8452 
MASE 2.2362 2.2869 2.1174 1.9721 2.1046 1.8764 1.5807 1.5443 1.5641 
PB of MASE  
INAR(1)-CLS/Benchmark 
0.6266 0.5792 0.6176 0.5204 0.6176 0.4992    
PB of MASE  
INAR(1)-YW/Benchmark 
0.6258 0.5784 0.6119 0.5155 0.6111 0.4935    
PB of MASE  
INAR(1)-CML/Benchmark 
0.5866 0.5931 0.5613 0.5474 0.5605 0.5172    
RGRMSE  
INAR(1)-CLS/Benchmark 
0.8077 0.8523 0.8349 0.9973 0.8367 1.0522    
RGRMSE  
INAR(1)-YW/Benchmark 
0.8150 0.8625 0.8432 1.0122 0.8453 1.0686    
RGRMSE  
INAR(1)-CML/Benchmark 
0.8293 0.8930 0.8574 1.0509 0.8606 1.1124    
 
Table 9.A-4 Only INAR(1) series for issue points (16000 series)  
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INAR(1) 
CLS 
INAR(1) 
YW 
INAR(1) 
CML 
ME -0.0021 -0.0407 0.0522 0.1049 0.0583 0.1534 -0.2944 -0.2227 -0.1700 
MSE 0.9913 1.1056 0.9928 1.0602 0.9938 1.0695 1.2621 1.1209 1.1887 
MASE 0.7301 0.7376 0.7083 0.6813 0.7061 0.6661 1.1370 0.9934 1.0909 
PB of MASE  
INAR(1)-CLS/Benchmark 
0.2832 0.3322 0.2802 0.3027 0.2770 0.2900    
PB of MASE  
INAR(1)-YW/Benchmark 
0.2733 0.3346 0.2719 0.2987 0.2729 0.2926    
PB of MASE  
INAR(1)-CML/Benchmark 
0.3534 0.3714 0.3077 0.3391 0.3112 0.3355    
RGRMSE  
INAR(1)-CLS/Benchmark 
2.0495 3.1778 2.2240 4.0306 2.2417 4.4597    
RGRMSE  
INAR(1)-YW/Benchmark 
1.7792 2.6921 1.9248 3.3890 1.9391 3.7394    
RGRMSE  
INAR(1)-CML/Benchmark 
1.9025 2.9755 2.0624 3.7819 2.0803 4.1872    
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Table 9.A-5 Only INMA(1) series for all points in time (16000 series)  
Accuracy measure 
Forecasting method  
Croston 
0.2 
Crosto
 n 0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INMA(1) 
CLS 
INMA(1) 
YW 
ME -0.0892 -0.1162 -0.0398 0.0139 -0.0343 0.0573 -0.0156 -0.0131 
MSE 0.5758 0.6249 0.5654 0.5831 0.5648 0.5844 0.5606 0.5608 
MASE 1.0865 1.0742 1.0350 0.9461 1.0294 0.9060 0.8965 0.8895 
PB of MASE  
INMA(1)-CLS/Benchmark 
0.6728 0.6260 0.6240 0.5072 0.6157 0.4676   
PB of MASE  
INMA(1)-YW/Benchmark 
0.6728 0.6312 0.6173 0.5103 0.6096 0.4702   
RGRMSE  
INMA(1)-CLS/Benchmark 
0.8180 0.8508 0.8718 0.9943 0.8783 1.0747   
RGRMSE  
INMA(1)-YW/Benchmark 
0.8170 0.8481 0.8702 0.9903 0.8767 1.0698   
 
Table 9.A-6 Only INMA(1) series for issue points (16000 series)  
Accuracy measure 
Forecasting method  
Croston 
0.2 
Crosto
 n 0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INMA(1) 
CLS 
INMA(1) 
YW 
ME 0.0159 -0.0170 0.0651 0.1142 0.0705 0.1580 -0.0273 -0.0225 
MSE 0.7990 0.8695 0.7966 0.8381 0.7969 0.8456 0.8234 0.8195 
MASE 0.5068 0.5157 0.4936 0.4773 0.4923 0.4670 0.5560 0.5578 
PB of MASE  
INMA(1)-CLS/Benchmark 
0.4040 0.4371 0.3716 0.3423 0.3671 0.3181   
PB of MASE  
INMA(1)-YW/Benchmark 
0.4155 0.4375 0.3714 0.3451 0.3699 0.3174   
RGRMSE  
INMA(1)-CLS/Benchmark 
1.1810 1.3682 1.2527 1.6266 1.2615 1.7713   
RGRMSE  
INMA(1)-YW/Benchmark 
1.1956 1.4012 1.2687 1.6694 1.2777 1.8191   
 
Table 9.A-7 Only INARMA(1,1) series for all points in time (16000 series)  
Accuracy measure 
Forecasting method  
Croston 
0.2 
Crosto
 n 0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
CLS 
INARMA 
YW 
ME -0.2371 -0.2913 -0.1649 -0.0973 -0.1569 -0.0327 -0.0978 -0.0634 
MSE 1.0050 1.1561 0.9620 1.0136 0.9582 0.9916 1.1628 1.4696 
MASE 1.4222 1.7511 1.3342 1.4445 1.3244 1.3477 0.9548 0.9417 
PB of MASE  
INMA(1)-CLS/Benchmark 
0.6574 0.6235 0.6173 0.5185 0.6080 0.5247   
PB of MASE  
INMA(1)-YW/Benchmark 
0.6173 0.6235 0.6142 0.5833 0.6142 0.5741   
RGRMSE  
INMA(1)-CLS/Benchmark 
0.7437 0.7688 0.7764 0.9020 0.7927 0.9490   
RGRMSE  
INMA(1)-YW/Benchmark 
0.9560 0.9756 0.9769 1.0442 0.9795 1.0778   
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Table 9.A-8 Only INARMA(1,1) series for issue points (16000 series)  
Accuracy measure 
Forecasting method  
Croston 
0.2 
Crosto
 n 0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
CLS 
INARMA 
YW 
ME -0.1156 -0.1086 -0.0425 0.0723 -0.0344 0.1326 -0.5009 -0.7056 
MSE 0.9332 1.0443 0.8990 0.9502 0.8962 0.9452 1.8226 2.4948 
MASE 0.7472 0.7715 0.7244 0.7091 0.7219 0.6918 1.0096 1.1938 
PB of MASE  
INMA(1)-CLS/Benchmark 
0.3510 0.3420 0.3439 0.3179 0.3386 0.3346   
PB of MASE  
INMA(1)-YW/Benchmark 
0.2706 0.3102 0.2653 0.2626 0.2653 0.2721   
RGRMSE  
INMA(1)-CLS/Benchmark 
1.1273 1.2343 1.1858 1.4311 1.1958 1.5188   
RGRMSE  
INMA(1)-YW/Benchmark 
1.1602 1.3154 1.3021 1.6644 1.2074 1.6381   
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Appendix 9.B h-step-ahead Forecasts for the INARMA(0,0), 
INMA(1), and INARMA(1,1) Series 
In this appendix, the results of three-step and six-step-ahead forecasts for 
INARMA(0,0), INMA(1), and INARMA(1,1) series of 16,000 and 3,000 series are 
presented. We only use YW-based forecasts for INMA(1) and CLS-based forecasts 
for INARMA(1,1) processes because of their better performance shown in chapter 9. 
Table 9.B-1 Three-step-ahead INARMA(0,0) for all points in time (16000 series)  
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.0746 -0.0951 -0.0432 -0.0115 -0.0397 0.0163 0.0322 
MSE 0.3858 0.4136 0.3745 0.3785 0.3736 0.3769 0.3452 
MASE 2.8622 2.8788 2.7007 2.4709 2.6828 2.3373 1.8028 
PB of MASE 
INMA(1)/Benchmark 
0.6650 0.6817 0.6099 0.5442 0.6029 0.4922 - 
RGRMSE 
INMA(1)/Benchmark 
0.7974 0.7596 0.8490 0.9333 0.8575 1.0260 - 
 
Table 9.B-2 Three-step-ahead INARMA(0,0) for issue points (16000 series) 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.0543 -0.0708 -0.0252 0.0061 -0.0220 0.0318 0.0115 
MSE 0.4982 0.5347 0.4871 0.4969 0.4863 0.4967 0.4623 
MASE 0.3070 0.3144 0.2940 0.2794 0.2926 0.2689 0.2758 
PB of MASE 
INMA(1)/Benchmark 
0.5636 0.5309 0.4944 0.3811 0.4846 0.3372 - 
RGRMSE 
INMA(1)/Benchmark 
0.9198 0.9481 0.9999 1.1991 1.0100 1.3212 - 
 
Table 9.B-3 Six-step-ahead INARMA(0,0) for all points in time ( 16000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.0776 -0.0974 -0.0463 -0.0141 -0.0428 0.0136 0.0292 
MSE 0.3884 0.4189 0.3765 0.3813 0.3755 0.3789 0.3433 
MASE 2.7616 2.7789 2.6008 2.3709 2.5830 2.2377 1.6869 
PB of MASE 
INMA(1)/Benchmark 
0.6585 0.6733 0.6041 0.5374 0.5975 0.4869 - 
RGRMSE 
INMA(1)/Benchmark 
3.1734 0.7644 0.8500 0.9379 0.8582 1.0284 - 
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Table 9.B-4 Six-step-ahead INARMA(0,0) for issue points (16000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.0565 -0.0725 -0.0270 0.0054 -0.0237 0.0314 0.0099 
MSE 0.5233 0.5656 0.5120 0.5251 0.5112 0.5246 0.4876 
MASE 0.3126 0.3193 0.2994 0.2838 0.2979 0.2731 0.2802 
PB of MASE 
INMA(1)/Benchmark 
0.5582 0.5266 0.4890 0.3766 0.4799 0.3353 - 
RGRMSE 
INMA(1)/Benchmark 
48.0891 0.9588 1.0071 1.2114 1.0168 1.3330 - 
 
Table 9.B-5 Three-step-ahead YW-INMA(1) for all points in time (16000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.0961 -0.1218 -0.0465 0.0086 -0.0410 0.0521 -0.0199 
MSE 0.5648 0.6122 0.5520 0.5652 0.5511 0.5649 0.5430 
MASE 1.0845 1.0698 1.0333 0.9429 1.0277 0.9035 0.9096 
PB of MASE 
INMA(1)/Benchmark 
0.6716 0.6111 0.5931 0.4940 0.5801 0.4439 - 
RGRMSE 
INMA(1)/Benchmark 
0.8495 0.8765 0.9000 1.0432 0.9049 1.1251 - 
 
Table 9.B-6 Three-step-ahead YW-INMA(1) for issue points (16000 series) 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.0537 -0.0845 -0.0045 0.0461 0.0009 0.0897 -0.0254 
MSE 0.6436 0.6859 0.6379 0.6542 0.6379 0.6615 0.6450 
MASE 0.4549 0.4584 0.4405 0.4188 0.4390 0.4090 0.4510 
PB of MASE 
INMA(1)/Benchmark 
0.5124 0.4501 0.4134 0.3402 0.3993 0.3014 - 
RGRMSE 
INMA(1)/Benchmark 
1.0113 1.1146 1.0770 1.3532 1.0835 1.4670 - 
 
Table 9.B-7 Six-step-ahead YW-INMA(1) for all points in time ( 16000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.1062 -0.1325 -0.0562 -0.0008 -0.0506 0.0431 -0.0258 
MSE 0.5831 0.6348 0.5669 0.5774 0.5657 0.5743 0.5416 
MASE 1.0903 1.0788 1.0365 0.9449 1.0306 0.9030 0.8978 
PB of MASE 
INMA(1)/Benchmark 
0.6750 0.6332 0.6147 0.5143 0.6004 0.4648 - 
RGRMSE 
INMA(1)/Benchmark 
0.8323 0.8520 0.8856 1.0289 0.8904 1.1094 - 
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Table 9.B-8 Six-step-ahead YW-INMA(1) for issue points (16000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.0778 -0.1058 -0.0284 0.0248 -0.0229 0.0683 -0.0469 
MSE 0.6393 0.6936 0.6251 0.6377 0.6242 0.6378 0.6079 
MASE 0.4570 0.4620 0.4403 0.4163 0.4385 0.4042 0.4411 
PB of MASE 
INMA(1)/Benchmark 
0.5472 0.4727 0.4492 0.3531 0.4317 0.3152 - 
RGRMSE 
INMA(1)/Benchmark 
0.9911 1.1070 1.0561 1.3687 1.0607 1.4705 - 
 
Table 9.B-9 Three-step-ahead INARMA(1,1) for all points in time (16000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.2307 -0.2808 -0.1586 -0.0881 -0.1506 -0.0238 -0.1343 
MSE 1.0281 1.0745 0.9868 0.9658 0.9831 0.9545 0.9229 
MASE 1.4278 1.7203 1.3430 1.4245 1.3337 1.3324 0.9570 
PB of MASE 
INMA(1)/Benchmark 
0.5850 0.5752 0.5784 0.5033 0.5784 0.4837 - 
RGRMSE 
INMA(1)/Benchmark 
0.8806 0.8863 0.9032 1.0710 0.9070 1.1219 - 
 
Table 9.B-10 Three-step-ahead INARMA(1,1) for issue points (16000 series) 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.1683 -0.1578 -0.0956 0.0213 -0.0875 0.0810 -0.2303 
MSE 1.1600 1.2204 1.1204 1.1269 1.1171 1.1220 1.1495 
MASE 0.7783 0.8064 0.7483 0.7143 0.7452 0.6898 0.7602 
PB of MASE 
INMA(1)/Benchmark 
0.4300 0.4781 0.4406 0.3586 0.4406 0.3414 - 
RGRMSE 
INMA(1)/Benchmark 
1.0953 1.1663 1.1447 1.4514 1.1485 1.5328 - 
 
Table 9.B-11 Six-step-ahead INARMA(1,1) for all points in time ( 16000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.2288 -0.2772 -0.1565 -0.0842 -0.1484 -0.0199 -0.1345 
MSE 1.0917 1.1648 1.0484 1.0479 1.0445 1.0336 0.9695 
MASE 1.4417 1.7401 1.3558 1.4414 1.3463 1.3488 0.9725 
PB of MASE 
INMA(1)/Benchmark 
0.5735 0.5663 0.5591 0.5054 0.5591 0.4803 - 
RGRMSE 
INMA(1)/Benchmark 
0.8870 0.9407 0.9210 1.0856 0.9549 1.1495 - 
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Table 9.B-12 Six-step-ahead INARMA(1,1) for issue points (16000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.1851 -0.1649 -0.1126 0.0115 -0.1045 0.0702 -0.2529 
MSE 1.0022 0.9567 0.9606 0.8924 0.9571 0.8962 1.0479 
MASE 0.7526 0.7172 0.7256 0.6545 0.7226 0.6361 0.7774 
PB of MASE 
INMA(1)/Benchmark 
0.3955 0.4300 0.3887 0.3126 0.3887 0.2645 - 
RGRMSE 
INMA(1)/Benchmark 
1.0631 1.1909 1.1345 1.4448 1.1447 1.5675 - 
 
Table 9.B-13 Three-step-ahead INARMA(0,0) for all points in time (3000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME 0.0073 -0.1147 0.1498 0.2722 0.1656 0.4011 0.1209 
MSE 2.0963 2.3856 2.1016 2.2770 2.1054 2.3346 2.0757 
MASE 0.9130 0.9829 0.9001 0.9306 0.8994 0.9315 0.8951 
PB of MASE 
INMA(1)/Benchmark 
0.5375 0.5658 0.5063 0.5387 0.5063 0.5441 - 
RGRMSE 
INMA(1)/Benchmark 
0.8833 0.8402 0.9123 0.9056 0.9147 0.9050 - 
 
Table 9.B-14 Three-step-ahead INARMA(0,0) for issue points (3000 series) 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.0021 -0.1119 0.1385 0.2670 0.1541 0.3933 0.0733 
MSE 2.2061 2.5051 2.2064 2.3882 2.2096 2.4435 2.1745 
MASE 0.9435 1.0138 0.9290 0.9580 0.9281 0.9576 0.9252 
PB of MASE 
INMA(1)/Benchmark 
0.5361 0.5703 0.5024 0.5350 0.5024 0.5369 - 
RGRMSE 
INMA(1)/Benchmark 
0.9236 0.8874 0.9698 0.9618 0.9752 0.9654 - 
 
Table 9.B-15 Six-step-ahead INARMA(0,0) for all points in time ( 3000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.0082 -0.1489 0.1333 0.2400 0.1490 0.3696 0.1054 
MSE 2.2315 2.6177 2.2292 2.4492 2.2323 2.4920 2.1945 
MASE 0.9165 0.9959 0.9025 0.9384 0.9016 0.9376 0.8979 
PB of MASE 
INMA(1)/Benchmark 
0.5435 0.5729 0.5046 0.5508 0.5044 0.5493 - 
RGRMSE 
INMA(1)/Benchmark 
0.9328 0.8844 0.9559 0.9425 0.9545 0.9412 - 
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Table 9.B-16 Six-step-ahead INARMA(0,0) for issue points (3000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME 0.0172 -0.1033 0.1564 0.2749 0.1719 0.4010 0.0902 
MSE 2.3879 2.7882 2.3937 2.6505 2.3978 2.7048 2.3370 
MASE 0.9325 1.0139 0.9191 0.9599 0.9183 0.9603 0.9151 
PB of MASE 
INMA(1)/Benchmark 
0.5422 0.5749 0.4998 0.5521 0.5024 0.5505 - 
RGRMSE 
INMA(1)/Benchmark 
0.9801 0.9327 1.0119 0.9919 1.0037 0.9906 - 
 
Table 9.B-17 Three-step-ahead YW-INMA(1) for all points in time (3000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.1216 -0.1155 0.1574 0.5804 0.1884 0.8124 -0.1302 
MSE 4.4836 5.2211 4.4409 5.1449 4.4485 5.4210 4.3595 
MASE 0.6737 0.7185 0.6584 0.6887 0.6576 0.6979 0.6644 
PB of MASE 
INMA(1)/Benchmark 
0.5140 0.5544 0.4862 0.5215 0.4888 0.5269 - 
RGRMSE 
INMA(1)/Benchmark 
0.9363 0.9402 0.9845 1.0530 0.9921 1.0364 - 
 
Table 9.B-18 Three-step-ahead YW-INMA(1) for issue points (3000 series) 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.1423 -0.1298 0.1346 0.5594 0.1654 0.7891 -0.1836 
MSE 4.5829 5.3247 4.5234 5.2145 4.5292 5.4785 4.4694 
MASE 0.7248 0.7702 0.7079 0.7375 0.7069 0.7469 0.7187 
PB of MASE 
INMA(1)/Benchmark 
0.5041 0.5456 0.4744 0.5123 0.4760 0.5196 - 
RGRMSE 
INMA(1)/Benchmark 
0.9563 0.9815 1.0174 1.1065 1.0247 1.0818 - 
 
Table 9.B-19 Six-step-ahead YW-INMA(1) for all points in time ( 3000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.2020 -0.2161 0.0805 0.4937 0.1119 0.7303 -0.1898 
MSE 4.6505 5.5099 4.5500 5.2474 4.5521 5.4868 4.5450 
MASE 0.6775 0.7286 0.6572 0.6837 0.6558 0.6881 0.6668 
PB of MASE 
INMA(1)/Benchmark 
0.5215 0.5620 0.4732 0.5153 0.4732 0.5129 - 
RGRMSE 
INMA(1)/Benchmark 
0.9514 0.9522 1.0185 1.1714 1.0252 1.1514 - 
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Table 9.B-20 Six-step-ahead YW-INMA(1) for issue points (3000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.2165 -0.2140 0.0634 0.4851 0.0945 0.7181 -0.2423 
MSE 4.7246 5.5844 4.6131 5.3183 4.6140 5.5557 4.6174 
MASE 0.7182 0.7704 0.6966 0.7229 0.6951 0.7271 0.7093 
PB of MASE 
INMA(1)/Benchmark 
0.5164 0.5565 0.4665 0.5055 0.4647 0.5045 - 
RGRMSE 
INMA(1)/Benchmark 
0.9726 1.0051 1.0493 1.2585 1.0565 1.2503 - 
 
Table 9.B-21 Three-step-ahead CLS-INARMA(1,1) for all points in time (3000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.1581 -0.1234 0.1331 0.5960 0.1655 0.8358 -0.2299 
MSE 5.0346 5.7062 4.9548 5.6299 4.9593 5.9228 5.0253 
MASE 0.8851 0.9393 0.8715 0.9113 0.8710 0.9247 0.8922 
PB of MASE 
INARMA/Benchmark 
0.4943 0.5371 0.4686 0.4971 0.4557 0.5286 - 
RGRMSE 
INARMA/Benchmark 
1.0870 1.0434 1.0891 1.0884 1.1024 1.1096 - 
 
Table 9.B-22 Three-step-ahead CLS-INARMA(1,1) for issue points (3000 series) 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.1527 -0.1184 0.1367 0.5966 0.1689 0.8349 -0.2622 
MSE 5.1838 5.8418 5.0951 5.7476 5.0987 6.0369 5.2148 
MASE 0.9129 0.9683 0.9009 0.9436 0.9006 0.9587 0.9263 
PB of MASE 
INARMA/Benchmark 
0.4802 0.5268 0.4567 0.5027 0.4419 0.5292 - 
RGRMSE 
INARMA/Benchmark 
1.1165 1.0876 1.1226 1.1171 1.1361 1.1532 - 
 
Table 9.B-23 Six-step-ahead CLS-INARMA(1,1) for all points in time (3000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.2078 -0.1735 0.0885 0.5586 0.1214 0.8027 -0.2570 
MSE 5.1627 6.1418 5.0427 5.9093 5.0439 6.1776 5.2268 
MASE 0.8862 0.9431 0.8615 0.8986 0.8600 0.9045 0.8915 
PB of MASE 
INARMA/Benchmark 
0.4878 0.5163 0.4531 0.5020 0.4592 0.4980 - 
RGRMSE 
INARMA/Benchmark 
1.0359 1.0342 1.1680 1.1983 1.1649 1.2362 - 
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Table 9.B-24 Six-step-ahead CLS-INARMA(1,1) for issue points (3000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.2145 -0.1673 0.0793 0.5555 0.1120 0.7964 -0.3096 
MSE 5.4890 6.4631 5.3563 6.2278 5.3563 6.4971 5.6144 
MASE 0.9180 0.9736 0.8919 0.9263 0.8903 0.9319 0.9285 
PB of MASE 
INARMA/Benchmark 
0.4748 0.5088 0.4422 0.4890 0.4459 0.4863 - 
RGRMSE 
INARMA/Benchmark 
1.0322 1.0729 1.1896 1.2521 1.1945 1.3254 - 
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Appendix 9.C Lead Time Forecasts for the INARMA(0,0), INMA(1), 
and INARMA(1,1) Series 
In this appendix, the results of lead time forecasting for INARMA(0,0), INMA(1) 
and INARMA(1,1) processes of 16,000 and 3,000 series are presented. Two values 
have been assumed for the lead time: ?= 3, 6. The INARMA lead-time forecasts 
based on the Equation 9-7 results have also been compared to the cumulative h-step 
ahead forecasts over lead time.  
Table 9.C-1 Lead-time forecasts  for INARMA(0,0) series for all points in time (16000 series) 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.2255 -0.2873 -0.1314 -0.0364 -0.1209 0.0472 0.1003 
MSE 1.5975 1.8564 1.4946 1.5350 1.4866 1.5190 1.2385 
MASE 7.0789 7.0809 6.6157 5.9388 6.5653 5.5852 4.5738 
PB of MASE 
(INARMA/Benchmark) 
0.6131 0.6328 0.5799 0.5410 0.5758 0.5097 - 
RGRMSE 
(INARMA/Benchmark) 
10.6388 0.7858 0.8691 0.9211 0.8729 0.9808 - 
  
Table 9.C-2 Lead-time forecasts  for INARMA(0,0) series for issue points (16000 series) 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.1426 -0.1921 -0.0552 0.0388 -0.0455 0.1158 0.1202 
MSE 2.0008 2.3265 1.9029 1.9933 1.8961 1.9940 1.6934 
MASE 0.6945 0.7207 0.6681 0.6457 0.6655 0.6282 0.6048 
PB of MASE 
(INARMA/Benchmark) 
0.6328 0.6198 0.5956 0.5120 0.5914 0.4746 - 
RGRMSE 
(INARMA/Benchmark) 
56.9213 0.8351 0.8725 0.9870 0.8742 1.0459 - 
 
Table 9.C-3 Lead-time forecasts  for INARMA(0,0) series for all points in time (16000 series) 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.4710 -0.5895 -0.2830 -0.0901 -0.2621 0.0764 0.1955 
MSE 4.5190 5.5680 4.1059 4.2688 4.0734 4.1985 3.1290 
MASE 12.1123 12.0836 11.2398 9.9069 11.1454 9.2546 7.3915 
PB of MASE 
(INARMA/Benchmark) 
0.5802 0.5932 0.5559 0.5338 0.5525 0.5141 - 
RGRMSE 
(INARMA/Benchmark) 
1.1190 0.7957 0.8778 0.9139 1.1686 0.9898 - 
)( 3?l
 )( 3?l
 )( 6?l
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Table 9.C-4 Lead-time forecasts  for INARMA(0,0) series for issue points (16000 series) 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.3379 -0.4337 -0.1605 0.0336 -0.1408 0.1894 0.2047 
MSE 5.3925 6.8288 5.0226 5.4871 4.9985 5.5072 4.4452 
MASE 1.1360 1.2038 1.0880 1.0623 1.0834 1.0357 0.9957 
PB of MASE 
(INARMA/Benchmark) 
0.5746 0.5631 0.5476 0.4892 0.5443 0.4718 - 
RGRMSE 
(INARMA/Benchmark) 
0.9209 0.9066 0.9738 1.0623 0.9777 1.1819 - 
 
Table 9.C-5 Lead-time forecasts  for INMA(1) series for all points in time (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.2834 -0.3605 -0.1346 0.0307 -0.1181 0.1611 -0.0544 -0.0554 
MSE 2.1828 2.6271 2.0754 2.2196 2.0685 2.2225 1.9954 2.0142 
MASE 2.3743 2.3692 2.2585 2.0808 2.2466 2.0062 1.9328 1.9081 
PB of MASE  
INARMA-LT/Benchmark 
0.6334 0.6035 0.5773 0.5289 0.5730 0.4995   
PB of MASE  
INARMA-h/Benchmark 
0.6334 0.6002 0.5719 0.5272 0.5664 0.4946   
RGRMSE  
INARMA-LT/Benchmark 
0.8106 0.8214 0.8647 0.9050 0.8771 0.9681   
RGRMSE  
INARMA-h/Benchmark 
0.8802 0.8919 0.9422 0.9772 0.9530 1.0604   
 
Table 9.C-6 Lead-time forecasts  for INMA(1) series for issue points (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.1116 -0.2041 0.0359 0.1880 0.0523 0.3186 -0.0298 0.0098 
MSE 2.4767 3.0064 2.4170 2.6614 2.4160 2.7077 2.4746 2.4833 
MASE 0.9346 1.0050 0.9084 0.9197 0.9062 0.9088 0.9227 0.9479 
PB of MASE  
INARMA-LT/Benchmark 
0.5177 0.5462 0.4638 0.4661 0.4643 0.4503   
PB of MASE  
INARMA-h/Benchmark 
0.5754 0.5417 0.4932 0.4894 0.4865 0.4667   
RGRMSE  
INARMA-LT/Benchmark 
0.9244 0.9666 0.9867 1.0462 1.0107 1.1183   
RGRMSE  
INARMA-h/Benchmark 
0.9495 0.9963 1.0247 1.0605 1.0454 1.1379   
 
 
 
)( 6?l
 )( 3?l
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Table 9.C-7 Lead-time forecasts  for INMA(1) series for all points in time (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.5984 -0.7560 -0.2981 0.0341 -0.2648 0.2975 -0.1156 -0.1205 
MSE 6.1055 7.9654 5.5954 6.0886 5.5593 6.0385 4.9485 5.0550 
MASE 3.9268 3.9254 3.6929 3.3373 3.6697 3.2155 3.0185 3.2643 
PB of MASE  
INARMA-LT/Benchmark 
0.6272 0.6045 0.5854 0.5376 0.5789 0.5203   
PB of MASE  
INARMA-h/Benchmark 
0.6207 0.6039 0.5651 0.5221 0.5621 0.5149   
RGRMSE  
INARMA-LT/Benchmark 
15.2149 0.7831 0.8800 0.9654 0.8817 0.9951   
RGRMSE  
INARMA-h/Benchmark 
15.3080 0.8678 0.9714 1.0523 0.9740 1.0662   
 
Table 9.C-8 Lead-time forecasts  for INMA(1) series for issue points (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.3591 -0.5271 -0.0624 0.2564 -0.0295 0.5176 -0.1806 -0.0805 
MSE 6.6701 8.8973 6.2622 7.0723 6.2406 7.1395 6.0526 6.1128 
MASE 1.4716 1.6277 1.4074 1.4446 1.4024 1.4285 1.4132 1.4973 
PB of MASE  
INARMA-LT/Benchmark 
0.5173 0.5313 0.4771 0.4678 0.4688 0.4824   
PB of MASE  
INARMA-h/Benchmark 
0.5517 0.5336 0.4977 0.4735 0.5024 0.5077   
RGRMSE  
INARMA-LT/Benchmark 
1.0678 0.9865 1.0592 1.0985 1.0584 1.1128   
RGRMSE  
INARMA-h/Benchmark 
1.0667 0.9891 1.0741 1.0906 1.0721 1.1152   
 
Table 9.C-9 Lead-time forecasts  for INARMA(1,1) series for all points in time (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.6985 -0.8490 -0.4823 -0.2708 -0.4583 -0.0780 -0.3636 -0.4199 
MSE 3.9379 4.8160 3.5558 3.6977 3.5220 3.5494 4.5303 2.9121 
MASE 3.4416 4.4321 3.1996 3.5549 3.1736 3.2997 2.1659 1.8775 
PB of MASE  
INARMA-LT/Benchmark 
0.5980 0.6144 0.5490 0.5098 0.5490 0.5163   
PB of MASE  
INARMA-h/Benchmark 
0.6275 0.6111 0.6078 0.5425 0.6013 0.5261   
RGRMSE  
INARMA-LT/Benchmark 
0.9087 0.8200 0.9427 1.0951 0.9697 1.1234   
RGRMSE  
INARMA-h/Benchmark 
0.8273 0.7576 0.8615 1.0057 0.8866 1.0275   
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Table 9.C-10 Lead-time forecasts  for INARMA(1,1) series for issue points (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.4052 -0.3736 -0.1871 0.1637 -0.1629 0.3428 -1.2448 -0.5621 
MSE 3.7800 4.6006 3.4474 3.7471 3.4202 3.6994 9.9470 3.7745 
MASE 1.5416 1.7256 1.4707 1.5290 1.4640 1.4811 2.1597 1.6225 
PB of MASE  
INARMA-LT/Benchmark 
0.3630 0.3927 0.3459 0.3388 0.3516 0.3430   
PB of MASE  
INARMA-h/Benchmark 
0.4902 0.5031 0.4820 0.4404 0.4820 0.4262   
RGRMSE  
INARMA-LT/Benchmark 
1.7307 1.5257 1.8607 1.7542 1.9733 2.1105   
RGRMSE  
INARMA-h/Benchmark 
1.3178 1.1992 1.4541 1.3574 1.5426 1.6203   
 
Table 9.C-11 Lead-time forecasts  for INARMA(1,1) series for all points in time (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -1.4841 -1.7743 -1.0500 -0.6165 -1.0018 -0.2306 -0.8883 -0.9773 
MSE 11.1344 13.9431 9.4682 9.4214 9.3179 8.8019 11.7047 6.9610 
MASE 5.9961 8.0869 5.4768 6.2301 5.4215 5.6872 3.5749 2.2767 
PB of MASE  
INARMA-LT/Benchmark 
0.5520 0.5627 0.5341 0.5376 0.5269 0.5269   
PB of MASE  
INARMA-h/Benchmark 
0.5412 0.5771 0.5412 0.5233 0.5448 0.5197   
RGRMSE  
INARMA-LT/Benchmark 
0.9543 0.9909 1.2085 1.2125 1.2981 1.2143   
RGRMSE  
INARMA-h/Benchmark 
1.0306 1.1248 1.3587 1.3553 1.4787 1.3106   
 
Table 9.C-12 Lead-time forecasts  for INARMA(1,1) series for issue points (16000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.9955 -0.8740 -0.5601 0.1841 -0.5117 0.5368 -2.3703 -1.3726 
MSE 10.7433 11.7804 9.2238 8.7355 9.0943 8.6310 31.9221 10.2158 
MASE 2.4007 2.6007 2.2126 2.2321 2.1967 2.1917 3.4978 1.9589 
PB of MASE  
INARMA-LT/Benchmark 
0.3889 0.4205 0.3122 0.3492 0.3122 0.3223   
PB of MASE  
INARMA-h/Benchmark 
0.3838 0.4823 0.4180 0.4117 0.4359 0.3987   
RGRMSE  
INARMA-LT/Benchmark 
1.4795 1.8284 1.8921 2.0133 1.9238 1.9300   
RGRMSE  
INARMA-h/Benchmark 
1.2300 1.5394 1.5689 1.7109 1.5787 1.6232   
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Table 9.C-13 Lead-time forecasts  for INARMA(0,0) series for all points in time (3000 series) 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME 0.0580 -0.3078 0.4856 0.8527 0.5331 1.2396 0.4706 
MSE 7.5489 10.1828 7.6207 9.2597 7.6575 9.7960 7.7135 
MASE 1.7359 2.0008 1.7192 1.8872 1.7204 1.9243 1.7258 
PB of MASE 
(INARMA/Benchmark) 
0.4997 0.5589 0.5024 0.5665 0.5005 0.5849 - 
RGRMSE 
(INARMA/Benchmark) 
0.9288 0.8503 0.9570 0.9071 0.9593 0.8969 - 
 
Table 9.C-14 Lead-time forecasts  for INARMA(0,0) series for issue points (3000 series) 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.0239 -0.3534 0.3979 0.7833 0.4447 1.1622 0.3695 
MSE 7.8662 10.6695 7.8380 9.5142 7.8642 9.9767 7.9653 
MASE 1.7686 2.0423 1.7422 1.9105 1.7423 1.9416 1.7522 
PB of MASE 
(INARMA/Benchmark) 
0.4992 0.5580 0.4998 0.5586 0.4967 0.5789 - 
RGRMSE 
(INARMA/Benchmark) 
0.9951 0.9336 1.0350 1.0059 1.0420 1.0026 - 
 
Table 9.C-15 Lead-time forecasts  for INARMA(0,0) series for all points in time (3000 series)  
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME 0.0938 -0.7503 0.9428 1.5832 1.0371 2.3610 1.2740 
MSE 20.7260 32.6198 20.8990 27.6901 21.0370 29.6099 23.6958 
MASE 2.7983 3.4401 2.7867 3.2239 2.7924 3.3257 2.9096 
PB of MASE 
(INARMA/Benchmark) 
0.4888 0.5616 0.4799 0.5588 0.4823 0.5768 - 
RGRMSE 
(INARMA/Benchmark) 
1.1199 1.0411 1.1375 1.0574 1.1083 1.0703 - 
 
Table 9.C-16 Lead-time forecasts  for INARMA(0,0) series for issue points (3000 series) 
Accuracy 
measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA 
ME -0.0025 -0.7255 0.8330 1.5439 0.9258 2.3004 1.0574 
MSE 22.3042 34.7526 22.1901 29.4718 22.3007 31.3196 24.7486 
MASE 2.8816 3.5402 2.8455 3.2920 2.8483 3.3783 2.9296 
PB of MASE 
(INARMA/Benchmark) 
0.4986 0.5698 0.4820 0.5594 0.4849 0.5783 - 
RGRMSE 
(INARMA/Benchmark) 
1.1981 1.0904 1.2219 1.1314 1.2145 1.1387 - 
)( 3?l
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Table 9.C-17 Lead-time forecasts  for INMA(1) series for all points in time (3000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.3688 -0.3504 0.4681 1.7373 0.5611 2.4332 -0.3874 -0.4181 
MSE 17.5351 23.8375 17.1759 23.2984 17.2471 25.8320 16.7291 16.9991 
MASE 1.3331 1.5167 1.2915 1.4657 1.2908 1.5342 1.3014 1.4582 
PB of MASE  
INARMA-LT/Benchmark 
0.5275 0.5662 0.4788 0.5593 0.4819 0.5754   
PB of MASE  
INARMA-h/Benchmark 
0.5123 0.5570 0.4691 0.5481 0.4699 0.5728   
RGRMSE  
INARMA-LT/Benchmark 
0.9531 0.9737 1.0577 1.0357 1.0625 1.0071   
RGRMSE  
INARMA-h/Benchmark 
1.0479 1.0633 1.1618 1.1314 1.1611 1.0966   
 
Table 9.C-18 Lead-time forecasts  for INMA(1) series for issue points (3000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.3976 -0.3602 0.4332 1.7075 0.5255 2.3968 -0.5183 -0.5030 
MSE 17.9749 24.1636 17.5602 23.5958 17.6255 26.1131 17.3941 17.6328 
MASE 1.4317 1.6228 1.3859 1.5654 1.3852 1.6363 1.4137 1.5501 
PB of MASE  
INARMA-LT/Benchmark 
0.5102 0.5571 0.4669 0.5488 0.4690 0.5639   
PB of MASE  
INARMA-h/Benchmark 
0.5029 0.5501 0.4614 0.5424 0.4618 0.5630   
RGRMSE  
INARMA-LT/Benchmark 
0.9925 1.0288 1.1491 1.1038 1.1275 1.0930   
RGRMSE  
INARMA-h/Benchmark 
1.0723 1.1080 1.2388 1.1815 1.2071 1.1704   
 
Table 9.C-19 Lead-time forecasts  for INMA(1) series for all points in time (3000 series)  
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -1.1294 -1.2137 0.5656 3.0449 0.7540 4.4645 -1.0404 -1.1130 
MSE 50.1739 78.5673 46.7922 70.3372 46.8927 79.3655 46.2845 48.3477 
MASE 2.1986 2.6846 2.0800 2.5260 2.0759 2.6662 2.1066 2.4075 
PB of MASE  
INARMA-LT/Benchmark 
0.5485 0.6046 0.4781 0.5714 0.4810 0.5898   
PB of MASE  
INARMA-h/Benchmark 
0.5178 0.5849 0.4748 0.5682 0.4707 0.5763   
RGRMSE  
INARMA-LT/Benchmark 
0.9938 0.9710 1.1675 1.1387 1.1794 1.2102   
RGRMSE  
INARMA-h/Benchmark 
1.1167 1.0784 1.2921 1.2627 1.3078 1.3256   
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Table 9.C-20 Lead-time forecasts  for INMA(1) series for issue points (3000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -1.1595 -1.1449 0.5198 3.0496 0.7064 4.4478 -1.3074 -1.2839 
MSE 51.1774 79.8211 47.4778 71.6060 47.5466 80.6072 47.9506 49.9924 
MASE 2.3426 2.8731 2.2081 2.6919 2.2034 2.8375 2.2635 2.5534 
PB of MASE  
INARMA-LT/Benchmark 
0.5362 0.6014 0.4618 0.5659 0.4646 0.5862   
PB of MASE  
INARMA-h/Benchmark 
0.5147 0.5824 0.4659 0.5681 0.4616 0.5745   
RGRMSE  
INARMA-LT/Benchmark 
1.0391 1.0196 1.2601 1.2098 1.2488 1.2893   
RGRMSE  
INARMA-h/Benchmark 
1.1678 1.1203 1.3896 1.3244 1.3742 1.3897   
 
Table 9.C-21 Lead-time forecasts  for INARMA(1,1) series for all points in time (3000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.5187 -0.4146 0.3551 1.7437 0.4521 2.4631 -0.8267 -0.7909 
MSE 18.8627 24.5580 18.0579 23.7418 18.0889 26.3350 22.0895 19.7577 
MASE 1.6389 1.8766 1.5921 1.8215 1.5923 1.9362 1.7349 1.6339 
PB of MASE  
INARMA-LT/Benchmark 
0.4614 0.5671 0.4271 0.5100 0.4457 0.5486   
PB of MASE  
INARMA-h/Benchmark 
0.4914 0.5771 0.4414 0.5243 0.4357 0.5557   
RGRMSE  
INARMA-LT/Benchmark 
1.0506 1.0450 1.1573 1.1289 1.1518 1.1153   
RGRMSE  
INARMA-h/Benchmark 
1.0372 1.0547 1.1599 1.1571 1.1531 1.1100   
 
Table 9.C-22 Lead-time forecasts  for INARMA(1,1) series for issue points (3000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -0.5784 -0.4755 0.2898 1.6694 0.3863 2.3843 -1.1568 -0.9061 
MSE 19.6577 25.6292 18.6439 24.2308 18.6526 26.6505 23.2961 20.6115 
MASE 1.7240 1.9795 1.6729 1.8928 1.6727 1.9998 1.8456 1.8000 
PB of MASE  
INARMA-LT/Benchmark 
0.4417 0.5638 0.4098 0.4925 0.4309 0.5297   
PB of MASE  
INARMA-h/Benchmark 
0.4800 0.5718 0.4344 0.5145 0.4328 0.5452   
RGRMSE  
INARMA-LT/Benchmark 
1.1151 1.1157 1.2715 1.2833 1.2528 1.2352   
RGRMSE  
INARMA-h/Benchmark 
1.0510 1.0761 1.2019 1.2151 1.1831 1.1476   
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Table 9.C-23 Lead-time forecasts  for INARMA(1,1) series for all points in time (3000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -1.5365 -1.3308 0.2412 3.0621 0.4388 4.5264 -2.2603 -2.0711 
MSE 57.1789 83.5607 51.1221 73.0681 50.9719 82.0184 79.4808 65.2786 
MASE 2.8246 3.4084 2.6916 3.3006 2.6883 3.5013 3.0694 2.7508 
PB of MASE  
INARMA-LT/Benchmark 
0.4510 0.5612 0.4163 0.5347 0.4286 0.5571   
PB of MASE  
INARMA-h/Benchmark 
0.4878 0.5571 0.4469 0.5204 0.4490 0.5490   
RGRMSE  
INARMA-LT/Benchmark 
1.2453 1.1376 1.3844 1.2097 1.3820 1.1728   
RGRMSE  
INARMA-h/Benchmark 
1.2742 1.2320 1.4736 1.2600 1.4718 1.1923   
 
Table 9.C-24 Lead-time forecasts  for INARMA(1,1) series for issue points (3000 series) 
Accuracy measure 
Forecasting method  
Croston 
0.2 
Croston 
0.5 
SBA  
0.2 
SBA 
0.5 
SBJ 
0.2 
SBJ 
0.5 
INARMA-
 LT 
INARMA-
 h 
ME -1.6333 -1.3500 0.1298 2.9869 0.3257 4.4325 -2.8186 -2.3110 
MSE 61.3450 88.6872 54.3713 76.6571 54.1273 85.1684 86.2956 69.9140 
MASE 2.9996 3.6386 2.8464 3.4328 2.8394 3.6155 3.2911 2.9643 
PB of MASE  
INARMA-LT/Benchmark 
0.4504 0.5676 0.4086 0.5062 0.4185 0.5239   
PB of MASE  
INARMA-h/Benchmark 
0.4853 0.5648 0.4502 0.5103 0.4541 0.5326   
RGRMSE  
INARMA-LT/Benchmark 
1.2606 1.1517 1.4470 1.4508 1.3907 1.3271   
RGRMSE  
INARMA-h/Benchmark 
1.2663 1.2116 1.4723 1.4535 1.4050 1.2944   
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