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Abstract 

 Accidents caused by drivers’ drowsiness behind the steering wheel have a high 

fatality rate because of the discernible decline in the driver’s abilities of perception, 

recognition, and vehicle control abilities while sleepy. Preventing such accidents caused 

by drowsiness is highly desirable but requires techniques for continuously detecting, 

estimating, and predicting the level of alertness of drivers and delivering effective 

feedback to maintain maximum performance.  

The main objective of this research study is to develop a reliable metric and 

system for the detection of driver impairment due to drowsiness. More specifically, the 

goal of the research is to develop the best possible metric for detection of drowsiness, 

based on measures that can be detected during driving. This thesis describes the new 

studies that have been performed to develop, validate, and refine such a metric. 

 A computer vision system is used to monitor the driver’s physiological eye 

blink behaviour. The novel application of green LED illumination overcame one of the 

major difficulties of the eye sclera segmentation problem due to illumination changes. 

Experimentation in a driving simulator revealed various visual cues, typically 

characterizing the level of alertness of the driver, and these cues were combined to infer 

the drowsiness level of the driver. 

Analysis of the data revealed that eye blink duration and eye blink frequency 

were important parameters in detecting drowsiness. From these measured parameters, a 

continuous measure of drowsiness, the New Drowsiness Scale (NDS), is derived. The 

NDS ranges from one to ten, where a decrease in NDS corresponds to an increase in 

drowsiness. Based upon previous research into the effects of drowsiness on driving 

performance, measures relating to the lateral placement of the vehicle within the lane 

are of particular interest in this study. Standard deviations of average deviations were 

measured continuously throughout the study.   

The NDS scale, based upon the gradient of the linear regression of standard 

deviation of average blink frequency and duration, is demonstrated as a reliable method 

for identifying the development of drowsiness in drivers. Deterioration of driver 

performance (reflected by increasingly severe lane deviation) is correlated with a 

decreasing NDS score. The final experimental results show the validity of the proposed 

model for driver drowsiness detection. 
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1.1. Motivation 

Loss of driver alertness is almost always preceded by psycho-physiological 

changes (Weirwille, 1994); these changes are the reason that it is possible to detect 

the onset of drowsiness associated with loss of alertness in driving. 

The basic idea behind driver drowsiness detection systems is to monitor the driver 

unobtrusively by means of a reliable system that can detect when the driver is 

impaired by drowsiness. This system senses various driver-related variables (such as 

physiological measures) and driving-related variables (driving performance 

measures), computing measures from these variables on-line, and then using the 

measures separately or in a combined manner to detect when drowsiness is 

occurring, and more importantly to predict the onset of drowsiness. Measures are 

combined because no single unobtrusive operational measure appears adequate in 

reliably detecting drowsiness (Weirwille, 1994).        

It is important to point out the distinction between prediction and detection of 

drowsiness. Clearly prediction is the main aim, since at the detection point, drowsy 

driving may already have led to a potentially hazardous situation or even an accident. 

Another aspect is the great inter-individual variability in driver and driving 

behaviour, which an eventual automated system must be able to handle.  

1.1.1. Driver Drowsiness and Road Accidents  

Driver drowsiness represents an important risk on the roads, as it is one of the main 

factors leading to accidents or near-missed accidents (Weirwille, 1994). This has 

been proven by many studies that have established links between driver drowsiness 
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and road accidents. Reducing the number of accidents related to driver drowsiness 

would save society a significant amount of money and personal suffering. 

According to data from The Royal Society for the Prevention of Accidents (RoSPA 

2006), 20% of serious accidents in the UK are due to driver extreme tiredness or 

weariness resulting from physical or mental activity (Haworth & Rowden, 2006). 

Whitty, et al. (2000) identified drowsiness as one of the main areas of driver 

behaviour to be addressed to reduce the number of people killed or seriously injured 

in road accidents. In driving experiments concerning drowsiness, there is the 

repeatedly observed phenomenon called ‘driving without awareness’ (DWA), which 

occurs when drivers demonstrate low attention levels during driving without being 

drowsy. At a certain moment the driver ‘awakes’ and he or she cannot remember the 

foregoing drive period. This phenomenon has been labelled as ‘Driving without 

awareness’ and also as ‘Highway hypnosis’ or ‘Driving without attention mode’ 

(DWAM) (Brown 1997). 

Driver state monitoring is an ongoing topic concerning the development of driver 

support systems to prevent car accidents resulting from sleep. There are several 

criteria to predict driver drowsiness. The most important are related to the eye blink 

behaviour of the driver, and prolonged eyelid closure. Observation of the eye blink 

phenomenon is an important factor to identify driver drowsiness. The development 

of technologies for detecting or preventing drowsiness at the wheel is a major 

challenge in the field of accident avoidance systems. Owing to the hazard that 

drowsiness presents on the road, methods need to be developed for counteracting its 

effects.  
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1.1.2. The Mechanisms of Human Sleepiness  

A body of literature exists on the mechanisms of human sleep and sleepiness that 

affect driving risks. The sleep-wake cycle is governed by both homeostatic and 

circadian factors. Homeostasis relates to the neurobiological need to sleep; the longer 

the period of wakefulness, the more pressure builds for sleep and the more difficult it 

is to resist (Dinges et al., 1995). The circadian pacemaker is an internal body clock 

that completes a cycle approximately every 24 hours. Homeostatic factors govern 

circadian factors to regulate the timing of sleepiness and wakefulness.  

1.1.3. Biology of Human Sleepiness and Fatigue  

‘Fatigue’ is generally used in everyday speech to describe a general set of feelings or 

sensations, including one or more of the following: tiredness, sleepiness, boredom, or 

physical weariness. However, the term is too imprecise to be useful in scientific 

research. For this type of research, it is necessary to describe fatigue in terms of an 

operational definition. There is a lack of an agreed definition of fatigue, even as to 

whether the term refers to a fact or a theoretical entity. ‘Sleepiness’ is also difficult to 

define. In this thesis, it is taken to be synonymous with ‘drowsiness’ and its 

definition, and distinction from ‘fatigue’, is discussed in section 1.2.1. 

Fatigue has subjective, objective (performance) and physiological components which 

may occur in the short-term or as a continual state. Many theories of fatigue have 

been proposed, varying in their precision and the type of concepts they employ. 

Neural models are inspired by the structure of the brain and a neural network consists 

of a set of highly interconnected entities, called nodes or units. Each unit is designed 

to mimic its biological counterpart, the neuron. Each accepts a weighted set of inputs 



Indrachapa Bandara, 2009, Chapter 1  25 

and responds with an output (Anderson, 1995) but may be more suited to the 

explanation of muscular fatigue than to driver fatigue (Rong-ben, et al., 2003). 

Arousal theories can explain why fatigue develops in the low demand situation of 

highway driving, as it links the concepts of attention and fatigue and allows for 

psychological and physiological measures of fatigue. One disadvantage of these 

theories is that the physiological measures sometimes give inconsistent results (Eby 

& Kantowitz, 2006).  

The study by Brown (1997) suggested that three main factors determine whether 

humans can continue performing work at an acceptable level in the long term: (1) the 

length of continuous work spells and daily duty periods; (2) the length of time away 

from work that are available for rest and for continuous sleep; and (3) the 

arrangement of duty, rest, and sleep periods within the 24-hour cycle of daylight and 

darkness, which normally determines individuals’ circadian rhythms. For drivers 

who work shifts or irregular hours over extended periods, the effects of these three 

factors are not independent. Drowsiness can become irresistible; recognition is 

emerging that neurobiological based sleepiness contributes to human error in a 

variety of settings, and driving is no exception (Horne & Reyner, 1995).  

The terms ‘drowsiness’ and ‘inattention’ are likely to be used with sleepiness; 

however, these terms have individual meanings (Brown, 1997). It is more 

appropriate to use the term ‘drowsiness’ as the consequence of a physical 

phenomenon or a long-lasting experience and it is defined as a disinclination to 

continue the task at hand (Brown, 1994). In regard to driving, a psychologically 

based conflict occurs between the disinclination to drive and the need to drive. One 

result can be a progressive withdrawal of attention to the tasks required for safe 
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driving. Inattention can result from drowsiness, but the crash literature also identifies 

other factors such as preoccupation and distractions inside the vehicle, as causes of 

inattention. 

1.2. Evaluating Current Driver Drowsiness Detection Methods 

One of the major problems in dealing with crashes and road safety is the 

difficulty in detecting driver drowsiness. Drowsiness is different from other road 

safety problems that can emanate from changes in the driver’s functional state, such 

as alcohol or drugs, which can be detected comparatively readily by measuring their 

content in the body. Drowsiness measurement is a significant problem as there are 

few direct measures, with most measures being of the outcomes of drowsiness rather 

than of drowsiness itself. However, it is probable that one very important aspect of 

fatigue, namely drowsiness, is related to some physiological measures such as eye 

blink behaviour, brain wave changes (EEG measures) and face muscle changes 

(Johns et al., 2003, Wierwille and Muto, 1981).  

The characteristics of drowsiness measurement present a real problem for road 

safety. Over the last ten years, there has been an increasing interest in the 

development of drowsiness detection devices, with some motor vehicle 

manufacturers including devices in their vehicles that are marketed as ‘drowsiness 

warning systems’ (Fletcher et al., 2003; Lee et al., 2006). The problem of drowsiness 

detection is being researched using a range of approaches. Johns et al., (2003) argue 

that video camera methods have difficulty in capturing images reliably when the 

environmental light conditions are highly variable, as when driving in sunlight with 

shadows, or when prescription glasses or sunglasses are worn. The Johns Drowsiness 

Index or JDI (Johns & Tucker, 2005) is the most recent driver drowsiness detection 
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method and followed the PERCLOS (percentage of eye lid closer, Dinges & Grace, 

1998) method. The JDI has been implemented in a commercial product called 

“Optalert” which detects eye blink open and close speed to predict driver drowsiness 

using IR (infrared) light.   

There are standardized methods for monitoring sleep and wakefulness in patients 

with sleep disorders that have been used on experimental participants in sleep 

laboratories around the world. Those methods include monitoring the 

electroencephalogram (EEG), the electrooculogram (EOG), and the electromyogram 

(EMG). However, the need for electrodes to be attached to the participant makes 

these methods inappropriate for monitoring drivers regularly. Moreover, when such 

methods have been used for research in drivers, they did not detect drivers’ 

drowsiness well (Wierwille and Muto, 1981).  

The video camera method used to detect the driver’s eye movements is more often 

used than EEG/EOG methods (Wylie et al., 1996). The video camera systems are 

particularly used for the PERCLOS (Dinges & Grace, 1998) method which measures 

the proportion of time that the pupils are at least 80% covered by the eyelids during 

periods of a few minutes. In this method, video cameras have to be fitted in front of 

the eyes to capture eyelid closure duration. If the camera is not fitted to a head 

mounted unit, advanced detection algorithms are required to track the eyes when 

head movements occur. The majority of research on driver fatigue detection has 

identified that eye blink and eye movements are the most consistent factors to predict 

driver drowsiness (Erwin et al., 1980; Johns et al., 2003).  
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1.2.1. Concepts and Theories of Fatigue and Drowsiness 

Muscio (1921) started researchers thinking about the necessity of defining 

drowsiness. He argued that without an acceptable definition and reliable measures, it 

was impossible to conduct drowsiness tests. The earliest definitions separate fatigue 

into three different types: subjective fatigue, the feeling of being tired; physiological 

fatigue, as determined from bodily changes; and objective fatigue, when performance 

on a task shows a progressive deterioration (Platt, 1964). 

Cameron (1973) also looked at drowsiness, especially in relation to driving. He 

argues the importance of anxiety, and examines the link between drowsiness and 

sleep disturbances. Cameron suggests that drowsiness is a generalized response to 

stress over time. 

The term “drowsiness” as used in this thesis refers to a state of reduced alertness 

(Wierwille et al., 1994), usually accompanied by physiological and performance 

changes that may result in impaired driving. The term “driver fatigue” is also widely 

used to describe this condition, especially on Police Accident Reports and in accident 

data files. However, Stern et al. (1994), Tepas & Paley (1992) and others have 

pointed out that drowsiness is distinct from physical fatigue. Fatigue and Drowsiness 

are two interrelated, but distinct phenomena; observed in a number of psychiatric 

(diagnosis and prevention of mental and emotional disorders), medical and primary 

sleep disorders. Despite their different implications in terms of diagnosis and 

treatment, these two terms are often used interchangeably (Sharon et al. 1996). 
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1.2.2. Review of Driver Drowsiness Detection Devices 

A review of commercial and experimental driver drowsiness detection systems 

presently available was undertaken. Since the majority of the devices were based on 

computer vision techniques, most of the investigation is related to these topics. The 

majority of systems used eye tracking and blink related methods. Most eye tracking 

devices are based on computer vision imaging systems, yet some are based on other 

means of detection. For instance, one technique is based on fixed items such as a tiny 

mirror engraved on a head mounted unit; the reflections of eye images from these 

mirrors serve as detectable points for a tracker CCD camera or even a single photo 

detector, (Beach et al., 1998). Other items such as induction coils have been 

embedded within contact lenses to give a signal when the user is exposed to a high 

electromagnetic field (Takemori et al., 1989). Another method detects the changes in 

the electrical potential of the skin around the eye (described in section 2.5.3), since 

an electrostatic field rotates along with the eye.  

A common drawback of the above methods of detection lies in the difficulty of use 

for driver drowsiness detection. For example, the application of contact lenses or 

electrodes to one’s eye is uncomfortable for the user. The more effective methods 

were found to be imaging systems that did not interfere with their participants. Such 

video devices are fixed on a vehicle dashboard to capture the driver’s facial 

expressions and eye movements. These methods are commonly used to detect driver 

drowsiness but encounter difficulties of use requiring advanced detection algorithms 

to minimize the environmental light changes and vehicle vibrations. Many imaging 

techniques have been developed based on reflections of light from various portions 

of the eye. Some of these methods detect reflections off the surface of the eye, where 
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the changes in the intensity of reflected light beams are used to detect eye blink. 

These methods use Infrared (IR) light which is invisible and will not disturb the 

driver. The only disadvantage with IR systems is concern for the safety of the human 

eye.  

The hazard potential of near-infrared (NIR) light should be considered from two 

perspectives: eye hazards and skin hazards.  

The eye lens focuses the light on the retina. Focused light is stronger in terms of 

irradiance than non-focused light. Hence, injury potential increases with focusing. 

The majority of eye blinks detection systems that use IR light are focused light. 

There are some efforts by the International Commission on NonIonizing Radiation 

Protection (ICNIRP), the International Electrotechnical Commission (IEC) and 

American National Standards Institute (ANSI) to develop regulations about IR LED 

hazards. Most efforts have been concentrated on eye injury due to radiated energy 

(Bozkurt & Onaral, 2004). 

The studies by Mori et al. (1999) found infrared radiation will increase eye 

temperature. A finite element model of the human eye is employed to calculate the 

temperature rises experienced by the intraocular (inside eyeball) media when 

exposed to infrared radiation. The model is used to calculate transient and steady-

state temperature distributions for various exposure times and a range of incident 

irradiances. The effect of the eye's natural cooling mechanisms on the heating is 

investigated. Specific absorption rates in the infrared irradiated eye are presented. 

Results showed radiant energy by the iris and the lens combined with conduction of 

heat from the anterior regions is found to be responsible for increases in the lens 

temperature of 1-2 degrees C. Even if low power IR is used, long exposure to the 

naked eye will be harmful to eye cells and the retina.  
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The studies by Scott (1998) found temperature increase of the human skin caused by 

near infrared LEDs. Effects of the conducted and radiated heat in the temperature 

increase have been analysed separately. Research results show the skin temperature 

may be increased by up to 1°C. The effect of radiated heat due to NIR (Near 

Infrared) absorption is low – less than 0.5°C – since emitted light power is 

comparable to the NIR part of sunlight. The conducted heat due to semiconductor 

junction of the IR LED can cause temperature increases up to 9°C. Scott’s study 

demonstrates that the major risk source of the LED in direct contact with skin is the 

conducted heat of the LED semiconductor junction, which may cause serious skin 

burns.  

The only legal restrictions and medical advices available on the web were concerned 

with infrared emissions of heat lamps or in the welding process. This suggests that IR 

light as emitted by other IR devices will be harmful, even the low power emitted IR 

LEDs (ca. 300mW). However, the effect of infrared light projecting for a long time 

at the naked eye will have a high potential of damaging the eye biological cell 

structure. 

1.3. Research Aim and Objectives 

The development of technologies for detecting or preventing drowsiness at the wheel 

is a major challenge in the field of accident avoidance systems. Because of the 

hazard that drowsiness presents on the road, methods need to be developed for 

counteracting its effects. 

The aim of this research is to develop a prototype drowsiness detection system to 

detect driver drowsiness to warn the driver before driving is impaired. The focus will 
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be placed on designing a system that will accurately monitor the blink frequency and 

blink duration of the driver’s eyes in a series of tests in a driving simulator. By 

monitoring the eyes, it is believed that the symptoms of driver drowsiness can be 

detected early enough to avoid a car accident. Detection of drowsiness involves a 

sequence of images of an eye, and the observation of eye blink patterns. 

Associated with this research is the development of a method to record image 

changes to the side of the eye, and to determine the position of the eye sclera region.  

An image-processing system is developed to assess driver drowsiness by examining 

eye blink using vision techniques to work with reflections off the eye sclera region 

involving a detection method to monitor the changes in the eye sclera region. The 

detection of the white sclera area between the dark upper and lower eye lids is 

termed blink, and changes of area quantify the length of the blink.  

To achieve the aim, this research has the following objectives: 

• To investigate two other current methods related to driver drowsiness 

detection systems: PERCLOS (percentage of eye lid closure) and JTV 

(Johns’ Test of Vigilance). Discussion of the reliability of these methods will 

be important for informing the implementation of the new method.   

• To design a driving simulator and a driver reaction time measurement system. 

Driver alertness can be estimated by monitoring the steering wheel 

movement, brake patterns, vehicle speed or lateral acceleration, and lateral 

displacement. A basic driving simulator is designed to detect driver 

performance by monitoring the response of the driver. 
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• To design a head mounted video camera with low intensity light to illuminate 

the sclera region of the eye and capture changes of this sclera area relating to 

blink to identify blink duration and frequency. 

• To establish if eye blink frequency and duration are reliable factors to predict 

driver performance. By measuring the blink frequency and duration in 

participants in a driving simulator, it will be ascertained how these variables 

affect driver performance. The effects of sleep deprivation will be examined.  

• To create a new operational measure of drowsiness based on eye blink 

durations and frequency of drowsy drivers, and to establish a driver 

drowsiness detection metric for future use in the development of drowsiness 

detection algorithms. 

1.4. Thesis Structure 

This thesis is organised in nine chapters, as follows: 

 

Chapter One: This chapter contains a brief review of driver drowsiness as a cause of 

road accidents. Three main characteristics were considered in this chapter. The first 

was the mechanism of human sleepiness and its interrelation to driving risk; the 

second was the biology of human sleepiness and the third was driver drowsiness 

detection systems. The section 1.3 in this chapter states the research aim and 

objectives. Figure 1.1 shows the overview of project structure.  
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Figure 1-1: Project Overview 

                          

Chapter Two: Reviews the literature relating to driver drowsiness detection methods. 

This gives a detailed review of current driver drowsiness detection methods, 

including physiological measures and their effectiveness. It reviews the popular 

methods used such as eye blink, eye movements and facial expressions. 

Consideration is also given to other methods of human drowsiness detection and 

their effectiveness in comparison to eye blink analysis.   
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Chapter Three: Reviews the literature relating to existing driver drowsiness 

detection systems. This gives a detailed review of existing driver drowsiness 

detection systems and their effectiveness. This review focuses mainly ‘In-Vehicle’ 

systems. 

Chapter Four: This chapter introduces the methodology for a new driver drowsiness 

detection system, which includes an eye blink detection system, a driving simulator 

and a subjective drowsiness measure questionnaire. In addition, this chapter briefly 

describes a new eye blink detection system and the main approach to the 

experimentation.  

Chapter Five: Describes the development of the Eye Blink Detection System 

(EBDS). The system tracks eye blinks from the side of the eye. The reliable 

detection and tracking of eye blink is an important requirement for measurement of 

eye blink frequency and blink duration in the detecting of driver alertness. Image 

acquisition and image processing algorithms are used for blink detection. By using a 

spectacle mounted sensor, the problem of analysis of head movement is minimised. 

The three-step eye blink detection procedure of background estimation, template 

matching and tracking is used to analyse eye blink dynamics. Video and image 

acquisition tools, signal processing tools and data analysis tools in MATLAB 

Simulink software are used to design the eye blink detection system.  

 

Chapter Six: Discusses the development of a driving simulator. There were two 

simulators used to measure driver performance. The first simulator measures driver 

reaction time and is designed using virtual reality tools in MATLAB Simulink. The 

second and main simulator measures five different parameters of driver performance.  
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Chapter Seven: Data Analysis Methodology. This chapter focuses on determining 

the variables and statistical procedures for data analysis. The physiological measures 

in this study have been identified as indicators of drowsiness in previous research 

studies. These measures included two eyelid-closure measures, the average blink 

duration (AVEBLDU) and average blink frequency (AVEBLFR).  

The driving performance measures in this study were operational measures that 

would be obtainable in the driving simulator. The measures collected during this 

study included driving-related measures, and secondary task performance measures.  

Chapter Eight: Final Data Analysis Results: Development of Driver-Drowsiness 

Detection Model.  Regression analyses were initially used for data manipulation for 

all eighteen participants. Several correlation tests were performed with the data in 

different configurations, including: all participants/all data for one-minute intervals, 

ten-minute intervals, and five-minute intervals. Analyses were also undertaken after 

“selecting” participants performance data (this method consists of using data from 

each participant and categorizing that data into high performance decrement, medium 

performance decrement, and low performance decrement categories) using a moving 

average filter.  

Correlation tests were performed between the collected physiological measures 

(standard deviation, SD, of average eye blink durations and frequency) and the 

collected performance measures (standard deviation, SD, of average deviations from 

centre line and reaction time for colour light changes). Linear regression analysis was 

used to develop drowsiness detection model.     
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Chapter Nine: Summarizes the research outcomes, draws conclusions; discusses 

further development to improve research results.   

1.5. Summary 

 The problems of extracting quantified information from physiological and 

performance indicators of the drowsiness level of a vehicle driver are addressed. An 

outline has been given of a new approach for processing the physiological and 

performance outputs from a driver drowsiness monitoring system. The performance 

indicators are collected from the driving simulator (e.g. lateral movements of a 

vehicle (deviations from centre line), average speed, and reaction time for traffic 

signal). New results show how the physiological and performance indicators can be 

used to detect drowsiness. The development of new system for detection of driver 

drowsiness linked to impairment of driving performance is discussed in the following 

chapters.  

The next chapter reviews the literature relating to driver drowsiness and detection 

methods. This gives a detailed assessment of current driver drowsiness detection 

methods, including physiological measures and their effectiveness. 
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2.1. Introduction 

This literature review provides background information regarding driver 

drowsiness analysis methods. Current countermeasures to minimize drowsiness in 

car driver drowsiness are reviewed. In order to develop a new concept, it is important 

that the principles of current driver warning systems be reviewed and understood. 

Research papers concerning driver drowsiness detection systems and their 

effectiveness are discussed. Furthermore, the methods relating to eye blink analysis 

for human drowsiness detection and their effectiveness are reviewed.   

2.2. Driver Drowsiness 

Drowsiness represents a significant social and economic cost to the community in 

relation to road crashes, especially motorway crashes. Drowsiness-related crashes are 

often more severe than other crashes as drivers’ reaction times are often delayed or 

drivers have not engaged any crash avoidance manoeuvres. Furthermore, it is 

difficult to quantify the level of driver drowsiness due to the difficulties in 

objectively measuring the degree of drowsiness following a crash. Lack of sleep 

reduces the alertness and concentration needed for safe driving. The quality of 

decision-making may also be affected (van den Berg et al., 2005). 

2.3. Driver Drowsiness and Road Accidents 

There are difficulties in determining the level of sleep related accidents because 

there is no simple, reliable way for an investigation to determine whether drowsiness 

was a factor in the accident and, if it was, what level of drowsiness the driver was 

suffering. This result in varying estimates of the level of sleep related accidents and, 
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in particular, evidence based on accident reports usually produces lower estimated 

levels than research based on in-depth studies. 

A British study by the Sleep Research Centre (Horne and Reyner, 2000) indicated 

that driver drowsiness causes up to 20% of accidents on motorways. This suggests 

that there are several thousand casualties each year in sleep related accidents. An 

earlier study (Horne and Reyner, 1995) on road accidents between 1987 and 1992 

found that sleep related accidents comprised 16% of all road accidents, and 23% of 

accidents on motorways. Transport Research Laboratory (TRL) research (Maycock, 

1995) found slightly lower proportions of sleep related accidents: 9% - 10% of 

accidents on all roads, and 15% of accidents on motorways involved driver 

sleepiness. In this study, 29% of drivers reported having felt close to falling asleep at 

the wheel at least once in the previous twelve months.  

The National Highway Traffic Safety Administration (NHTSA) estimated that there 

are 56,000 sleep related road crashes annually in the USA, resulting in 40,000 

injuries and 1,550 fatalities (NCSDR/NHSTA, 1998). Another study (Johnson, 1998) 

calculated that 17% (about 1 million) of road accidents are sleep related. Research by 

Wang (1996) suggested that 2.6% of accidents caused by driver inattention were due 

to drowsiness. Reissman, (1996) studied road accidents on two of America’s busiest 

roads and found that 50% of fatal accidents on those roads were drowsiness related 

and 30% - 40% of accidents involving heavy trucks were caused by driver 

sleepiness. In summary, research in many countries around the world has shown that 

sleep related accidents constitute a significant proportion of road accidents.  
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2.4. Defining Drowsiness 

The phenomenon of drowsiness is a highly researched participant, but does 

not have a universally accepted definition. The term drowsiness is a condition 

characterized by a lessened capacity for work and reduced efficiency of 

accomplishment, usually accompanied by a feeling of weariness and tiredness 

(Engleman et al., 1997). Using this definition, the involvement of drowsiness in a 

road crash can range from falling asleep at the wheel to inattention (HORSCC, 

2000). 

The general consensus is that the four main determinants of driver drowsiness are: 

� Lack of sleep 

� Time of day  

� Time spent performing a task (Hartley, et al., 2000; Williamson, et al., 2000). 

� Type of driver 

 

Individual factors such as age, physical fitness and medical condition also affect the 

incidence of drowsiness (HORSCC, 2000). 

2.4.1. Lack of Sleep 

Human beings need to sleep. Sleep is essential for everyone. The longer someone 

remains awake, the more difficult it is to resist falling asleep. The need for sleep 

varies between individuals, but sleeping for 8 out of 24 hours is common, and 7 to 9 

hours sleep is required to optimise performance (Reichman et al., 1996). 
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Humans are usually awake during daylight and asleep during darkness. Sleeping less 

than four hours per night impairs performance. Sleepiness reduces reaction time, 

which is a critical element of safe driving. Lack of sleep reduces the alertness and 

concentration needed for safe driving. The quality of decision-making may also be 

affected (van den Berg et al., 2005). 

2.4.2. The Time of Day 

Humans possess a neurobiological based sleep-wake cycle called a circadian rhythm 

or body clock (Folkard, 1997). Research has shown that there are two periods during 

the 24 hour circadian cycle where the level of sleepiness is high. The first period is 

during the night and early morning, and the second is in the afternoon (Hartley et al, 

2000). During these periods of sleepiness, many functions (e.g., alertness, 

performance and subjective mood) are degraded (Rosekind, 1999). 

Sleep related accidents have peaks in the early hours of the morning, between 2.00 

am and 6.00 am, and mid afternoon, between 3.00 pm and 4.00 pm.  Drivers are 50 

times more likely to fall asleep at the wheel at 2.00 am than at 10.00 am (Horne and 

Reyner, 1995). This risk is three times as great between 3.00 and 4.00 pm as at 10.00 

am. Horne and Reyner’s studies identified that young drivers are more likely to sleep 

at the wheel in the early hours in the morning and older drivers are more likely to fall 

asleep at the wheel during the afternoon sleep period.   

The long sleep-wake cycles are the result of variable insensitivity to the sleep drive. 

In one study, randomly selected volunteers spent seventy-two hours without sleep 

and rated their drowsiness every three hours on a scale in comparison with their 

normal drowsiness (=100 percent) (BOSB, 1997). The feeling of drowsiness was 
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always highest in the early hours of the morning and lowest in the afternoon (Figure 

2-1). 

 

 

Figure 2-1: Fatigue during seventy-two hours of sleep deprivation (BOSB, 1997) 

 

 

Figure 2-2: Time required falling asleep (BOSB, 1997) 

Figure 2-2 shows the time required to fall asleep during the day, after long sleep, 

normal sleep, and a sleepless night. The participants lie down at two-hour intervals 

between 9:30 a.m. and 7:30 p.m. The amount of time required to fall asleep is used 
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as a measure of sleep propensity. After an extended sleep during the preceding night, 

the participants take a longer time to fall asleep; after a night without sleep, the time 

is greatly reduced. 

2.4.3. Time on Task 

Prolonged physical activity without rest leads to muscular drowsiness. Similarly, a 

prolonged mental workload without rest will lead to reduced alertness and 

disinclination to continue the effort (Grandjean et al., 1988). 

Research based on driving tasks has shown that the length of time on a task affects 

performance. As time spent on a task is increased, the level of drowsiness is 

increased, reaction time is slowed, vigilance and judgement is reduced and the 

probability of falling asleep during the task is increased (Engleman et al, 1997; 

HORSCC, 2000). 

2.4.4. Type of Driver 

Several studies have identified young male drivers, aged less than 30 years, as one of 

the groups most at risk of being involved in sleep related road accidents (Maycock, 

1995). In addition, company car drivers have a higher probability of falling asleep at 

the wheel as they tend to drive long distances on tight schedules (Hackett et al., 

2003). In addition, shift workers and people with sleep problems are also in the risk 

group. The close environment of the inside of a car and loss of air flow and low 

oxygen rate also increase the tendency to sleep (Garder & Alexander 1994).     
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2.5. Physiological Measures Related to Driver Drowsiness 

Detection  

The purpose of this section is to discuss measures that may lead to detect driver 

drowsiness and their operational definition. In this thesis drowsiness and sleepiness 

are considered synonymous, but the term drowsiness will be used. Another concept 

commonly used is drowsiness, which is an extreme tiredness that results from 

physical or mental activity. Drowsiness can also be described by the grade of 

wakefulness or vigilance. Wakefulness is the same as alertness or state of sleep 

inability, whereas vigilance can be described as watchfulness or a state where one is 

prepared for something to happen (Leproult et al., 2003).     

2.5.1. Eyelid Closure 

Eyelid closure is a very reliable predictor of driver drowsiness (Erwin, et al., 1980; 

Dinges, et al., 1985). Erwin et al, examined various measures to determine if they 

were predictive of sleep onsets, including plethysmography (a device for measuring 

and recording changes in the volume of the body or of a body part or organ), 

respiration rate, Electroencephalography (EEG), skin electrical characteristics, 

Electromyography (EMG), heart rate variability, and eyelid closure. It was found that 

eyelid closure was the most reliable predictor of the onset of sleep among the 

measures examined.  

Eyelid closure is indicative of sleep onset and undoubtedly the cause of poor 

performance in visual tasks, especially tracking tasks such as driving. It seems quite 

obvious that if a driver’s eyelids are closed, the ability to operate a vehicle would be 

impaired. Skipper et al. (1984) examined the ability of sleep deprived drivers to 
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perform a one and one half hour driving task. Various disturbances were purposely 

input into the steering system of the driving simulator to mimic on-the-road 

conditions. It was found that performance measures such as lane deviation and 

steering velocity were highly correlated with eyelid closures.  The apparatus used to 

capture eyelid closures in the studies by Skipper et al, (1984) was a low-light level 

camera. A linear potentiometer was used manually by an experimenter to track and 

record the eyelid movement of the participants. 

2.5.2. Eye Movements 

There are two general methods used to record eye movements during sleep or before 

sleep. The first method is Rapid Eye Movements (REMs). The second is based on 

the onset of sleep in most participants being accompanied by slow, rolling eye 

movements (Carskadon, 1980). Slow, rolling eye movements may accompany the 

onset of sleep or are precursors of sleep onsets. This phenomenon also occurs with 

the transition to stage 1 sleep during the night. The characteristics of human eye 

movements change greatly with alertness level. Slow eye movements (SEMs) prove 

to be one of the most characteristic signs of the phase of transition between 

wakefulness and sleep (Planque et al., 1991). A completely awake individual can be 

observed as having quick eye movements. As participants become drowsy, their eyes 

move in a pendulum motion from left to right (Hiroshige and Niyata, 1990) and the 

number of quick, voluntary movements of the eyes begins to lessen. Several SEMs 

are detected during stage 1 sleep, but they also appear during the long period 

separating waking from sleep. Convergence of the eyes is also possible when a 

person becomes drowsy.  
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Electrooculography (EOG) Figure 2-3 (page 50) shows the measuring of eye 

movements via electrodes in contact with the skin surrounding the eyes. The process 

of measuring eye movements with EOG is quite simple due to the electrical nature of 

the human body. In the eyeball, there is a small electro-potential difference from the 

front to the back. The front (cornea) of the eye is positive with respect to the back 

(retina) of the eye.  Before a certain point in a person’s awake but drowsy state, 

SEMs do not exist. However, after a particular moment in the onset of sleep, slow, 

rolling, lateral, ocular movements create sinusoidal activity in the EOG (Lairy and 

Salzarulo, 1974). On the EOG signal, the SEMs are translated by slow deflections 

lasting more than a second. It is likely that amplitudes of at least 100 microvolts will 

be seen (Torsvall and Akerstedt, 1988). The EOG waves that are normally observed 

are moderate in amplitude initially, but increase with the degree of drowsiness 

(Planque et al., 1991). These researchers found that after several minutes of driving 

only blinking and glances at simulator instrumentation were recorded. 

Approximately 30 minutes into the study deterioration of deliberate eye movement 

was observed. Planque et al. (1991) argue that, by analyzing the EOG, it is possible 

to follow clearly the deterioration of alertness. 

2.5.3. Muscle Activity 

The Electromyogram (EMG), conventionally abbreviated as "EMG" is a record of 

the electrical activity which emanates from active muscles, especially in the facial 

muscles. It may also be recorded from electrodes on the skin surface overlying a 

muscle. In humans, the EMG is typically recorded from under the chin, since 

muscles in this area show very dramatic changes associated with the sleep stages 

(BOSB, 1997). Hauri (1982) demonstrates that EMG recorded on the chin steadily, 
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though not dramatically, decreases as a person nears sleep. Even when a person is 

totally relaxed, small muscle potentials will be seen. This is because every muscle is 

composed of many contractile fibres that are innervated by nerves. When a muscle 

fibre is activated through nerve innervations, a change in the electrical potential is 

seen. When the muscle is relaxed, fewer nerves discharge, thus a smaller EMG 

potential is recorded. EMG (figure 2-3) is used to predict drowsiness with electrical 

potential differences of facial muscle.  

2.5.4. Brain Wave Activity 

The Electroencephalogram (EEG) is conventionally abbreviated as "EEG" and is 

popularly known as "brain waves." The EEG was discovered in 1929 by Hans 

Berger, a Swiss psychiatrist. He found that small changes in voltage between two 

electrodes occurred when they were placed in contact with the scalp. Voltage 

changes are amplified and examined for variations in duration. The exact physiologic 

basis of the voltage variations are not entirely known, but it is believed that they 

originate largely from changes in voltage of the membranes of nerve cells. Erwin, et 

al. (1980) found that there is no reliable alteration in background brain activity prior 

to eyelid closure. Upon eyelid closure, the researchers found that a very rapid shift in 

brain wave patterns takes place. This shift is identifiable as the early stage of sleep. 

However, Planque et al. (1991) argue that sharp changes in the frequency content of 

brain wave activity are observed during the crossing from alertness to a stage of 

hypoalertness, then to drowsiness, and finally to sleep. A slowdown of the brain 

activity in general, an increase in the percentage of alpha waves and, in turn, a 

decrease in the percentage of beta waves, is observed at the same time that a decline 

in performance is seen. 
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Figure 2-3: Positions of Physiological Measures 

(BOSB, 1997) 

2.5.5. Heart rate Variability 

Heart beats interval variability has been found to correlate with drivers’ level of 

drowsiness (Wierwille and Muto, 1981). On the other hand, Volow and Erwin (1973) 

found no correlation between heart rate variability and sleep onset. 

2.5.6. Pupil Aperture Size Variability 

Natural pupil movements in darkness in the normal awake individual have been 

described as reflecting “tiredness,” “drowsiness,” and “sleepiness”. The changes in 

pupillary stability and extent of oscillations have been consistently shown to occur in 

normal “tired” participants. The pupillary behaviour in individuals suggests that the 

actions of the pupil do reflect autonomic events, and that it is consequently an 

indirect but accurate indicator of sleepiness or arousal level (Sharon et al, 1996). 
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Table 2-1: Autonomic Nervous System Activity during Sleep 

 (BOSB, 1997) 

Table 2-1, shows how the pupil diameter changes during different stages of sleep. 

Therefore, recognition of pupil diameter can help to measure drowsiness.   

2.6. Evaluation of Drowsiness with Physiological Measures 

BOSB (1997) studies found that changes in psychological parameters such as 

EEG and EOG reflected changes in driver status and could predict driving 

impairment that might lead to a disastrous traffic accident. They showed that during 

a night drive a significant intra-individual correlation was observed between 

subjective sleepiness and the EEG alpha burst activity. End-of the-drive subjective 

sleepiness and the EEG alpha burst activity were significantly correlated with total 

work hours. As a result of a regression analysis, total work hours and total break time 

predicted about 66% of the variance of EEG alpha burst activity during the end of 

drive.  

Many studies have used psychophysiological measures such as blink, EEG, eye 

movements, and heart rate to assess drowsiness (BOSB, 1997). Wierwille and Muto, 

(1981) suggested caution in interpreting eye movement velocity change as an index 

of drowsiness since most of the reduction in average eye movement velocity might 

be secondary to increase in blink frequency. No measures alone can be used reliably 



Indrachapa Bandara, 2009, Chapter 2  51 

to assess drowsiness, because each has advantages and disadvantages. The results of 

these studies must be integrated and effectively applied to the prevention of drowsy 

driving.  

The example of the BOSB, (1997) studies discussed below, employs physiological 

measures such as EEG, EMG and EOG. Figures 2-4 and 2-5 show the test results for 

different age groups for three measures during wakefulness and the major sleep 

stages. There are two major patterns during EEG measurements. One is low voltage 

(about 10-30 µV) fast (16-25 Hz) activity, often called an "activation". The other is a 

sinusoidal 8-12 Hz pattern (most often 8 or 12 Hz) of about 20-40 µV which is called 

"alpha" activity. Typically, alpha activity is most abundant when the participant is 

relaxed and the eyes are closed. The activation pattern is most prominent when 

participants are alert with their eyes open, and they are scanning the visual 

environment. REMs (Rapid Eye Movement) may be abundant or scarce, depending 

on the amount of visual scanning, and the EMG may be high or moderate, depending 

on the degree of muscle tension. Measurements of alpha, theta and delta waves of the 

brain nerves are shown in Figure 2-4. Voltage variations (µV) will facilitate the 

detecting of awake and sleep conditions. The two EOG measures in Figure 2-5 

illustrate the voltage variations in the left and the right eyes individually.  The stages 

of sleep are as follows: 

STAGE-1 

Alpha activity decreases, activation is scarce, and the EEG consists mostly of low 

voltage, mixed frequency activity, with much of it at 3-7 Hz. REMs are absent, but 

slow rolling eye movements appear. The EMG is moderate to low.  

STAGE-2 

Continuing background of low voltage, mixed frequency activity, bursts of 
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distinctive 12-14 Hz sinusoidal waves called "sleep spindles" appear in the EEG. 

(Sleep spindles are characterized by a burst of very regular oscillations at a frequency 

of 12 to 14 cycles per second). Eye movements are rare, and the EMG is low to 

moderate.  

STAGE-3 

High amplitude (>75 mV), slow (0.5-2 Hz) waves called "delta waves" appear in the 

EEG, EOG and EMG.  

STAGE-4 

There is a quantitative increase in delta waves so that they come to dominate the 

EEG tracing. 

REM (Rapid Eye Movements)  

The EEG reverts to a low voltage, mixed frequency pattern similar to that of Stage 1. 

Bursts of prominent rapid eye movements appear. The background EMG is virtually 

absent, but many small muscle twitches may occur against this low background 

(BOSB, 1997). 
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Figure 2-4: Polygraphic recording in an alert young adult 

(BOSB, 1997) 
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Figure 2-5: EEG, EOG and EMG measures of waves of the brain nerves. 

(BOSB, 1997) 
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The major differences between Stages 1, 2, 3, and 4 are in their EEG patterns. 

Although there are some exceptions, the general physiology of these stages is fairly 

similar. In contrast, the physiology of REM sleep is so dramatically different from 

the other four stages that sleep researchers have distinguished two major kinds of 

sleep, namely REM sleep and NREM (non REM) sleep, which is comprised of 

Stages 1, 2, 3, and 4 (BOSB, 1997).  

BOSB (1997) suggests that sleep is a behavioural disengagement from the 

environment. The organism is far less responsive to sensory input during sleep than 

when awake. This relative insensitivity has been demonstrated in a number of 

sensory domains. For example, participants asked to respond to a flash of light in 

front of their eyes do so during wakefulness (BOSB, 1997). The failure to respond is 

not an inability to make a response, but a failure to see the stimulus, indicating that 

humans are functionally blind during sleep (Figure 2-6).  

 

 

Figure 2-6: Less Response to Sensory Input during Sleep 

(BOSB, 1997) 

 

Figure 2-6 shows the results of a volunteer who was asked to tap two switches 

alternately, shown as pen deflections of opposite polarity on the channel labelled 

SAT. When the EEG pattern changes to Stage 1 sleep (arrow), the behaviour stops 
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for the period indicated by the word "gap," returning when the EEG pattern reverts to 

wakefulness (SEMs=slow eye movement). 

2.7. Other Methods of Drowsiness Detection  

2.7.1. Number of hours sleep 

The study by Peters et al. (1995) of the Effects of Partial and Total Sleep Deprivation 

on Driving Performance was conducted jointly by the Federal Highway 

Administration's (FHWA) Human Factors Laboratory and the Walter Reed Army 

Institute of Research's (WRAIR). It examined the effects of progressive sleep 

deprivation on simulated driving performance in the laboratory to assess the rate of 

accidents and changes in driving performance resulting from sleepiness or fewer 

number of hours sleep. The primary purpose of the study was to examine the effects 

of reduced sleep and progressive sleep deprivation on driver accident rates under 

controlled conditions. The results showed that the loss of one night's sleep can lead 

to extreme short-term sleepiness, while habitually restricting sleep by 1 or 2 hours a 

night can lead to chronic sleepiness. Sleeping is the most effective way to reduce 

sleepiness. Sleepiness causes auto crashes because it impairs performance and can 

ultimately lead to the inability to resist falling asleep at the wheel. Critical aspects of 

driving impairment associated with sleepiness or fewer hours sleep is deterioration in 

reaction time, vigilance, attention, and information processing (Weinger & Ancoli-

Israel, 2002). 
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2.7.2. Epworth Sleepiness Scale (ESS) 

The Epworth Sleepiness Scale (ESS) was developed by researchers in Australia and 

has been widely used (Lundt, 2004). The ESS is a simple, self-administered 

questionnaire that provides a subjective assessment of the day-to-day effects of 

sleepiness. It is a more appropriate method for assessing ‘overall’ sleepiness than the 

current traditional methods (e.g., Karolinska Sleepiness Scale, KSS).  

The concept of the ESS was derived from observations about the nature and 

occurrence of daytime sleepiness. Participants are asked to rate the likelihood of 

dozing off or falling asleep in eight different sedentary situations commonly 

encountered in daily life (e.g., watching television). For each situation, the 

participant rates the likelihood of dozing as never (=0), slight (=1), moderate (=2) or 

high (=3). The total (out of 24) is the ESS score. ESS scores can distinguish 

participants and diagnostic groups over the whole range of daytime sleepiness. A 

score of less than 11 on the ESS is considered to be within the normal range, whereas 

scores of 11 or over are indicative of Excessive Sleepiness (ES). An ESS score of 14 

or higher are associated with high sleepiness. The ESS has been used in several 

driver drowsiness detection research studies and its major advantage, apart from ease 

of use, is that it directly reflects the impact that sleepiness is having in real life 

(something that a laboratory test cannot assess).  

2.8. PERCLOS (percentage eye closer) measure 

‘PERCLOS’ is the percentage of eyelid closure over the pupil over time and 

reflects slow eyelid closures (“droops”) rather than blinks (Dinges & Grace, 1998).  
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The PERCLOS drowsiness metric was established in a 1994 driving simulator study 

as the proportion of time in a minute that the eyes are at least 80 percent closed 

(Wierwille et al., 1994). Eyes wide open represented 0% and eyes closed represent 

100%. Today there are three PERCLOS measures in use: 

• P70, the proportion of time the eyes where closed at least 70%; 

• P80, the proportion of  time the eyes closed at least 80%; and  

• EYEMEAS (EM), the mean square percentage of the eyelid closure rating.  

It has to be noted that in the study by Wierwille et al. (1994), and the related 

technical brief from the Federal Highways Administration the face of the participant 

was monitored and recorded in order to detect eyelid closes, and then trained human 

scorers viewed the recordings and rated the degree to which the drivers’ eyes were 

closed from moment to moment. The challenge related to the PERCLOS metrics is 

the automatic measurement of the eyelid position; however, successful attempts to 

measure eyelid position (and derive PERCLOS from it) are reported by Dinges & 

Grace, (1998), where a CCD camera monitors the face of the driver. The PERCLOS 

metrics are measured directly and estimated with non-parametric methods for 

detecting drowsiness in drivers.   Dinges & Grace (1998) used connected-component 

and support vector machine to verify eye blinks. The driver performance data was 

correlated with PERCLOS measurement to judge whether the driver is drowsy.   

The main weaknesses of the PERCLOS measure will now be discussed. Termed 

“PERCLOS”, the device and detection technique relies on the percentage of slow-

eyelid closures during a several-minute period.  Fast eye blinks (about 100 ms 

duration) or micro blinks is an important measure for detecting micro sleep during 
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driving and the PERCLOS system was not capable of  measuring micro sleep 

(Hargutt, 2003). The PERCLOS system needs to measure eye parameters from the 

front of the eye (Dinges & Grace, 1998). The study by Kithil et al.(2000) suggested 

that the PERCLOS detection rate was overstated because a percentage of the 

population is not conducive to eye-reflectance techniques, or because the PERCLOS 

technology is unable to work during bright daylight or for drivers with reflective dark 

glasses.   

Another potential disadvantage of PERCLOS is that it is a slow eyelid closure 

system requiring a restricted field of view. Consequently, if the user is operationally 

required to move around frequently, the system cannot capture the user’s eyes with 

the use of single camera array. Detection of drowsiness in an operational 

environment, in which the user’s head moves requires an array of cameras or 

modified system that would be mounted to the head of the user, making it obtrusive 

and restricting the individual’s overall field of view. An automated on-line 

drowsiness system that relies on slow eyelid closures as the input variable is not ideal 

in low humidity environments, where users are likely to close their eyes slowly ( and 

keep them closed over a period of time) in an attempt to moisten the eye (Kithil et al. 

2000). An automated slow eyelid closure system, based on video images only, cannot 

differentiate between eyes closed due to drowsiness or eyes closed due to a rewetting 

(wet eye) of the eyes, which can potentially result in false positives.  

2.9. Summary   

According to the literature, both EOG and EEG are valid indicators of drowsiness. 

Drowsiness is characterized by increased blink detection, decreased blink amplitude 

and increased blink frequency and EOG can be used to measure changes in these 
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parameters. Most of the drowsiness detection method literature has indicated eye 

blink and eye movement related measures are generally consistent for detection of 

drowsiness.  According to Hargutt (2000), different eye blink parameters can be used 

for classifying different stages of drowsiness. Hargutt, (2000) suggested that analysis 

of eyelid movements is one of the most promising approaches to predict driver 

status. It is widely accepted that eye-lid parameters are valid in the case of extreme 

stages of drowsiness. Little is known about whether it is possible to discriminate 

between different driver states ranging from full wakefulness to sleepiness on the 

basis of the time course of these parameters.  

A series of experiments conducted during Hargutt’s studies conclude that time on 

task was varied, revealing that eyelid movements are physiologically controlled by at 

least two different processes. Therefore, closure time/speed and blinking frequency 

must be treated as two different parameters. Increased blink frequency indicates 

reduced vigilance, which is the first stage in the drowsiness process, and the blink 

duration and blink amplitude indicate increased drowsiness. Hargutt’s method is able 

to identify a stage of vigilance decrements with only a slight decrease in performance 

as well as the final stage shortly before the driver falls asleep. The driver often does 

not notice that he is in the early stage in which there may be a high probability of 

inadequate reactions to sudden critical events. The differentiation between 

drowsiness and vigilance decrements are important when thinking about possible 

countermeasures.  
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Some of the findings of this study were similar to other studies in that the operational 

definition identified a higher number of male drowsiness d drivers/riders than 

female, and more drowsiness d drivers/riders less than 29 years of age compared 

with older age groups. Other studies also found that most early morning fatigued 

drivers/riders were less than 29 years of age, and fatigued drivers/riders over 50 

years of age were involved in more afternoon crashes than in early morning crashes.  

Drowsiness was in many cases not found in the EEG even though a change in the eye 

parameters was detected. It could thus be concluded that the eye parameters were 

better than EEG for an early detection of drowsiness. EEG signal interpretation is a 

very challenging task; such signals are complex and difficult to process.  

The next chapter reviews some of the systems that have been developed, based on 

the physiological effects reported in this chapter.  
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3. CHAPTER 3 

 

REVIEW OF THE LITERATURE ON DRIVER DROWSINESS 

DETECTION SYSTEMS  
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3.1. Introduction 

A promising countermeasure designed to reduce the incidence of driver 

drowsiness related crashes is a system that can detect drowsiness and issue warnings 

accordingly. Many researchers and companies have designed and developed such 

systems to warn the driver. The most important factors are the efficiency and the 

reliability of these systems to warn the driver of the situation in good time. Some 

systems discussed in this chapter will warn the driver in their danger stage of 

sleepiness, when it is too late to avoid the accident.  

Two of the greatest safety issues that drivers face today are the effects of drowsiness 

and in-vehicle distraction. Several methods have been used for monitoring sleep and 

wakefulness in volunteer participants in sleep laboratories. As discussed in chapter 2, 

those methods include monitoring the electroencephalogram (EEG), 

electrooculogram (EOG), and electromyogram (EMG). However, the need for 

electrode attachments makes these methods inappropriate for monitoring drivers 

routinely. In addition, when such methods have been used for research in drivers, 

they have not detected drowsiness accurately (Wylie, et al., 1996). In recent years, 

video-camera methods have not been used because of technical difficulties (e.g. 

environmental light changes disturb the capturing of face or eyes for detection of 

drowsiness). These difficulties particularly affect PERCLOS (Dinges et al., 1998) 

which gives an overall measure of eyelid closure, based on the proportion of time 

that the pupils are at least 80% covered by the eyelids over a few minutes. 

Drowsiness measurement is a significant problem as there are few direct measures, 

with most measures being of the outcomes of drowsiness rather than of drowsiness 

itself. This chapter will investigate existing driver drowsiness detection systems. 
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3.2. In-Vehicle Technology 

  Several studies have identified in-vehicle devices to detect drivers falling 

asleep and to provide warnings to alert them of the risk, or even to control the 

vehicle’s movement, to prevent accidents (Boverie, 2004). Some systems detect 

changes in vehicle movement, such as drifting out-of–lane. However, there are 

concerns about the reliability of these devices. Also these are concerns that the driver 

may rely on them for warnings of when the situation becomes particularly dangerous 

rather than consider and plan when they should take rest breaks. An evaluation of 

three drowsiness monitors (an eye closure monitor, a head nodding monitor and a 

reaction time monitor) suggests that these devices showed an ability to detect 

drowsiness (Haworth & Vulcan, 1991). 

In-vehicle driver drowsiness detection will provide the most direct evidence of driver 

alertness and its relationship with driving capacity (e.g., Heitmann et al., 2001). The 

European Union has adopted this approach in the ‘AWAKE’ project (System for 

Effective Assessment of Driver Vigilance and Warning According to Traffic Risk 

Estimation) (e.g., Boverie, 2004). The majority of research projects employed driver 

state measures including eyelid movement, changes in steering grips and driver 

behaviour including lane tracking, use of accelerator and brake and steering position. 

These measures were then combined and evaluated against an assessment of current 

drowsiness systems (e.g., PERCLOS, JTV, EEG, and EOG) obtained from research 

studies, anti-collision devices, driver gaze upon sensors and odometer readings. 

Many research studies have shown that, by monitoring the eyes from a sequence of 

images and the observation of eye movements and blink patterns the symptoms of 

driver drowsiness can be detected early enough to avoid many accidents (e.g. 

Yamamoto et al., 2002). 
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3.2.1. In -Vehicle Drowsiness Detection   

There is a large amount of research and development on driver assistance systems 

(e.g., Fletcher et al., 2003; Onken & Feraric, 1997). All of these systems focus on 

providing information to drivers that will facilitate their driving and warn them of 

threats to driving safety. In the main, the road safety problems for these systems are 

the same, relating mainly to when and how the information is conveyed to the driver. 

Work by a group of researchers at Carnegie Mellon University (Ayoob et al., 2003) 

has looked at the attitudes of experts and users (i.e., drivers) towards drowsiness 

detection devices and the type of information that would be most readily accepted by 

users. Interestingly, the findings suggest that warning devices should be able to be 

turned off or have their volume modified significantly, clearly reducing their 

effectiveness. Similarly, the AWAKE project concluded that drivers should be 

trained in appropriately responding to warning devices, especially if they occur 

occasionally as this may result in the problem of startle effects which can negatively 

or adversely affect driver safety. 

Several devices have been developed to detect when drivers are falling asleep at the 

wheel and to provide warnings to alert them of the risk. Some are designed to 

monitor the driver and detect driver changes; others detect changes in vehicle 

movement, such as drifting out of the lane.  

3.2.2. Generic Driver Assistance and Warning Devices 

As previously noted, there is a large amount of research and development on driver 

assistance systems but in this chapter we concentrate on the most important systems, 

as discussed below. 
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3.2.2.1. Optalert™ system           

This is a driver drowsiness detection system published by Johns et al., (2003). Their 

aim was to measure the amplitude/velocity ratio of blinks (AVRBs) in alert 

participants and to see how those ratios changed with drowsiness as a result of sleep 

deprivation. The practical significance of any such changes in AVRB, in terms of the 

participant’s performance, was assessed by a new psychomotor vigilance test, the 

Johns test of vigilance (JTV), that also enabled eye and eyelid movements to be 

recorded.  

The Optalert system consists of regular spectacle frames equipped with light emitters 

and sensors, which are used to measure eye and eyelid movements to detect 

drowsiness (Johns & Tucker, 2005). Eye and eyelid movements are recorded by a 

specially developed infrared (IR) reflectance method using 50-microsec pulses of IR 

light every 500 microsec from light-emitting diodes, one pointing at each eye, the 

reflected pulses being detected by adjacent phototransistors. The effect of 

environmental light measured just before each pulse is subtracted from the output. 

The pulse height (position) and the change in pulse height per 10 msec (velocity) are 

calculated each millisecond and displayed on a PC screen that also displays the 

occurrence of each visual stimulus and the participant’s response. Changes in the 

output of the IR detection system were linearly related to the calibrated amplitude of 

eye movements. The main disadvantage of this system is that the users (drivers) have 

to wear spectacles and it uses IR light beam directly into the eyes.   
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3.2.2.2. “Co-pilot” system  

Grace (2001) designed a useful low-cost drowsy driver monitor, with driver 

interfaces. This system consists of a digital camera integrated with a low-cost digital 

signal processor (DSP). This monitoring system, called ‘Co-pilot’, has been used 

successfully in simulators and road vehicles (see Figure 3-1). The Co-pilot measures 

slow eyelid closures as represented by PERCLOS (Percentage Eyelid Closure). 

PERCLOS is defined as the proportion of time that a participant’s eyes are closed 

over a specified period.  

Grace’s current driver interface is based on recent experimental results on drowsiness 

feedback to the driver, and can reduce drowsiness and improve driver performance 

for sleep deprived truck drivers operating a truck simulator. A controlled experiment 

was undertaken with 16 Commercial Driving License (CDL) holders driving a high-

fidelity truck simulator (TruckSim®) to establish the effects of drowsiness feedback 

on: driver alertness-drowsiness, driving performance and driver-initiated behaviours. 

The test simulated a four hours night drive without drowsiness feedback (control 

condition) and one simulated a four hours night drive with drowsiness feedback.  

Although there was significant variability between drivers in drowsiness and 

consequently in the number of drowsiness-based alarms and warning alerts, 

drowsiness feedback tended to have consistent effects on key classes of outcome 

variables, including reduced drowsiness levels, improved driver performance and 

self-alerting activities (driver movements).  The warning triggers are associated with 

PERCLOS calculated over three minutes.  Grace’s research still continues with an 

interface consisting of an audible tone that is associated with the readings of a visual 

gauge.   
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Figure 3-1: The “Co-pilot” system 

3.2.2.3. The ‘Onguard’ Eye Closure Monitor   

Onguard is an optical electronic eye monitor developed by Xanadu Ltd, an Israeli 

company. It is not currently available but the device consists of a small infra-red (IR) 

sensing unit which observes the eye, and an electronic processor which contains 

batteries, alarm buzzer, and switch (see Figure 3-2) (Haworth & Vulcan, 1991). The 

device is designed to be mounted on any standard eyeglass frame (similar to the 

Optalert system). The electronic sensing unit directs a beam of infrared light at the 

eye and measures the reflected light. Eye closures are detected as reductions in the 

amount of light reflected when the eyelid covers the surface of the eye. The 

electronic sensing unit emits an audible alarm when eye blink duration is longer than 

0.5 seconds.  



Indrachapa Bandara, 2009, Chapter 3  69 

 

Figure 3-2: The Onguard eye closure monitor (Haworth & Vulcan, 1991) 

The above system uses the eye blink method but does not use any physiological 

relation with eye blink and driver drowsiness to evaluate sleepiness or drowsiness to 

warn the driver. The average duration of human blink varies between 0.3 and 0.4 

seconds (McWilliams, 1998; Stern et al., 1974) but, under some normal conditions, it 

may increase and be higher than the normal range. The main disadvantage of the 

system is its warning to the driver all the time when the eyes blink durations are 

longer than 0.5 seconds.  

3.2.2.4. The ‘FaceLAB’ system 

The FaceLAB system is a commercial product developed by Seeing Machines 

(Seeing Machines, 2005) for face and eye tracking and measurement. This system 

was developed after four years co-operative R&D between the Australian National 

University, and Volvo Technological Development (Victor, et al., 2001; Fletcher, et 

al., 2003).  

Victor et al. (2001) designed a new visual behaviour measurement tool and 

automated analysis procedure that eliminates the video transcription process often 
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involved in data collection of visual behaviour. Results from a study aimed at 

validating this automated analysis with a standardised video transcription based 

method are presented. The comparison of measurement performance is applied to six 

in-vehicle tasks that were performed in a driving simulator. The car consisted of a 

Volvo S70 instrument panel set on a table with the instrument cluster removed to 

house the two FaceLab cameras (Figure 3-3). A conventional computer game 

steering wheel was used without pedals. A left car door with a rear view mirror, and 

a car seat were added. A camera and video recorder for collection of separate video 

images for transcription was installed. 

 

Figure 3-3: The interior of the simulator used in the study FaceLab system 

(Victor et al., 2001). 

The results show that the automatic analysis of visual behaviour developed in the 

system correlates very highly with the manual video transcription based method 

across all measures. The study showed that differences in average glance duration 

would be more sensitive than the other measures to the loss of time precision in the 

video analysis method. This study compared the automatic analysis of eye movement 

data with a video transcription based method. The results successfully validated the 

automatic analysis method as being highly correlated with the video transcription 

method. Analysing facial expressions and eye blink is required for advanced 

detection methods. With the standard two camera FaceLab system, it cannot track 

either head movements or eye movements outside the head tracking range. By upgrading 
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FaceLab system with more cameras, it is expected to cover the whole driver’s head 

range within the simulator. Victor et al. (2001) suggested that head-mounted systems 

could provide a much better tracking range, giving the participants more freedom of 

movement. 

3.2.2.5. Head Nodding Monitor – Dozer’s Alarm  

A number of companies have marketed simple devices to monitor head nodding by 

drivers (Haworth & Vulcan, 1991). The device consists of an ear piece which hooks 

over the ear and contains a battery; an alarm and angular detector (see Figure 3-4). 

When the driver’s head nods forward beyond a predetermined angle, the device 

buzzes loudly.  

 

           

Figure 3-4: Dozer’s Head nodding monitor (Haworth & Vulcan, 1991) 

This system warns the driver when the head nodding gets near to a certain angle.  

Considering human sleepiness behaviours, head nodding occurs after eyes are fully 

shut with micro sleep or deep sleep in 2-3 seconds. The operation of this device will 



Indrachapa Bandara, 2009, Chapter 3  72 

be too late to warn drivers of the onset of sleep and hence will not prevent potential 

accidents (Haworth & Vulcan, 1991).  

3.2.2.6. The “Head box” system 

Whitfield (2003) developed an in-vehicle eye tracking system using a vision system 

to take video of the eyes and analyze their movements to identify driver drowsiness. 

The hardware involves two infrared light sources and a small camera mounted on the 

instrument panel, and is focused on the driver’s head while they are driving. This 

system is named “Head box” and the software used in the system will move the 

camera to locate the eyes. This method requires sophisticated software algorithms. 

The system tracks drowsiness or lack of focus based on several eye movement 

criteria. The main disadvantages of this system are variation of vehicles inside 

temperature and vibration of cameras causing unreadable results (Misener et al., 

2007). More sophisticated and new algorithms to track eye moments are currently 

being developed. Digital Signal Processors are becoming faster and less costly and 

camera technology continues to improve the system. Recent developers rely on 

expensive CCD (Charge-coupled device) imaging solutions for eye-tracking, but 

research has now shifted entirely to the use of low cost CMOS (Complementary 

metal oxide semiconductors) images, as used in modern cameras. The eye tracking 

R&D project by Whitfield (2003) indicates that the main inhibitors to system 

performance of eye tracking are fast head movements and bright sunlight. Using the 

CMOS high dynamic range sensors that limit the saturation effect of sunlight allows 

the camera to “see” the eyes more clearly. CMOS sensors have several advantages 

over CCDs. They use only 10-20% power of CCDs, making them a good choice for 

battery-powered cameras. CMOS sensors are made using the same techniques and 
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equipment as more familiar CMOS circuits formed in computers, so they cost less to 

produce than CCDs, which require specialized fabrication equipment. Like CCDs, 

CMOS sensors use an array of photodiodes to convert light into electronic signals. 

The weak electronic charge generated by the photodiode is stored in a small 

capacitor. The major difference between CCDs and CMOS sensors is in the way the 

stored charges are converted into a usable signal. A CCD sensor scans its pixels 

consecutively. Stored charges from each row are shifted down to the next row (thus 

the term "charge-coupled") and, at the bottom of the array, the charges in the final 

row are output in a serial stream. The voltage levels of each pixel in the serial stream 

are amplified by an on-chip amplifier prior to output, and sent to either an external or 

internal analog to digital converter (ADC) where the signals are converted into 

digital values which make up the image. Each pixel in a CMOS sensor has its own 

amplifier circuit, so signal amplification is performed before the image is scanned. 

The resulting signal is strong enough to be used without any further processing 

(Litwiller, 2001). 
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3.3. Summary of Drowsiness monitoring devices 

3.3.1. Drowsiness monitoring systems and technique  

Table 3-1: Summary of drowsiness monitoring devices 

 

 

 

 

 



Indrachapa Bandara, 2009, Chapter 3  75 

 

3.4. Summary 

The aim of driver drowsiness warning devices is to provide information to the 

driver that their alertness is below a level compatible with safe operation of a vehicle. 

There is evidence that such warnings are useful to drivers who may be aware that 

drowsiness is increasing, but not aware of the impact of the drowsiness on their 

driving capacity. Some of these devices have benefits for drivers, and summaries of 

these devices and systems in driver drowsiness detection systems, physiological 

measure systems, driver performance measure systems and companies are given in 

Appendix A1, A2 and A3. If the warning occurs early enough in the development of 

drowsiness, such devices could enhance driver alertness sufficient to avoid a 

collision, although many of the devices currently under development, especially the 

driver state measures, will be detecting later stage drowsiness which is unlikely to be 

overcome by a short period of stimulation such as a warning signal. 

All of these systems focus on providing information to drivers that will facilitate 

their driving and warn them of threats to driving safety (Parkes, et al., 2006). These 

systems will also, therefore, function as devices that should respond to the effects of 

drowsy driving in the same way as the measures of driver performance designed 

specifically for driver drowsiness discussed in chapter 2. In the main, the road safety 

problems for these systems are the same, relating mainly to when and how the 

information is conveyed to the driver. The ‘AWAKE’ project concluded that drivers 

should be trained in appropriately responding to warning devices, especially if they 

occur infrequently as this may reduce the problem of startle effects which can 

negatively affect driver safety. Further research is needed on different approaches to 
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providing warning to drivers of increased safety risk. Other approaches to driver 

assistance and warning signals which have been evaluated, including vibration of the 

seat and force feedback through the steering wheel in response to lane deviations 

(Mohellebi et al., 2001). Seat vibration was a pilot study (Heitmann et al., 2001), 

however, and the method needs more validation under simulation and on-road 

conditions.  

Through the experimental design and finished products of driver drowsiness systems, 

further understanding is expected about warning the driver before they get into 

dangerous levels of sleepiness or drowsiness. It is believed that drowsy impaired 

driving can be successfully mediated by simple reliable technology. Some of the 

problems with the drowsiness detection devices currently under development refer to 

the stage of drowsiness that is being detected. More research and development is 

needed before effective drowsiness monitoring devices can become standard features 

in on-road vehicles.  

The next chapter shows a novel approach to sleep/ drowsiness detection using simple 

and safe technology. An explanation of the new driver drowsiness detection system, 

including eye blink detector and driving simulator is given. The development of a 

subjective drowsiness measure questionnaire is explained. Furthermore, the method 

of the main investigation is discussed.    
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4.1. Introduction  

In this PhD thesis, drowsiness and sleepiness are considered as synonymous, but 

the term drowsiness is used. The term drowsiness describes the grade of 

wakefulness, tiredness or vigilance.    

The PERCLOS system (Wierwille, 1999) introduces a possible indicator of 

drowsiness. It is based on the registration of lid closure being greater than eighty 

percent. It has been suggested (Knipling, 1998) that an increasing blink rate could 

indicate moderate drowsiness and increase of blink duration severe drowsiness. The 

Johns Drowsiness Scale (Johns et al., 2003), based on a combination of several 

weighted variables, including amplitude–velocity ratios of eye lid closure, was 

introduced and validated against different levels of impairment in driver 

performance. It is calculated as the change of position of the eyelids during a blink, 

from eyelids open to eyelids closed, in uncalibrated units (A), divided by the 

maximum change of position (delta-A) per 10 msec. These two variables are known 

to be highly correlated in alert participants (Evinger et al, 1994).  

These are the two main methods currently in use for driver drowsiness detection. 

Both systems measure eye blink from the front of the eye using the eye pupil’s size 

changes and Infrared (IR) reflection. One question for this warning system is how 

often it sets off a false alarm. Another question is how often a severe sleepiness is not 

detected (missed) as the driver sleeps with open eyes (Gillberg, et al., 1996). Use of 

IR reflection for blink detection is still questionable when considering health and 

safety issues (Llorente, et al., 2003).  

In this PhD research, a new method is developed for monitoring the drowsiness of 

drivers continuously, based on the detection of eye blink from the side of the eye by 
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measuring eye sclera area changes to extract eye blink frequency and duration.  

PERCLOS and JDS (Johns drowsiness scale) systems cannot measure drowsiness by 

detecting or tracking the eye from the side.  

An underlying general question is whether the individual process of falling asleep 

can be characterised by group means (measures of drowsiness for group of people) 

(Parkes et al., 2002) or is it necessary to individualize the diagnosis of drowsiness?  

This research examines closely individual changes from driver performance tests and 

reaction time measures as the drivers increasingly became drowsiness d. The new 

method focuses on eye blink duration and blink frequency correlation with driver 

performance for each individual driver.   

4.2. Detailed Research Methodology 

There are many approaches to measuring eye movements and blink; most are 

more suitable for laboratory experiments than as an adjunct to normal vehicle use. 

The proposed system captures eye blink from sides of the eye and measures the eye 

blink durations and frequency to correlate with subjective performance data. It has 

been found that eye blink durations and frequencies are highly correlated when a 

driver becomes sleepy or inattentive to driving. Looking at the problems presented 

by current eye tracking products and research, the proposed system has many 

advantages. These advantages include the indirect vision of eye: this method will 

remove any health and safety problems which may result from eyes being subjected 

to projection of an IR beam to the eye. The other advantage is removal of head 

movement analysis. Complex and sophisticated algorithms are normally required to 

detect eye movements with head movements in video detectors placed in front of the 

drivers. Additionally, this system avoids complex adaptive background model 
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algorithms required to segment the foreground (eye blink) from the background 

image, due to lighting changes (Maragos, 1987). In the proposed system components 

are fitted to the headphone to illuminate the eyes and record eye sclera changes. 

Chapters Two and Three illustrate how drowsiness can be measured through 

physiological measures, performance measures, self report or ratings. Physiological 

measures have frequently been used for driver drowsiness detection as they can 

provide a direct and objective measure. Possible measures are eyelid closure, eye 

movements, blink duration, pupil size change measure, skin conductance and 

production of the hormone adrenaline, Electroencephalography (EEG) and heart rate.  

Considering all physiological methods, eyelid closure (eye blink) has been found to 

be a very reliable predictor of the drowsiness (Erwin, 1980) and several studies on 

drowsiness detection found that eyelid closure, eye movements and pupil size 

changes were the most reliable predictors in driver drowsiness detection. 

Electroencephalography (EEG) results have also been shown to be a reliable 

indicator of drowsiness. The problems with both Electroencephalography (EEG) and 

Electrooculography (EOG), (see EEG and EOG methods in Chapter 2, section 2.5.4),  

are the requirements for obtrusive electrodes which make them unsuitable for use in 

cars, as cabling of drivers would not be practicable or acceptable. Cabling methods 

are simply not feasible for real-time drowsiness detection systems.   

4.2.1. Physiological Measures 

The proposed method for monitoring the eye blinks and blink duration is different 

from the most common method used by Johns et al., (2003). Johns’ eye blink 

detection system is similar to the method described by Leder et al. (1996). It is 

different from the more widely used sclera reflection method of Torok et al. (1951). 
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Johns used pulses of invisible infrared light from an LED positioned below and in 

front of the eye, housed in a frame as would be used to hold prescription lenses. All 

other eye blink detection systems described in Chapter 3 use a similar method, as 

described by Johns and Tucker (2005).  

The system which is described in this thesis to measure eye blink is new to driver 

drowsiness detection. It minimizes the disruption to the participant (driver) while 

detecting the eye blink. Considering the health and safety issues for the eye, it is very 

safe to use. Figure 4-1 shows the equipment arrangement. The key innovative idea is 

to shine the light from a low emitting green LED in to the side of the eye to 

illuminate the eye sclera region with a unique spectrum of light. By using a head 

mounted sensor, the problem of analysing head movement is minimized.  

 

Figure 4-1: Equipment Arrangement of Drowsiness Experiment 
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4.2.2. Apparatus  

Figure 4-1 shows the equipment arrangement for the drowsiness experiment. Items 

of equipment are discussed separately in the following sections. 

4.2.2.1. Simulator  

The simulator used for this research was a computer-controlled, stationary 

automobile driving simulator (see Figure 4-2). The simulator remained static during 

the entire experiment. The participants viewed the simulator display in the large 

screen and traffic signal in the small screen. The steering wheel of the simulator had 

two push-buttons for the participants to use as emergency brakes and for speed 

control. Three paddles were used to control acceleration, braking and reaction time 

measurements (e.g. traffic signal control). The driving simulator environment is 

important for this research because it can affect the driver’s performance.  

This simulator was designed to measure driver reaction time, average deviation from 

centre lines, average speed and maximum speed. Driver performance data are stored 

every ten seconds and driver reaction time data is saved every one second for further 

analysis. A detailed description of the driving simulator is given in Chapter 6.  
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Figure 4-2: Driving Simulator 

4.2.2.2. Eye Blink Detection System 

The VC, (Vision Chip) (Komuro et al., 2003) is special purpose tracking hardware 

that enables the eye tracking system to track the movements of the eye with the 

required frame rate. Essentially, the VC is a camera system with integrated image 

processing capabilities. This section describes how the images of the eye are taken, 

how the tracking of a target is performed and how its position is calculated. In 

particular, the functionality that is used to perform image segmentation by 

binarization and region growing is addressed. 

The system tracks eye blinks from the side of the eye. The reliable detection and 

tracking of eye blink are important requirements for measuring eye blink duration 
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and blink frequency in detecting driver alertness. Image acquisition and image 

processing algorithms are used for blink detection. By using a spectacle mounted 

sensor (Figure 4-3), the problem of analysis of head movement is much reduced.  

There are three-steps to the eye blink detection procedure: background estimation, 

template matching and tracking. MatLab Simulink software is used to design a video 

capturing algorithm. Simulink software provides a comprehensive set of reference-

standard algorithms and graphical tools for image processing, analysis, visualization, 

and algorithm development (Matlab Simulink, Version 7.0.4, 2005).  The system is 

initially designed to allow the data to be stored for off-line analysis.  
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Figure 4-3: Eye Blink Detection System. 
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4.2.2.3. Vision Chip 

Figure 4-4 shows the main components of the CMOS 350K Vision Chip setup. The 

depicted circuit board integrates the Cypress CMOS 350K chip and the Vision Chip 

(VC) component. The CMOS 350K chip contains a CMOS compatible 

microcontroller and circuit necessary to connect to the chip via a USB connector. 

The USB interface is connected to the PC and controls its operation from Windows 

system32 architecture. 

The connection to the tracking component is established using port pins. The MC 

(microcontroller) program uses regular port commands to control the VC via these 

connections.  

 

Figure 4-4: The CMOS 350K Vision Chip 

 

The Charge-Couple Device (CCD) digital vision chip captures eye blinks from the 

side of the eye. The CCD camera captures ‘144x176’ pixels resolution video images 

at a capture speed of 30fps (frame per second) and saves in AVI format. The average 

time it takes for a complete human blink is about 300 to 400 milliseconds or 3/10ths 

to 4/10ths of a second (McWilliams, 1998).  This is only an average and can differ 
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from person to person.  Also, there are other factors that can affect blink speed, such 

as drowsiness, medications, diseases, and injury to the eye area (Planque, et al., 

1991).  

The VC lens is adjustable and has a focal length of 3.0 mm. The image is projected 

onto a sensor, with a pixel size of ‘144x176’. The Logitech Quickcam Pro 3000 was 

chosen for the following reasons: 

� The VC component makes frame rates of up to 30 fps, which is ideal for 

rapid eye blink tracking. 

� The sensitivity to infrared illumination is a requirement in respect to low light 

conditions. 

� The low price is an important advantage in comparison to other high speed 

eye tracking systems. 

� Due to its USB connection, the Logitech Quickcam Pro 3000 is easily 

integrated into a computer system. 

� The small size makes it easy to fix on headphone and will not disturb the 

participant.  

 

The relevant functions performed using the Vision chip are the following: 

� Tracking of eye sclera region. The Logitech Quickcam Pro 3000 lens can be 

focused to a minimum of 1 cm distance.    

� RGB/HSV colour adjusts to increase Green effect on images. The inherent 

problem is that colour-based methods are usually extremely sensitive to noise 

caused by changes in illumination. This was the foremost problem in video 

based detection systems used for eye blink detection. This PhD study has 
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found a solution to overcome this problem. The VC software allows changing 

the intensity of RED, BLUE and GREEN colours. Reducing the red and blue 

intensity and increasing the green intensity will minimize the effect of 

changes in illumination in captured images. Details of this new method will 

be discussed in the next section.          

� Capture images in low intensity conditions. The IR sensitive feature in 

Logitech Quickcam Pro 3000 will increase the image quality in low light 

conditions (colour sensitivity will decrease but image quality will improve).   

� Maintain steady frame rate of 28 ≈ 30 fps, able to capture rapid eye blinks.      

 

Captured RGB images convert to grey and binary images. The tracking and all 

calculations are based on the Grey and Binary image conversion using the Matlab 

program. The analog to digital conversion necessary for greyscale image conversion 

is performed by an ADC (Analog Digital Converter) built on the VC. Figure 4-5 

shows the schematic of the hardware setup for the eye tracking device. The VC is 

placed 3 cm from the eye. This video device captures eye images every 1/3 of a 

second and this sampling rate is adequate to capture the fastest blink.   
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Figure 4-5: Schematic of the hardware setup for the eye tracking device. 

4.2.2.4. Noise reduction caused by illumination. 

The choice for the illumination was influenced by the following factors: 

� Segmentation 

� Skin colour 

� Disturbance caused by light source 

� Disturbance caused by other light sources 

All these factors have an impact on the image analysis to be performed, as discussed 

below. 

Segmentation: To be able to perform the binarization to separate the eye sclera 

region from the rest of the image, a threshold has to be found. The higher the contrast 

of the images is in general, the more reliably the threshold can be found, and the less 

sensitive the binarization is to other effects such as the distortion caused by the lens. 

Skin Colour:  Skin colour can affect the detection of the eye sclera region. Skin 
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regions that are bright (R, G, B approach 255) reflect light intensity similarly to 

reflection of light from the eye sclera region (white area). This affects the 

measurement of the eye sclera area. Reducing the intensity will cause dark images 

and it will also be difficult to measure the size of the sclera region. 

Disturbance caused by other light source: Environmental light can be a major 

obstacle to successful image processing (Jahne, 2003). The other aspect is the 

degrading spectral sensitivity of the VC for wavelengths close to the infrared part of 

the spectrum. In low light conditions, the VC will pick the IR illuminations from 

other sources and this will affect the tracking. The use of a Green LED light source 

overcomes this problem. The green LED placed around the VC will project the low 

illumination green light source to eye regions. Reducing the red and blue intensity 

values and increasing the green intensity greatly reduces the problem of skin colour 

and other light source effects. The VC microcontroller has an RGB converter to Hue-

Saturation-Value (HSV) colour space models. HSV contain 128 colours of each 

RGB colour. Reducing R-to-20, B-to-20 and increasing G-to-80; (R-red, B-blue and 

G-green) will illuminate an eye sclera region clearly from the skin around the eye.  In 

addition, the reduction of Red and Blue colour on the VC will reduce the skin 

brightness during capture. Additionally, an increase in green light gives very low 

reflection form the human skin.  

The LED sensitivity system is depicted in Figure 4-6 together with the specifications 

of three tested LEDs. The LEDs with a wide beam angle are more suitable and will 

minimize the disturbance to users. Experiments with narrow beam LEDs generate 

high illumination light spots and disturb the participant. Wide beam LEDs gives a 

more diffuse illumination to cover the eye sclera area more evenly.  
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Figure 4-6: Specifications of the green LED setup 

4.3. Driving Performance Measures 

 A review of the previous literature identified driving performance measures 

that could be used in an experiment to identify an issue of concern. Previous studies 

have generally used sleep deprivation as the independent measure, and looked at 

average driving performance across different levels of sleep deprivation (Otmani et 

al., 2005). Participants attend several sessions in various stage of sleep deprivation, 

and driving performance is compared across sessions. In these studies, the driver 

performance was used to compare eye blink behaviour to measure drowsiness or 

sleepiness. However, it cannot simply be assumed that being sleep-deprived is 

equivalent to begin drowsy, or that being non-sleep-deprived is equivalent to being 

non-drowsy (Bittner et al., 2000).  Drowsiness changes over time, and can occur 

when the participants are having a lack of sleep condition as well as normal 

condition (Suh et al., 2007). One advantage of this research, in comparison to other 

studies is the measuring of the effect of changing drowsiness over time, rather than 

simply measuring average driving performance across discrete levels of sleep 

deprivation.  
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One problem concerning driving performance measures, as indicators of drowsiness, 

is inter- and intra- individual differences in driving performance, which could be 

resolved by a combination of different measures. It has been suggested that the 

combination of performance measures with physiological measures (e.g. average eye 

blink durations and blink frequency) would give a sufficiently reliable detection 

method (Johns, 2003).       

4.3.1. Participants  

Eighteen participants were recruited to take part in the simulator test and four of 

them participated in two sessions, one of which was in a sleep deprived condition. 

The eighteen participants who attended at least one session comprised fourteen males 

and four females (age range 20 years to 70 years), with an average age of 35.6 years 

(SD=12 years). All participants filled out a questionnaire regarding subjective details 

and sleeping habits before the experiment was run. In addition, four participants who 

were in a sleep deprived condition (less than three hours during the last 24 hours) 

were also analysed. The selected participants are very diverse with respect to 

ethnicity, gender and age. Participants participated in different time sessions and 

different sleepiness conditions. There were two sessions: session one was in the 

morning (9-11:45am) and session two was in the afternoon (12-3pm).  Each 

participant drove approximately 30-40 minutes. All the participants had a five to ten 

minutes training session to get used to the simulator. In order to examine the effects 

of driver state, the sleep deprived participants participated in the same driving 

session as the one in which they participated in the good sleep condition. Participants 

were instructed to drive at a speed of 0 to 60 km per hour, and the simulator speed 

was set to a maximum of 60kmph.      
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Several exclusion criteria were applied when recruiting participants. Shift workers 

and people with diagnosed sleeping disorders were excluded due to the possibility of 

having disrupted circadian rhythms, and the potential to respond with difficulty after 

a night of sleep deprivation. Sufferers of severe motion sickness or epilepsy were 

prevented from participating because of the potential for adverse reactions in the 

driving simulator. People who wear spectacles to drive also participated and the 

detection camera was mounted to the spectacles. People with narrow eyes were also 

included because their eye-sclera shape helped to calibrate the detection system. All 

the sleep deprived participants were volunteered are instructed not to have a morning 

sleep. All participants were advised not to take any drugs or alcohol before the 

simulation test. Finally, transport was arranged for the participants who volunteered 

in a sleep deprived condition.  

4.3.2. Driving Scenarios 

The simulation test consisted of a two-lane rural road, with centre lines and lateral 

edge lines.  All participants were asked to take part in a driving simulator-based 

experimental trial in which they were required to drive along a scenario partitioned 

into a “rural” section, representing dual lane country roads with hills and bends, a 

“straight” section, representing a stretch of same road, fairly straight, open road, free 

of traffic. The participants were seated in the driving simulator at a distance of 1.5 

metres from the screen. The simulation is intentionally designed to increase the 

sleepiness of the participants by inclusion of the above effects. The road edges and 

out-of-bounds were created as rough surfaces, which provided an audio feedback to 

participants (participants) if they ran off the road. It was considered that having the 

rough road edges was a more realistic option than having the experimenter verbally 
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advise the participant that they must return to the road. The driving scenario was a 

loop of approximately two to three minutes to continue one loop, with average speed 

of 60 km/h. Participants were free to drive at any speed between 0 to 60 km/h. An 

on-screen timer (clock) was available. The signed speed limit for most of the 

scenario was 60 km/h because at greater speeds it is difficult to control the vehicle on 

the centre line of the road. The single driving session for each participant tested 

lasted approximately 30-40 minutes.  

4.4. Variables Measured Throughout the Driving Simulator Test 

4.4.1. Eye Blink Data  

Eye blink frequency and duration were measured continuously by the head-mounted 

video system (the video camera attached to audio headphone system). As a second 

measure of drowsiness, the percentage of time the eyelids were closed (PERCLOS) 

was measured throughout the driving sessions using the MATLAB program.   

4.4.2. Driving Performance Data 

Three driving performance measures were collected during the simulation. These 

consisted of: (1) steering error (deviations from centre), (2) Out of bounds and (3) 

Reaction time measure. Each of these measures is described below. 

1) Steering Error (deviations from centre line): The lane deviation 

provides a valuable measure of driving task interference that has resulted 

in a measure of performance of concentration. The absolute value of the 

average deviations were collected every second (The absolute value of 

deviations is determined by ignoring the + or – sign and taking all values 
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as positive). The absolute value was then averaged over the 10 seconds. 

Greater deviations from the centre line suggest degrading driving 

performance or lack of concentration.  

2) Out-of-Bounds: Large lateral accelerations provide insight into the 

degree to which a vehicle is off-track and, therefore, the magnitude of 

inattention. When the participant drives out of the road, it will record the 

time and count the number of times the vehicle went out-of-bounds.  

4.4.3. Reaction Time Data 

Participants were required to push the break paddle as quickly and as accurately as 

possible based on the colour light change presented (e.g., Green-to-Red). This test 

provided a simple reaction time, reflecting the participant’s awareness while driving; 

faster reaction time implies an improvement in situation awareness. Reaction time 

was calculated by subtracting the time when the button was pressed from the time 

when the colour change presented (Red-to-Green). In addition, a too-fast response 

(reaction time less than 100 ms) or a delayed response (reaction time longer than 20 

s) was not included in the data analysis, and was regarded as an error.  

4.4.4. Speed related data  

Average speed and maximum speed is measured during the simulator test. 

1) Average speed: Vehicle speed can be considered a vehicle state that, at 

some level, has to be held constant in most circumstances. Therefore, 

accuracy and variations in speed were used to evaluate performance. 

Vehicle speed is a common indicator of driving performance, as driving 
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speed is affected by changes in attention and workload. Previous research 

(e.g., Wierwille et al., 1990) has shown that drivers adapt to the increased 

task demand by modifying their behaviour and driving more “vigilantly”. 

Monty (1984) found speed maintenance to be a sensitive measure of 

changes in the amount of attention demanded by secondary driving tasks. 

Drivers are required to make instant changes to throttle and braking to 

maintain a constant speed while driving. These are very difficult tasks and 

driver attention might veer away from maintaining constant speed. Mean 

and standard deviation of the speeds are then measured for each 10 

second segment.  

2) Maximum Speed: Rapid driving speed changes can also provide a 

sensitive measure of performance. For example, consider a driver driving 

a vehicle and performing a secondary, colour light change task that 

requires him/her to look away from the driving scene. At some point, the 

driver glances back to the driving scene and realizes that an unanticipated 

event is occurring (e.g., sharp bend ahead). The driver reacts to this event 

by quickly and firmly depressing the brake pedal. This reaction results in 

vehicle deceleration that is greater than would occur in normal braking 

situations. Then the driver has to accelerate the vehicle back to normal 

speedily. Since the maximum speed is a potentially important variable, 

the maximum speed (MAXSP) is measured during each 10 second 

segment.  
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4.5. Procedure  

 Participants (participants) who expressed interest in participating in the test 

were informed in detail about the nature and purpose of the research, and provided 

with an explanatory statement. Participants who volunteered to participate in both 

sessions had their sessions arranged on two different dates. (Four participants 

volunteered to participate in the sleep-deprived conditions.) Simulator test time was 

divided into four sessions, two in the morning and two in the afternoon.    

All eighteen participants were asked not to consume any alcohol, caffeine or 

stimulants before the test. Questions in the general questionnaire covered the sleep 

behaviour in the night prior to the test. Participants were seated in the driving 

simulator, and drove through 5-10 minutes to become familiar with the controls and 

handling characteristics of the simulator. Upon arrival for their first experimental 

session, participants completed a questionnaire. 

After the familiarisation drive (10 to 15 minutes), the eye blink detection system was 

set up to monitor the participant’s eye blink and blink durations. Participants were 

informed of the possibility of simulator sickness and asked to report any symptoms if 

they occurred. Participants were instructed to drive on the centre line of the road. At 

the beginning of each driving simulation session, the data logging system for the 

driving simulator and eye blink detection system were initiated at the same time to 

ensure that the data could be matched for future analysis. Once all of this was 

completed, the participants began the test drive.   

The simulator test is 30-40 minutes. The on screen clock helps the participants to see 

the simulation time. It is at the participants’ discretion to leave the test at any time 

within the 30-40 minutes.  After finishing the simulation test, participants filled in 
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the final two questions in the questionnaire describing the sleepiness or tiredness 

level after the simulation test.  

Study limitations concerned design, biases, and in many cases, small sample sizes. 

The number of participants involved in this current research could be viewed as 

being relatively small for a statistical analysis perspective, and in comparing to other 

studies concerning driver drowsiness. For example: Johns et al. (2003) utilised 26 

participants; Campagne et al. (2004) had 46 participants; Bittner et al. (2001) studies 

employed 600 participants.   The simulator interface devices (e.g. steering wheel) 

were fixed to the moveable desk placed in front of the projector screen; so this not 

strictly realistic.   The simulator tests were conducted under normal fluorescent light 

and the room lighting conditions were changeable because of daylight changes.   The 

simulator setup room was situated near to the highway and the room temperature was 

maintained constant by a central air-conditioning circulation system. Whilst these 

extraneous factors, such as noise, light, humidity, were not controlled, they are 

assumed to have an insignificant impact upon driver performance.      

4.6. Ethics 

All participants were warned of ‘potential driving sicknesses’ during the test. 

They were required to fill in an informed consent form which stated that all results 

would be anonymized.  Any questions concerning the instructions, the informed 

consent form, or the experiment in general were answered. Safety of the sleep 

deprived participants has been considered and transport was arranged before and 

after the test. These arrangements were approved by the relevant ethics committee at 

Buckinghamshire New University.   
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4.7. Summary  

 The eighteen participants participated in different time sessions in an alert 

condition, and four of them volunteered in a sleep deprived condition. The proposed 

method in this study is well within the capabilities of modern real-time embedded 

digital signal processing hardware to perform in real time using MATLAB Simulink 

® software. The proposed methods thus might be used to construct and test a 

portable embedded system for a real time alertness-monitoring system. Identification 

of physiological variables that correlate with driver performance measures may 

enable predictors of driver impairment to be developed. This will be discussed in 

chapter 8. 

Most other research studies have used relatively large sample sizes and were 

concerned with just one or two measures from the participating individuals (e.g. 

Epworth Scale, reaction time, lane deviations). Considering the small sample size 

used in this current research, it was necessary to pay attention to a broader range of 

individual characteristics. Consequently, 12 different measures were collected from 

each participant; with seven of these being measured over time (e.g. blink durations 

and frequency were measured every second during the 40 minute test, corresponding 

to 2400 data points).  

The next chapter explains the development of the Eye Blinks Detection System. The 

system tracks eye blinks from the side of the eye. Image acquisition and image 

processing algorithms are used for blink detection. This chapter explains the 

development of a headphone mounted sensor and the three-steps of the eye blink 

detection procedure: background estimation, template matching and tracking. Video 
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and image acquisition tools, signal processing tools and data analysis tools in 

MATLAB Simulink ® software are used to design eye blink detection systems.  
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5.1. Introduction   

Most of the available measuring methodologies for driver drowsiness analysis are 

laboratory-oriented and their applicability under field conditions is limited; their 

validity and sensitivity are often a matter of controversy. Spontaneous eye blink is 

considered to be a suitable ocular indicator for drowsiness diagnostics (Caffier, et al., 

2003). To evaluate eye blink parameters as a drowsiness indicator, most methods use 

a contact-free measurement of the spontaneous eye blinks using infrared (IR) sensors 

and video cameras to record eyelid movements continuously. Experimental results 

show that several parameters of the natural eye blink can be used as indicators in 

drowsiness diagnostics (Yano et al. 1999; Al-Qayedi and Clark, 2000; Caffier, et al., 

2003). The parameters of blink duration and reopening time, in particular, change 

reliably with increasing drowsiness. Also, the proportion of long closure duration 

blinks proves to be an informative parameter. Some results demonstrate that the 

measurement of eye blink parameters provides reliable information about 

drowsiness/sleepiness, which may also be applied to the continuous monitoring of 

the tendency to fall asleep. 

A few methods have been proposed for automatic blink detection. For example, 

Yano, et al., (1999) use frame differencing for eye blink detection. Frame 

differencing devices the subtract of two consecutive images to identify any minor 

pixel changes occurring in a sequence of images. Frame differencing allows quick 

determination of possible motion regions. If they are detected, optical flow is 

computed within these regions. The direction and magnitude of the flow field are 

then used to determine whether a blink has occurred. Al-Qayedi and Clark (2000) 

track features about the eyes and infer blinks through detection of changes in the eye 

shape. Smith et al. (2000) try to differentiate between occlusion of the eyes (due to 
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rotation of the head) and blinking. The participant’s sclera (the white of the eye) is 

detected using intensity information to indicate whether the eyes are open or closed 

i.e., a blink is occurring. Black et al. (1998) detect blink using an optical flow 

algorithm but the system restricts motion of the participant and needs “near frontal” 

views in order to be effective. The reported 65% success rate in detecting blinks 

seems to be too low for driver drowsiness or sleepiness detection (Black et al. 1998). 

Generally, eyes are tracked and comparisons of scores between the ‘open eye’ and 

the corresponding ‘closed-eye’ template are used to detect blinks. Use of these 

methods makes it difficult to measure blink durations accurately. Another 

disadvantage of the system is that changing camera positions require the whole 

system to be retrained.  

This chapter describes the development of an eye blink detection system to capture 

real-time eye images using prototype computer vision systems for monitoring driver 

vigilance. The main components of the system consist of a head mounted video 

camera, a specially designed system for real-time image acquisition for off-line 

analysis and for controlling the eye illuminator with specially designed luminosity 

control systems. Various computer vision algorithms have been developed for 

simultaneously monitoring various visual bio-behaviours of eye blink that typically 

characterize a driver’s level of drowsiness (Caffier, et al., 2003). MATLAB Simulink 

is the software used to develop the eye blink detection algorithm. For details about 

MATLAB Simulink software, see Appendix –B2.    

After this introduction to eye blink detection systems, section 5.2 describes the 

hardware used for capturing eye blinks. Section 5.3 discusses eye blink capture speed 

and properties of human blink. Section 5.4 describes the methodology for the 



 Indrachapa Bandara, 2009, Chapter 5  103 

                                          

confident measurement of eye blink detection. Section 5.5 describes the proposed 

new system. Section 5.6 describes the method of displaying results.  

5.2. Camera Hardware 

The primary item to be considered in image acquisition is the video camera. 

A review of several journal articles reveals that face and eye monitoring systems 

have used an infrared-sensitive camera to generate eye images (Eriksson and 

Papanikolopoulos 1997; Grace et al., 1998; Perez et al., 2001; Singh & 

Papanikolopoulos, 1999).  

Instead of ‘normal’ light, most of the eye tracking systems uses IRLED (Infrared 

Light Emitting Diodes) to illuminate the eye. Using a light source that is invisible to 

the user has the advantage that the light does not affect the field of view, but 

exposure of the eye to an IR light beam for a long time will damage eye cells. This 

disadvantage is one of the greatest risks when using invisible IR light to detect eye 

blink. For this reason, the new system uses a green LED light source attached to the 

camera to illuminate the participant’s eye. The camera used in this system is a CCD 

camera.  

Figure 5-1 shows the prototype design of the video capture device setup. The CCD 

camera used is light sensitive. The ICNIRP (International Commission on Non-

Ionizing Radiation Protection) guidelines chosen for this thesis are described by 

Sliney et al. (2005). These guidelines have been chosen as they provide a good safety 

measure while not making unreasonable worst-case assumptions that do not apply to 

the blink detection system, and low green light illumination levels is well within the 

safe range of visible wave length (for the visible light range, see Appendix B2) .  
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Figure 5-1: Prototype system of Eye blink capture device 

5.3. Frame Resolution and Capture Speed 

The next stage of any image acquisition system is to convert the video signal 

into a format which can be processed by a computer. The camera captures 144x176 

pixels resolution video images at 30 fps (frame per second) and in AVI format. The 

video capturing speed is fast enough to adequately capture the fastest human eye 

blinks.   

5.3.1.  Human Eye Blink 

Eye blink activities have been assessed by different investigators over the last 75 

years for development in human drowsiness analysis for different purposes 

(Doughty, 2001). Kircher et al. (2002) report that the spontaneous eye blink rate 

(SEBR) was consistently dependent on the activities of subjective behaviours (e.g. 
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reaction time).  The statistical analysis (with calculation of 95% confidence interval 

values) indicated that reading-SEBR is normally between 1.4 and 14.4 eye 

blinks/min, primary gaze-SEBR between 8.0 and 21.0 eye blinks/min and normal-

SEBR between 10.5 and 32.5 eye blinks/min for normal adults. The average blink 

rate for a normal adult is almost 23 eye blinks/min. The average time taken for a 

complete human blink is about 300 to 400 milliseconds (McWilliams (1998); Stern 

et al., (1974)).  

5.3.2. Accuracy of Eye Blinks Capture  

Figure 5-2 (a) shows the captured total eye blinks for all 18 participants in their 1
st
, 

10
th

 and 30
th

 minute in the simulator test. Generally all the participants had a low 

blink count in the 1
st
 minute, with this gradually increasing though to the end of the 

test. The participants showed an average blink count of 22.94 at the 30
th

 minute. 

Participants 6 and 11 showed a relatively high blink count at the 30
th

 minute. The 

blink frequency increases gradually and settles to the normal average human blink 

rate (23 eye blinks/min) during the last 10 minutes of the test. Figure 5-2 (b) shows 

the average blink durations for all 18 participants at the 15
th

 minute of the simulator 

test. The average blink duration at the 15
th

 minute for all participants is 0.27 seconds. 

The alert participant’s blink durations varies between 220 – 350 ms.  Figure 5-2 (c) 

shows the frame by frame images of complete eye blink in RGB colour images and 

the converted grey images below with frame numbers. The capturing system is 

calibrated to start the capture of the eye sclera region when the eye lid shuts ½ way 

to close and reopen to ½ (see more details in section 5.5.3). The detection system 

captures a single frame about every 33 ms. In Figure 5-2 (c), the eye blink starts from 

frame 4 and ends in frame 12. In this example, the number of frames for the 
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complete blink is 9, and the total duration is 33x9 = 297 milliseconds. Detection 

system measured value = 0.00288 (with the sampling time of 0.01 s) ≈ 288 

milliseconds. The current system’s eye blink capture accuracy is 97% (eye blink 

durations and frequency).  

 

Figure 5-2(a): Total eye blinks at 1
st
, 10

th
 and 30

th
 minute for all participants   
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Figure 5-2(b): Average blink durations at the 15th minute during the test for all 

participants 

 

 

 

Figure 5-2(c): Frame by frame images of the complete eye blink 

5.4. Exploiting the confidence measure for eye blink detection  

The feature of the eye that affects the task of tracking is the eye sclera region, 

the white area of the eye. In building a system for this task, it is necessary to simplify 

and use workable models of the eye. It is important to judge these simplifications and 
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the performance of a system for a given application, and regard every measured 

characteristic separately. In general, the purpose of an eye blink tracking system is, 

simply stated, to monitor eye blink durations and eye blink frequency as accurately 

as is necessary to characterize a driver’s level of vigilance. It is envisaged that this 

off-line system will eventually be applied to a real-time system with the application 

of suitable changes to hardware and software.  

5.4.1. Eye Terminology 

To discuss the eye, it is necessary to introduce some common terms to refer to 

different parts of eye anatomy (Mather, 2000). Figure 5-3 depicts a cross-section and 

a frontal view of the eye. The important area for detecting eye blinks described in 

this research is the eye sclera region. In the front view of eye, the area between the 

outer region of eye cornea and two ends of the eye covers the sclera region.  

 

Figure 5-3: Eye Anatomy (Werkmann, 2005) 

5.5. Proposed System  

The system proposed here reduces complexity by performing frame auto 

thresholds and template matching. The eye blink tracking system consists of three 

steps: Background estimation, Template matching and Eye sclera tracking (see 
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Figure  5-4(a)). Combination of these steps is used to analyse eye blink dynamics. 

The algorithm does not require any camera calibration and is applied for a range of 

environmental situations. Also it does not require users to do any pre- preparation 

prior to having their eyes detected. The advantage of using a head mounted camera is 

the removal of the need for head movement analysis.  Figure 5-4 (a), shows a block 

diagram of the eye blink detection systems (EBDS). The template matching, 

background estimation and eye tracking steps will be discussed in this chapter. 

Figure 5-4(b) shows the complete eye blink detection system, using MATLAB 

Simulink. A full explanation is given in the next section.  
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Figure 5-4 (a): Block diagram of Eye Blink Detection System 
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5.5.1. Video Capture and Conversion 

Large amounts of noise appear if the image of the eye is binarized with an 

inappropriate threshold. Together with the fact that the threshold varies for different 

areas around the eye, this comprises a serious obstacle to successfully tracking the 

eye sclera area. Image noise frequently occurs when the eye lids are closed. The 

ability to cope with a range of varying lighting condition is a challenge for 

segmentation. The background light will strongly affect the tracking of the eye sclera 

section (white area) from sides from the eye.  

5.5.1.1. Effect of changing illumination in detection 

Eye sclera area variations are used to detect blink and blink duration. The intensity 

change on the face is a crucial effect because it will increase the intensity on eye 

lashes. This links to segmentation of the eye outer area and sclera area and its effect 

on detection.  Since this design is a prototype, a controlled lighting area was set up 

for testing. The proposed technique to overcome the problem of changes of 

illumination is the low light reflection method. Considering the lowest reflection 

colours from human skin helps to design this system (see Appendix B2, human skin 

properties). The green light is the lowest reflection colour from the skin (Brill & 

Finlayson, 2002), and controlled illumination conditions will help to overcome the 

skin reflections problem. Table 5-1 shows the spectral reflectance curves of skin and 

average and extreme skin spectra for different skin groups. The skin spectra between 

the groups are mainly separated by a bias. Therefore, assuming a reasonably linear 

camera, all skin chromaticies are very close to each other (Brill & Finlayson, 2002). 
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Use of low emitting green LED and increase of green value in RGB colour control in 

the camera will overcome this problem.  

Table 5-1: The spectral reflectance curves of skin (Wyszecki & Stiles, 1992). 

 

 

Low surrounding light (ambient light) is also important, since the only significant 

light illuminating the eye sclera area should come from the green LEDs. The 

background light change has a greater effect on RGB (colour) image analysis. To 

overcome this problem, the capture hardware properties were adjusted by reducing 

Red and Blue colour intensity and by increasing Green intensity to illuminate the eye 

sclera area (according to skin reflections). This setup is more effective and reduced 

the capturing of bright skin areas around the eye comparable to eye sclera. Figure 5-5 

(a) and (b), illustrate the difference between colour RGB images and intensity 

increased green image conversion. The system was tested for blue light, which is 

lower than green reflection from the skin, but it did not show better results compared 

to green light. The blue light reduced the eye sclera intensity (see Figure 5-5(b) top 

right image, grey image of blue light condition). Figure 5-5 (a) shows the RGB 

Histogram for captured eye image in normal condition. The ‘X’ axis represents the 

intensity range from 0-255, where 0 represents RGB-dark intensity and 255 

represents RGB-light intensity. The ‘Y’ axis represents the count of number of bins 
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(binary units) on each RGB colour intensity distribution all over the image. In colour 

image of the eye, the graph of intensity values spread through the rage 0-255, where 

the difficult to separate eye sclera white area is in the 180-250 range. 

                            

  
 

Figure 5-5(a): RGB histogram of captured eye colour (RGB) image without the 

Green light system 
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   Eye sclera region 

 

 

 

 

 

Figure 5-5(b): Intensity increased and Green light system image (left), Blue light 

image (right) and RGB Histogram (bottom). 
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Figure 5-5 (b) shows the increased green intensity and green LED systems applied to 

the same eye images. The captured image clearly shows the eye sclera area from 

other regions around the eye. Both images (colour and green intensity increased) 

were captured in the same background intensity conditions. In Figure 5.5 (b) the 

RGB Histogram graph shows the majority of the RGB intensity values ranged 

between 0-50 (black area in image),and green intensity bins peak at an intensity 

value of 200. This illustrates a clear separation of the eye sclera regions, making it 

easier to automatically set threshold levels for segmentation.  

Figure 5-5 (c) shows the captured RGB image and green illumination system added 

images converted to binary image in the final sclera tracking stages for analysis.  It 

clearly indicates that the green illumination system filters the skin reflections and 

enhances the sclera region for segmentation.   

 

Figure 5-5(c): Eye images with and without green illumination 
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The primary RGB video block output in the blink detection system (Figure 5.4 (b)) is 

converting to an intensity (Grey) image. The irises of the eye appear as relatively 

darker objects than eye sclera and their respective surroundings (Brunelli and 

Poggio, 1993). Thus, we can use intensity valleys as the separation regions to detect 

eye sclera regions. The grey conversion is given with R' G' B' values in equation (5-

1) using the standard parameters for conversion: 
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5.5.2. Background Estimation  

To separate the foremost motion fragment (eye blink) from other small muscle 

movements around the eye it is important to measure eye blink precisely. A 

background estimation method is then imperative to revoke small muscle movements 

disquieting to eye sclera area measurement. The filtering of small amounts of 

movements around the eye will generate stable images. These small movements 

change the skin reflections. Figure 5-6 illustrates the modified version of the 

background estimation process for generating stable images.  The modifications have 

been made to control the requirements to the background stabilization process in this 

research. Captured RGB video is converting to Grey image (intensity image) for 

foremost analysis, and the first few frames of the video stream are used to estimate 

the background image. It subtracts the background from each video frame to produce 

foreground images.   
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Figure 5-6: The background estimation process, Simulink control diagram. 

The Eye lid moves vertically and the small muscles near the upper and lower lids 

move horizontally. In figure 5-6, the reshape block changes the dimensionality of the 

input signal of images by converting a matrix input signal (144x176) to a row matrix, 

i.e., a 1-by-N matrix where N is 176. The original frame size is then reduced to 1-by-

176. Figure 5-7 illustrates the buffer process creation of slow frame output (stabilized 

image). This process removes the small movements around the eye to create 

stabilized output for stable eye blink detection.  

    
Buffer input: black peaks shows the small movements  Buffer output: filtered output 

 

Figure 5-7: Background motions slowing process (Matlab Help, 2005). 
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5.5.3. Template Matching 

Another step performed before tracking is started is the template matching to identify 

the eye sclera area. Considering all the existing and ongoing research systems for eye 

tracking from the front of the eye (Eriksson & Papanikolopoulos, 1997; Gonzalez, 

and Woods, 2002; Grace, et al., 1998, Perez, et al., 2001; Singh & Papanikolopoulos 

, 1999; Ueno, et al.,1994; Weirwille, 1994), the foremost disadvantage in the 

detection of the eyes from the front, with systems using head mounted or spectacle 

mounted devices, is the disturbance to the participant. Especially, in driver 

drowsiness analysis, it will cover the driver’s front view. Detecting blink from the 

side of the eye is then important, as it does not disturb the driver. Figure 5-8 shows 

the side view of eye, and sclera area (white area of eye) and the grey scale 

morphology with segmentation of sclera regions. This shape is common for all 

people but the area is different. For a confident tracking system it is then important to 

detect the clear eye sclera area.   

 

(a)                         (b) 

Figure 5-8: (a) Side view of eye, (b) Grey scale morphology of captured eye 

sclera area. 

To locate the eye sclera area, a modified pattern matching system is to be used before 

the blink detection process. Figure 5-9 illustrates the template matching system, 

using a Simulink block diagram. Figure 5-10 shows the eye sclera template (binary 
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template for template matching). This process will track the eye sclera region with 

the use of cross-correlation for pattern matching and to help to clear the noise around 

the sclera region.  

 

Figure 5-9: Template matching Simulink block diagram. 

 

Figure 5-10: Eye sclera template (binary image for template matching) 

     
Noise suppression or noise removal is an important task in capturing eye images. The 

median filter (3x3 windows) is applied to grey scale images in the template matching 

processes. The median filter is a nonlinear operator that arranges the pixels in a local 

window according to the size of their intensity values and replaces the value of the 

pixel in the result image by the middle value in this order. The problems occurring 

here are located to the similar colour regions. For example some bright images 

(intensity towards 255) give intensity regions around the eye similar to the eye sclera 

regions.  Consider the following example: Figure 5-11 shows the grey image with 

similar colour regions to eye sclera area (Left) and 3x3 neighbourhood size median 
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filter applied images (Right). A potential solution to reduce the size of similar 

coloured regions is to increase the neighbourhood matrix size but this solution 

creates another problem of image analysis speed. Also it reduces the eye sclera area 

and effect to the ‘natural’ triangular shape. The 3x3 neighbourhood size median filter 

was selected to overcome this speed problem.    

 

Figure 5-11: Left-Gray image matrix view with similar colour regions to eye 

sclera, and Right- 3x3 Median filter applied image (Image smoothing) 

 

Furthermore, median filtering generates smoother images by eliminating impulsive 

and high frequency noise. Then the template matching will protect the eye sclera 

region and remove the noise around the eye image. Consider the image below 

(Figure 5-12) when the eye images and the mask are shown in a red outline. The 

figure 5-12 shows the template mask, 144x176 pixel sizes and cross correlation 

calculated (see figure 5-9, cross correlation and template matching).  
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Figure 5-12: Eye image and Template mask 

The peaks in this cross correlation ‘surface’ are the positions of the best matches in 

the image of the mask. The I1 (eye image), the first input matrix, has dimensions 

(144,176). I2 (template mask), the second input matrix, has dimensions (144,176). 

Then the 2D-XCORR (comparison of normalised correlation score, compare 

template mask with target image in pixel overlapping method) function returns the 

Cfull = 287x351 dimension matrix, when the block uses the following equations (5-7) 

to determine the number of rows and columns of the output matrix.  

 
3511176176121

2871144144121

=−+=−+=

=−+=−+=

columnscolumnsfull

rowsrowsfull

IIC

IIC

         (5-7) 

The calculation of cross correlation for the elements of the above matrix used cross 

correlation equation (see Appendix B1, cross-correlation). This cross correlation 

process is double the size of the input image when analysing. The output is converted 

back to 144x176 pixel images.   

Template Mask 
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The following problems are evident: 

• This process is very similar to 2D filtering except that the image is 

replaced by an appropriately scaled version of the correlation surface.  

• Eye lashes in the input image will affect the triangular sclera shape (see 

Figure 5.11). This will affect the identification process, and the mask 

will not match with the target image.   

In this template matching process, the eye lashes affect the sclera region. To resolve 

these issues, a morphological operation (Dilation and Erosion) technique is added to 

the median filtered images. By choosing the size and shape of the neighbourhood, the 

morphological operation is sufficiently sensitive to remove eye lashes in the input 

image. The 2D-Maxima block identifies the value and/or position of the largest 

element in each input matrix or in a sequence of inputs over a period of time. This 

process is used to verify the eye sclera output and includes additional filtering to 

clear the small vivid areas in backgrounds. 

     

Figure 5-13: Constructed morphological operation to remove eye lashes. 

Figure 5-13 illustrates the constructed morphological operation to remove eye lashes. 

The ‘Opening’ (Opening process performs an erosion operation followed by a 

dilation operation using a predefined neighbourhood or structuring element)  

morphological techniques are applied to the median filtered Grey images (Figure 5-

13, Left) and the binary image conversion is used to enhanced the image quality 
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(Figure 5-13, Right) (for more details of Opening technique, see Appendix -C1). 

Figure 5-14, shows the tracking process Simulink diagram.   

 

 

                                                         Eye sclera area measure 

 

Figure 5-14: Eye blink tracking process (above), and eye sclera area measure 

process (below) 

 

Subtracting the background estimate output [1] from the template matching output 

[2] will give a stable image with large elements. The ‘Erosion’ process will remove 

the pixels from the edge of the object, and ‘Dilation’ will add pixels to the object. 

This process will remove the eye lashes and fill the gap with white pixels similar to 

the eye sclera region. Figure 5-15 (a) shows the erosion process and (b) shows the 

adding of dilation process. This will reshape and smooth the eye sclera region by 

filling the gaps in the sclera area.   
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(a) (b) 

Figure 5-15: (a) Binary image before adding morphological Closing, (b) after 

morphological Closing 

5.5.3.1. Blob Analysis technique 

The Blob Analysis method calculates statistics for labelled regions in the binary 

image and returns the area of each element. With ‘rough’ searching, the eye sclera 

area can be envisaged as connected blobs. While approximating a blob shape by use 

of an ellipse, the area was calculated (Horn, 1986) (see Appendix B1 for eye sclera 

area calculation equation). The Blob analysis technique in MATLAB has standard 

blocks for area calculation. The best match for eye sclera region detection is the 

ellipse shape.  

      Parameters of the ellipse such as shape, aspect of short and long axes, and the 

size of area are used to decide the area of eye sclera section. The captured eye blink 

in three different stages is shown in Figure 5-16 (a), (b), (c).  

 

Figure 5-16 (a): Full opened eye sclera region, image from left- (i) captured eye 

sclera image using green illumination system, (ii) Blob analysis tracking image. 
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Figure 5-16 (b): half way closed eye, eye sclera area reduced in binary image 

 

Figure 5-16 (c): captured 3/4 of closed eye 

In the Blob analysis technique (the technique calculates statistics for labeled regions 

in a binary image) for tracking and measuring the eye sclera area, the major and 

minor axis lengths have been calculated to design a common threshold to detect blink 

for different people having different sizes of eye sclera region. The procedure is as 

follows:  

• Estimate common threshold level for measuring the eye sclera area to 

detect blink duration.  

• Threshold level needs to readjust for different participants with 

reference to their eye sclera area.   

This PhD research considered the displacement and speed of blobs for behavioural 

state estimation. The eye region consists of the upper and lower eyelids and 

eyelashes (for blob detection, see Figure 5-17 (a)). In the detection process, the eye 

region has been divided into upper and lower portions. The intensity distribution is 

changing when the upper and lower portions of the eyelids close and open during 

blink. When the eye lids are closing the sclera area is reduced, and when the eye lids 
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are opening the area increases. This concept is used to calculate the eye blink 

duration. The blob analysis starts to measure blink duration when the eye lids shuts 

to half - to full close - to half open. This procedure is considered as a complete eye 

blink. The major and minor axis lengths of the ellipse change according to eye sclera 

region changes as illustrated in Figure 5-17 (a), (b) and (c). (Xleft, Yleft  -  Xright, Yright 

) is the major axis coordinates and during the eye close this axis will reduce. The 

minor axis coordinates are (Xtop, Ytop – Xbottom, Ybottom) and will reduce during the eye 

close. These lengths change within the range {Xi, Yi; i= left, top, right, bottom} from 

the full eye open to full eye close, and the range of the axis changes is given in the 

following equation. 

                  ( ) ( ){ }bottomtoprightleft yyyxxxyxIyxI ≤≤≤≤= ,,,           (5-8) 

 

   (a)   (b)   (c) 

Figure 5-17: (a) The Blob detection model of eye sclera region detect using 

ellipse method, (b) Half eye close position, (c) quarter of eye close position. 

 

Figure 5-17 (a), (b) and (c) illustrate the three positions of eye closure. The next 

position after (c) is full closed image and it appears as a blank image in detection. To 

measure the accuracy of the blink detection system, the total blinks during the 40 

minute simulator test were manually counted for randomly selected ten participants 

and compared with the total blinks counted from the system. Figure 5-18 (a) shows 
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an example of captured video file conversion to frame by frame image file for 

manual blink count. Figure 5-18(b) shows the actual eye blink count and the eye 

blink count from the system. The average of the actual blink count for ten 

participants was 397.6 and the average eye blink count from the system is 388.3. The 

error was 2.3% and the accuracy of the detection system was 97.7%.       

 

Figure 5-18 (a): Frame by frame eye images used for the blink count. 

 

Figure 5-18 (b): Frame by frame eye images used for the blink count. 



Indrachapa Bandara, 2009, Chapter 5  129 

                                          

In the validation of a common threshold pixel value for the eye sclera region (full eye 

open), the Simulink model was designed to measure different eye sclera regions in 

the half eye open position for all participants. The average pixel area of the half eye 

position was quantified to select the common threshold for all participants. The 

Figure 5-19 illustrates the Simulink model designed to measure the eye sclera area 

for different sizes of sclera regions (i.e., Figure 5-16 (a), (b) and (c) shows binary 

image sclera region selected to quantify the pixel area from quarter (1/4) eye open to 

full eye open. The pixel area change 5-16(a) 3410 pixels (full eye open), 5-16(b) 

2928 pixels (half eye open) and figure 5-16 (c) 2401 pixels (quarter eye open). The 

Blob detection ellipse axis change, according to the above positions [(a), (b) and (c)], 

is [(67.73, 115.2), (53.66, 85.07), (50.14, 65.13)]. Figure 5-20 shows the calculated 

eye sclera area for eighteen participants when their eyes are half open. The mean eye 

sclera value for all participants = 2799 pixels and the SD of sclera area is for all 

participants = 394.3 pixels. The eye sclera area in full eye open position for all 

participants is averaged to make a common threshold value for eye blink detection. 

The common threshold value is 3000 pixels, and this value was calculated by adding 

the participants’ mean sclera value to participants’ SD of sclera area (2799+394= 

3193 ≈ 3000 pixels).   
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Figure 5-19: The Simulink model designed to measure different size of eye 

sclera regions. 

 

Figure 5-20: Eye sclera areas for eighteen participants for half eye open. 

5.6. Eye blinks duration and blink frequency calculation. 

The eye blink duration and blink frequency calculation procedure shown in figure 

5-4 (b) is the output from a ‘Blink Count’ test that employs a static lower bound 

function to filter any lopsided eye blink durations formed when participants touch 

their headphone camera system during the simulation. This filtered signal is used to 

calculate the eye blink duration, frequency and average eye closure.  The ‘Moving 

Average’ block computes the average of a user-determined number of samples of the 

input signal, which are all evenly-spaced in time. The average is 'moving' in time, 

because at each sample time the oldest sample is replaced by a new sample, 
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according to the 'last in, first out' principle. All the data are displayed graphically and 

saved to MATLAB data file formats for further analysis.      

5.7. Summary  

 Most of the eye blink detection algorithms previously reported use image 

normalization, eye tracking, and eyelid movement parameters computation, face pose 

discrimination, and gaze at estimation. However, such algorithms require the edge 

difference to measure the changed block of eye blink in the video stream. The eye 

blink detection system proposed in this research uses background estimation and 

template matching to measure eye blinks durations and frequency. The proposed 

system uses a combination of image processing techniques to measure eye blink  that 

have not been used previously for eye blink detection. A particular innovation is that 

the eye sclera region changes are measured according to upper and lower eyelid 

closing and opening, as assessed by eye blink duration. This system does not depend 

simply on detecting long eyelid closures as the measure of drowsiness, as used with 

other drowsiness detection systems. Figure 5-21 illustrates the complete eye blink 

detection system. The step by step procedure is:  

• Green light illumination system is applied in natural light condition.  

• RGB (Green illumination) image conversion to grey image. 

• Background estimate process to remove minor movements around the eye. 

• Template matching process to filter background noise around the eye sclera 

region. 

• Morphological operation for removal of eye lashes.  

• Region filtering and Blob analyses to calculate the eye sclera region. 

• Calculate eye blink duration and frequency.      
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Figure 5-21: Complete eye blink detection process 

The green light illumination system proposed in this research has not been used 

previously in any video detection system. This method prevents the effect of changes 

of illumination in the detection environment and does not disturb the participant.  

The system is highly reliable in measuring eye blink durations and frequency. This 

system has been used by eighteen participants for many hours per day, without 

inconvenience or interference with their driving in the simulator. It is easy to use and 

close to the eyes, and head movement does not affect the segmentation process.  

The second most important factor in driver drowsiness detection is the measures of 

driver performance. The next chapter shows an attractive approach to measuring 

driver performance using a simple and safe driving simulator. This chapter will 

explain the driving simulator system and the reaction time measurement system.  
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6. CHAPTER 6 

 

 

INITIAL DROWSINESS EXPERIMENT: 

THE DEVELOPMENT OF A DRIVING SIMULATOR  
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6.1. The Driving Simulator  

Driving Simulators are used for entertainment as well as for driver training and 

research purposes. This research monitors driver behaviour and performance, and 

measures attention. During the development of the driving simulator, two simulators 

were designed to measure the driver’s performance and reaction time. The main 

simulator was used to measure driver performance and the second simulator was 

designed to measure reaction time.  

Consideration was given to the equipment cost and the accessibility of these 

simulators. Designing a simple simulator is more reliable and less expensive. The 

design of a simple driving simulator to measure driver performance is important in 

driver drowsiness detection.  

The most advanced driving simulator in the UK is at the Transport Research 

Laboratory (TRL) in Berkshire (Transport Research Laboratory simulator, UK). 

TRL's driving simulator has been designed based on a Honda Civic family hatchback 

car. An electro mechanical system fixed to the vehicle drives its engine and major 

mechanical parts and contributes towards creating real driving scenarios. All control 

interfaces have a realistic feel and the manual gearbox can be used in the normal 

manner. Surrounding the simulator vehicle are three large display screens connected 

to an oval shape to create a highly realistic surrounding effect for the driver. The 

level of environmental detail includes photo-realistic images of buildings, vehicles, 

signing, and markings, with terrain accurate to the camber and texture of the road 

surface (Parkes, et al., 2002). This simulator system helped in identifying the 

requirement for a virtual driving simulator to be developed for this research.  
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6.2. Experimental design  

6.2.1. Virtual-Reality-driving simulator  

The objective of designing the driving simulator for this research is to develop 

reproducible and flexible methods for studying the relationships between 

physiological driver states and performance in a realistic driving environment. Initial 

experiments were conducted with 18 healthy male and female participants aged 20 to 

70 in carefully controlled conditions.  

The virtual reality (VR) 3D interactive vehicle scenes were developed using the 

MATLAB Simulink software. The virtual reality tools were used to create models of 

various objects (such as cars, roads, and trees) for the scene and to set up the 

corresponding positions, altitudes, and other relative parameters between objects. 

Dynamic models were placed among these virtual objects and a complete road 

simulated scene was built with the aid of high-level C-based Simulink function (S-

function) models. Figure 6-1 shows a typical VR-based road scene displayed on a 

colour XVGA 17 inch monitor.  The road system is designed with a double lane 

separated by a middle stripe. The distance from the left-hand side to the right-hand 

side of the road is evenly divided into 256 parts (digitized into values 0-255) and 

measured in centimetres.  
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Figure 6-1: VR- based simulator screen 

Figure 6-1 shows the main simulator screen. The simulation of vehicle movement, 

vehicle speed, revolutions per minute and time (driving time) is displayed on the 

screen and can be adjusted to user requirements. The simulation view can be adjusted 

with a simulated dashboard display as well as full road view or full vehicle view 

modes. These forms of vehicle intelligence influence the vehicle’s motion through 

simulated commands to the accelerator, brake and steering wheel. The VR-simulator 

user interface provides facilities for visualizing and influencing the interactions with 

the virtual environment. The tactical-level focus in the VR-simulator directs a 

number of choices. The virtual environment changes the scenario randomly during 



Indrachapa Bandara, 2009, Chapter 6  137 

                                          

the drive. Additionally, colour light (traffic light) controls were displayed at the end 

of the loop (track) and the reaction to the light changes was monitored.  

6.2.2. Architectural Design of the VR-Simulator  

Experiment Layout: The overall architecture of the VR- simulator model was 

designed using MATLAB Virtual Reality tools. The VR- simulator measures car 

deviations from centre line, average speed, maximum speed, out of bounds and 

reaction time for traffic lights and records these parameters every 10 seconds. Figure 

6-2 shows the V-Realm virtual reality tools used to interface hardware components 

and display.  The hardware configuration being used was specified. Special attention 

was paid concerning the selection of the graphics card. The bottleneck in system 

operation was the scene rendering, which is directly related with the graphics card 

performance. Therefore, a high-end graphic display model (GeForce 6200 

TurboCache, 256MB dual VGA out with Direct X 9), which is compatible with dual 

VGA display and high resolution, was selected. The configuration of the main 

simulator is more complex because of the control of the virtual reality tools in 

Simulink. At this level a second dedicated PC is used for reaction time measurements 

of the simulator. The automotive design features in the V-Realm database are 

composed of two types of objects: car interior (shift gear, steering wheel, pedals, and 

mirrors) and environment objects (streetlights, road signs, autonomous vehicles, and 

lamppost). Hidden surfaces have been removed and visible surfaces have been 

minimized in order to increase the graphic speed. 
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Figure 6-2: Overall architecture of the driving simulator. 

 

The V-Realm builder conceptual architecture, shown in Figure 6-3, presents the 

overall software architecture of the entire driving simulator in order to highlight the 

programming method with MATLAB Simulink. As illustrated in Figure 6-4, the link 

between hardware components (e.g. steering wheel, push buttons and paddles) and 

the rest of the interactive system interface is through the USB and virtual object 

control in VR Simulink software.    

This database is composed of: 

• Objects of the car interior: steering wheel, gearshift, and mirrors used 

by the FIAT model. These models correspond to a real car. The 

automatic gear system was designed to minimize the complexity of 
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the interface devices to control the simulation. Three main views can 

be selected according to the participant’s performance.  

• Outdoor objects (road, trees, buildings and traffic lights). Some of 

these objects have extended features to simulate environmental 

changes (clouds and light). The animation of the car and the outdoor 

objects are controlled by the behavioural module (section 6.2.3). 

        

Figure 6-3: V-Realm builder virtual reality interface 
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Figure 6-4: Hardware interface devices 

6.2.3. VR Behavioural Module  

The VR-simulator provides users with several interactive scenario control features. It 

allows users to change basic parameters of the selected vehicle such as viewing 

angle, velocity and position. The design allows users to use “Pause” and “Play” 

options during the simulation. All the scenarios during the simulation are saved to 

disk and can be played back. The basic control of the loaded objects of the scene are 

already specified and implemented. This relates to the control of the vehicle’s motion 

(the user and the autonomous cars), the control of the user’s car devices (steering 

wheel, brakes, accelerator), and the control of other scene objects such as traffic 

lights, clouds and illumination.  
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6.2.3.1. Shapes 

Creating shapes with VRML is achieved by defining coordinates in space and 

connecting them in order to create surfaces. Some basic shapes are already 

implemented, and these shapes are used to create the driving environment. For 

example a box, a cone, a cylinder and a sphere are ready to use. Shapes can also be 

made by hand and inserted into the surfaces that form the shape together. This can be 

achieved in ‘V-Realm Builder’. 

6.2.3.2. Appearance 

The appearance of an object can be adapted by changing its colour, or by inserting a 

texture. Different colours can be selected as well as a shining colour and the 

shininess. Many illumination models have been proposed to simulate surfaces 

properties. The specification of the surface colour appearance must include spectral 

and spatial distribution of the reflected light. The BRDF (Bidirectional Reflection 

Distribution Function) is the most general way to represent these distributions. 

6.2.3.3. Car and circuit design  

The main idea of creating a car by hand is making in object oriented language one 

parent that defines all different parts as its children in order to be able to make the 

whole car move as one. Not all parts of the car are included in the design, simply 

because it takes a lot of time to make very detailed objects by hand. The car consists 

of four main parts, chassis, wheels, suspension, and the steering wheel. The direct 

instructions and flowchart model were given to Peter Thomas of Uppsala University 

Sweden, who designed the virtual objects and simulator track. The car and the 
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picture of the circuit was designed using Borland C++ and loaded into MATLAB 

and is converted to a line with a width of one pixel. In figure 6-5 one can get an 

impression of how the ‘VR-Sink’ works (The VR Sink block writes values from its 

ports to virtual world fields specified in the block parameter box). The size of the 

input signals from the interface devices are multi dimensional. Translation inputs 

consist of the X-, Y-, and Z-values in the virtual world. In Figure 6-5, a screenshot of 

a car is shown with a translation in the Z-direction together with the VR Sink control 

window for virtual objects. Figure 6-6 shows the out-of-bounds limits on the VR 

road system. Figure 6-7 shows a road layout and the centre line.   

 

Figure 6-5: Impression of the ‘VR Sink’ in Simulink 

 

 

 



Indrachapa Bandara, 2009, Chapter 6  143 

                                          

 

Figure 6-6: Out of Bounds on VR road system 

 

   

 

 

 

 

 

Figure 6-7: Road layout and centre line 
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6.2.4. Realistic feedback  

To get an even more realistic driving experience, realistic feedback has been 

implemented in the simulator. In this simulator, two kinds of realistic feedback are 

applied. The first feedback is a realistic vehicle movement display on the main 

screen. When this information is available, it is possible to see the wobbly movement 

as soon as the car leaves the track, to get a more realistic driving impression. The 

second feedback is sound. For a realistic driving experience, sound is a very 

important aspect. Two types of sound are implemented in the simulator. The first is 

engine sound, and the second is the sound of slipping wheels and brakes. The sound 

of the engine is especially important. If it is realistic enough this sound will help to 

control the speed. Since the frequency and volume of the sound should vary 

continuously, it is almost impossible to use recorded sound samples. The sound has 

to be generated online. The signal that will be sent to the sound card should be some 

sort of wave form. The basic frequency of this wave should be the same as the engine 

speed. To realize this, the accelerator variations are integrated to engine speed and 

sent through a sine function. This generates a sine wave having amplitude one and 

the same frequency as the engine. When the accelerator is completely floored, the 

sound is loudest. When the accelerator is not pushed at all, the volume of the sound 

is set to 20% of the maximum value. 
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6.3. Reaction time measuring system 

  Reaction time is the ability to respond quickly to a stimulus. It is important in 

many driver alert research activities (e.g. Brooks & Green, 1998). Simple reaction 

time is the time taken between a stimulus and movement e.g., sprint start. Such 

simple reaction time depends on nerve connections and signal pathways that are 'hard 

wired' in the body and cannot be improved. Another type of reaction time, choice 

reaction time, is the time taken between stimulus and action which requires a choice. 

In this research choice reaction time is measured in the driving simulator. MATLAB 

Simulink virtual reality tools were used to design the reaction time measurement 

system. The reaction time measurement system was designed to measure the 

response time of the drivers (participants) to colour light changes during driving. 

MATLAB Simulink virtual reality tools were used to design the virtual colour light 

system and the computer interface device connections (switch fixed next to the 

footbrake paddle). This test was conducted parallel to the main simulator.  Figure 6-8 

shows the reaction time measure system setup. 

Simulator

Break Control 

Speed Control

RT Switch

Reaction Time Control Interface Unit

Server Server

PC-1

Video capturing program and 

Driver Simulator Program

PC-2

Driver reaction-time

Measure program

Colour light Display Unit

Steering Wheel

Driving Simulator Interface 

Unit

 
Figure 6-8: Reaction time measure setup 
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The green light appears on the separate colour light display monitor and is placed 

next to the main simulator screen. The colour changes randomly (Green-Red). 

Participants have to press the reaction button (RT Switch) next to the brake paddle 

when the colour changes from Green to Red. After pressing the reaction button the 

red colour virtual bulb changes back to green. The time taken between colour change 

and the reaction (press the button) to change the colour back to green was measured. 

Figure 6-9 shows the MATLAB Simulink VR model designed for the reaction time 

measurement system. This reaction time measurement test is conducted parallel to 

the main simulator test. The time is measured in milliseconds and copied to text 

format for the analysis. The light changes are controlled from a random clock. The 

main objective of this measure was to calculate the participants’ reaction times while 

driving. 
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Figure 6-9: Matlab V-Realm colour light change model 
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6.4. Summary  

Driver behaviour and performance were measured across five different 

parameters (average deviations from centre line, maximum speed, average speed, 

out-of-bounds and reaction time to control colour light change). MATLAB Simulink 

virtual reality tools and automotive tools were used to develop the simulator design 

and controls. The simulation was projected to wide screen to create more realistic 

driving scenarios for the participants. The simulator speed was fixed to a maximum 

of 60 km/h. The driving simulator test is a realistic tool for driver drowsiness 

detection studies and the performance measures, discussed in subsequent chapters, 

seem to give promising results for drowsiness detection system development. 

The MATLAB Simulink VR tools were used to design the reaction time 

measurement colour signal model. The reaction time system is attached to the main 

simulator and measures a driver’s reactions to colour light changes. The colour light 

is displayed on a separate screen next to the main simulator display.   

The next chapter presents the data analysis methodology, including all the driver 

drowsiness related measures to be used in this research.  
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7.1. Introduction  

According to the American PERCLOS-system (Wierwille, 1999), which is 

based on the percentage of eye lid closure, if eyelid closure is greater than 80%, then 

at this value a signal should be made to warn the driver. This method introduced eye 

blink and its parameters as a possible means of drowsiness detection. It has been 

suggested that an increasing of eye lid closure duration could indicate moderate 

drowsiness (Hargutt, 2003). Thus this metric could be used to warn the driver of 

impending danger when the blink duration changes to prolonged durations (see 

detailed discussion on section 2.8).  

These suggestions were derived from examining a sample of drivers in alert and 

drowsy conditions. The PERCLOS measure is based on tracking of the eye pupil 

(circular area) to measure blink. Two pivotal questions arise for future warning 

systems. First, how often the system sets off a false alarm, for example when the 

system cannot track the driver’s pupils. Second, how often an episode of severe 

sleepiness is not detected (misses) as the driver sleeps with open eyes. In this PhD 

research, individual changes in the course of increasing drowsiness from a driving 

simulator experiment are examined.  

Data analysis is focused on the development of an operational indicator of 

drowsiness based on a combination of slow eyelid closure and blink frequency 

measures. Slow eyelid closure is a very accurate operational indicator of drowsiness 

(Lal & Craig, 2002). However, the primary limitation of slow eyelid closure or long 

blink duration measures is that drivers may not exhibit this behaviour until they are 

severely drowsy and/or impaired. The slow eye closure measure is mainly associated 

with the PERCLOS measure and JDS. The problems with slow eyelid closure as a 
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measure are discussed in Chapter 2, section 2.8.   Therefore, the purpose of this study 

is to determine if another blink behaviour measure (e.g., blink frequency), could be 

used to create an enhanced indicator of drowsiness. If such an indicator can predict 

performance under a variety of apparent drowsiness levels, then it could serve as an 

alternative detector of drowsiness. 

7.2. Measures to Identify Drowsiness in Drivers 

Experiment Management: The virtual driving simulator and reaction time 

simulator were designed to measure four different parameters relating to driving and 

one reaction measure relating to visual changes. These measures are lane position 

variance, out- of- bounds, speed-related measures and reaction time measures. These 

measures are obviously important since drivers must maintain proper lane position 

and respond to colour light changes. The purpose of these measures is to evaluate 

effects of driver drowsiness while a participant is in a virtual automotive 

environment.  

7.2.1. Driving Performance Measures 

Lane deviations or lateral position: Literature on driver drowsiness detection 

systems and methods has shown that sleep loss produces decrements in driving skills 

(e.g. Johns et al. 2003). Driving performance measures include lane-related measures 

and reaction time. The main task in the driving simulator is for participants to drive 

on the centre line on the road. Deviations to the right and left from the centre line are 

measured and average deviations are calculated. The lane position measure is 

directly related to lateral position measures and steering wheel movements’ 

measures.  
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Several studies have found lateral control measures to be closely related to prolonged 

driving (Johns et al. 2003; Weirwille et al. 1994). These measures are obviously 

important since drivers must maintain proper lane position to avoid vehicles in 

nearby lanes and objects located on the side of the roadway. As reported by Wylie et 

al (1996), steering wheel variability is related to the amount of driver drowsiness 

(variability greater as drivers become drowsier). Research by Skipper et al. (1984) 

found that lane deviations were highly correlated with eye closure and were 

influenced by sleep deprivation. Skipper’s studies found standard deviation (SD) of 

lane deviation is highly correlated with eye closure and is influenced by sleep 

deprivation and time on task. Furthermore, the global maximum lane deviation was 

found to be highly correlated with eye closure. Dinges et al. (1985) found the mean 

square of the lane deviation contains a significant amount of independent information 

and is an accurate and reliable measure for the detection of drowsiness. 

Measures of the lateral position of the vehicle on the road or in its lane of travel have 

been found to be accurately and reliably related to driver drowsiness (Arnedt et al., 

2001; Bittner et al., 2000; Philip et al., 2003). Research by Arnedt et al. (2001) found 

that, following lack of sleep, or one full night of sleep deprivation, drivers exhibited 

a safety-critical decline in lateral placement control.  In particular, after sleep 

deprivation, drivers were more likely to drive towards the middle of the road, their 

lane position variability tended to increase and they departed from their correct lane 

and ran off the simulated road more frequently. This research also found that 

prolonged sleep deprivation produced a similar magnitude of driving impairment to a 

Blood Alcohol Concentration (BAC) of 0.08%. 
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In this task, participants have to concentrate to maintain the vehicle on the centre 

line. The distance from the left side to the right side of the road is evenly divided. 

The algorithm was designed to measure deviations (absolute value) 75 times per 

second and reports an average of that every 10 seconds (see data logging, Appendix 

B1). For each participant the average deviation position relative to the centre of the 

road has been calculated for both straight and curved road sections. The purpose of 

the average deviation (AVEDEV) measure is, primarily, to evaluate driver 

drowsiness while a participant is driving in a simulator (this simulator emulates an 

environment in which a participant is behind the wheel of an automobile). It is 

possible to derive a number of variables from lane deviations, which are linked in 

some way with drowsiness, such as average (absolute) deviations from centre line 

and standard deviation of lateral position. The studies by Dinges et al. (1985) and 

Kircher et al. (2002) found correlations between different indicators of driver 

impairment, such as lane measures, and eye closure measures. They found that two 

variables related to lane deviations had higher correlations with the PERCLOS 

measure than the other measures of eyelid closure (see Table 7-1),  

 EYEMEAN EYEMEAS PERCLOS 

LANEX .47 .54 .62 

LANEDEVV .50 .55 .60 

Table 7-1: Eye Measure vs. Lane Measure Correlations. (Dinges et al., 1985; 

Kircher et al., 2002) 

The variables in Table 7-1 were defined as follows:  

EYEMEAN: mean eyelid closure (zero=wide open), EYEMEAS: mean-square 

percentage of the eyelid closure signal, PERCLOS: proportion of the time that the 
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eyes are 80% to 100% closed, LANEX: count of the number of samples taken when 

the simulated vehicle was out of the lane, LANDEVV: lane position variance.  

In this PhD study, the standard deviation of average deviations (SD-AVEDEV) is 

measured as a driver performance measure. Standard deviations of average 

deviations gives clear variance in changes of deviations with time (see section 8.1.1 

for more details). The SD-AVEDEV is a similar measure to SDLAT and 

LANDEVV. According to several prior investigations on drowsiness and vehicle 

control, there is a close relationship between drowsiness and standard deviation of 

lateral position (SDLAT) and LANDEVV (Klein et al., 1980; Dinges et al., 1985; 

Kircher et al., 2002).   

Reaction time: Philip et al., (1999) found that Reaction Time (RT) is highly 

correlated with driver drowsiness. Their research experiment consisted of filling out 

a questionnaire about the drive and previous sleep pattern, and to carry out a 10 min 

long, simple reaction time (RT) test. The level of performance is identified by the 

10% slowest RTs. Multiple regression analysis, with the mean of the 10% Slowest 

RTs as the dependent variable, showed that age, duration of drive, and duration 

(shortness) of previous breaks were the main predictors. This study suggests that 

public awareness may need to be raised with respect to excessive length of driving, 

especially in young drivers. Reaction time is an important measure in driver 

drowsiness detection. In this research, the average reaction time (AVEREATM) 

measure test is designed to run parallel to the driver simulator (detailed explanation 

in Chapter 6) and to measure the participant’s reaction time during driving. The 

study by Philip et al. (2003) shows SD of reaction times (RTs) and unstable driving 

performance significantly increased over time, indicating that excessive driving time 
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is a significant drowsiness factor and potential cause of drowsiness-related accidents. 

In this PhD study, standard deviation of average reaction time (SD-AVEREATM) 

was used for the final regression analysis. Standard deviations of average reaction 

time gives clear variations (see section 8.1.1 for more details).  

Out of Bounds: Several studies have found increased lane deviations or out-of-

bounds are an important measure for detecting driver drowsiness (Chi & Lin, 1998).  

The underlying causes of driver drowsiness appear to be associated with driving 

during the early morning period, working long shifts and driving after having worked 

a series of night shifts (Phillip et al. 2003). The research by Phillip et al examined 

driver drowsiness in employees who lived close to their workplace showed that 

average sleepiness and driving impairment of shift workers were greater at the end of 

day and in cases of night shift. Night shift was the most problematic, with 59% 

reporting being more sleepy than alert. About 3% of shift workers reported incidents 

as a result of falling asleep including lane drift and running off the road (out of 

bounds). The survey by Fell & Black (1997) investigated the features of driver 

drowsiness incidents (accidents, near accidents and unintentional drifting-out-of-lane 

events) which occurred in cities. The results show similar patterns to the study by 

Phillip et al., (2003), identifying prior sleep loss and late night driving featuring as 

factors. The Out-of-Bounds (OUTOFBON) measure included in this study is a 

similar measure to the drifting-out-of-lane measure (LANEX) employed by Dinges 

et al. (1985) and Kircher et al. (2002). OUTOFBON indicates the sum of times the 

vehicle is out of bounds in each one minute time interval during the simulation test. 
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7.2.2. Self reported measures 

All self reported measures are included in the questionnaire. Each participant has 

to complete the questionnaire before the simulator test. The subjective information 

questionnaire is designed to measure the Epworth score and participants’ sleepiness 

or drowsiness level before and after the simulation test, age, gender and number of 

hours sleep before the test during 24 hour period.  Table 7-2 shows the structure of 

the questionnaire designed and (for more details, see Appendix C2).  

            

Table 7-2: Questionnaire Structure 

 

Age, Gender and Time of the Day: Age, gender and time of the day influence 

driver performance in different driving conditions. Research findings, discussed 

below, demonstrate age and gender dependent relative risk in a driving accident in 

which the driver was injured or killed. Akerstedt & Kecklund (2001) used accident 

register data and road traffic flow data to compute the age and gender-dependent 
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relative risk of being involved in a driving accident in which the driver was injured 

or killed. Alcohol-related accidents were excluded from the analysis. The results 

showed that the night-time risk, compared with that of the forenoon, was 

dramatically increased for younger drivers (18-24 years) and reduced for older (65+) 

drivers. In direct comparison, the younger drivers had 5-10 times higher risk of being 

involved in an accident during late night than during the forenoon, with the excess 

risk during the daytime being considerably lower. Women had a less pronounced 

night-time peak than men. In direct comparison, men had twice as high a risk as 

women during the late night hours.  

The research by Deery (1999) indicates that young drivers underestimate the risk of 

an accident in a variety of hazardous situations. At the same time, they overestimate 

their own driving skill. Young drivers are also more willing to accept risk while 

driving than experienced drivers. Crash death rates for drivers under 25 at night are 

roughly double those of older drivers. Young men are particularly at risk, with death 

rates of up to three times those of young women. Age and time of the day (TODD) 

are included in this current study as self repeated measures. Gender was reported but 

not analysed further, because the simulator test was conducted during the daytime 

and the only evidence for a link between driving performance and gender was found 

in studies of day and night driving (Deery, 1999). Further studies are needed to 

investigate this gender effect in more detail.  

 

 

 



Indrachapa Bandara, 2009, Chapter 7  158 

                                          

Number of Hours Sleep:   

In this PhD study, the number of hours sleep (NOHS) in the previous 24 hours has 

been considered and used to categorize the participants in to the sleep deprived and 

alert groups. 

Epworth Sleepiness Scale: The Epworth Sleepiness Scale (ESS) is a valuable tool to 

identify people who suffer from excessive sleepiness. The participant rates the 

likelihood of dozing, very low (=0), slight (=1), moderate (=2) or high (=3). The total 

(out of 24) is the ESS score. If the Epworth score is greater than or equal to 11, it 

indicates that a person are subjectively sleepy. More details are given in section 

2.7.2. Several driver drowsiness detection studies have used the Epworth scale as a 

tool to assess driver sleepiness, as discussed below. 

Maycock (1997) conducted a survey of 996 heavy goods vehicle (HGV) drivers and 

the relationship of accidents to daytime sleepiness (measured using the Epworth 

Sleepiness Scale). The drivers were sampled randomly at motorway service areas. 

The mean ESS score and the mean accident frequency (the average number of 

accidents in the 3-year recall period) were analyzed, and other relevant physical 

characteristics were investigated. The average age was 41.4 years (SD 10.5). They 

drove an average of 69 700 miles annually (SD 36 120), and their average score on 

the Epworth daytime sleepiness scale was 5.65 (SD 3.31). Maycock’s results 

reported an average accident liability of 0.26 accidents in a 3-year recall period. 

Accident liability increased with increasing scores on the Epworth daytime 

sleepiness scale. These findings suggest that further investigation of the mechanisms 

behind the higher accident rates of some categories of HGV drivers would be 
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justified in the interests of road safety. ESS is a simple, self-administered 

questionnaire which is shown to provide a measurement of a participant’s general 

level of daytime sleepiness. The purpose of including Epworth score in this PhD 

study is to investigate the relationship between the subjective ESS score and driver 

performance.   

Sleepiness Scale: Ingre et al. (2006) aimed to provide subject-specific estimates of 

the relation between subjective sleepiness, as measured by the Karolinska Sleepiness 

Scale (KSS), with average blink duration (AVEBLKDU) and standard deviation of 

the lateral position (SDLAT) (KSS is a 9 point self rating scaling method of 

measuring subjective drowsiness (Kerstedt and Gillberg, 1994). Increased subjective 

sleepiness on the Karolinska Sleepiness Scale (KSS) has been related to increased 

amounts of slow eye movements (Karrer et al., 2004) and higher levels of sleepiness 

on a visual analogue scale (VAS) and related to longer eye blink durations (Caffier et 

al., 2003) (VAS is a measurement instrument that measures a characteristic or 

attitude that is believed to range across a continuum of values and cannot easily be 

directly measured). Lane drifting was calculated as the standard deviation of the 

lateral position (SDLAT) in a high-fidelity moving base driving simulator. Ingre et 

al. (2006) showed that SDLAT was significantly related to the KSS.  Ingre et al. 

(2006) used a small sample of five male and five female shift workers who 

participated in a 2-hour drive (08:00–10:00 hours) after a normal night sleep and 

after working a night shift. To calculate average blink durations (AVEBLKDU), the 

EOG (Electrooculogram) method (see section 2.5.2) was used with a sampling rate 

of 128Hz with a band pass filter. The results suggest that there is a linear relationship 

of the KSS with SDLAT from the centre line. Average deviations increase by 0.032 
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m (Standard error, SE = 0.004) for each level of the KSS. The estimate for 

AVEBLKDU showed a similar pattern as for SDLAT but with a large diversity in 

the subject-specific estimates between different levels of the KSS. The linear trend of 

the KSS for AVEBLKDU is an average increase of 0.0056 s (SE=0.0006) for each 

level of the KSS. The final results estimate the direct association between the KSS 

and SDLAT/AVEBLKDU and information about individual differences. The results 

have implications for any application that needs prediction at the subject level (e.g. 

driver drowsiness warning systems) as well as for research design and the 

interpretation of group average data.  

The purpose of including the Sleepiness Scale (SLEPSCAL) in this PhD study is to 

investigate subject-specific estimates of drowsiness, before and after the simulation 

test.  The SLEPSCAL scale ranges from 1 = very alert to 7= very sleepy. This scale 

is very similar to the KSS but it slightly simpler as it uses a 7 point scale rather than a 

9 point scale for self rating. Both measures are simpler to administer than the ESS, as 

participants are required to answer only one question instead of seven questions. This 

makes it easier to conduct a before and after comparison of self-reported sleepiness. 

7.2.3. Speed Related Measures  

Average speed and Maximum speed: Two speed related measures included in this 

simulator were maximum speed and average speed. The ability of a driver to control 

the accelerator adequately so as to maintain a consistent driving speed is of obvious 

importance. A few studies have reported evidence questioning whether a linear 

relationship between speed and injury accidents is credible for all ranges of speed 

(Carsten et al., 1998).  
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The study by Campagne et al. (2004) focused on driver performance related to driver 

drowsiness and his studies were conducted for forty-six male drivers, divided into 

three age categories: 20–30, 40–50, and 60–70 years, performed a 350-km motorway 

driving session at night on a driving simulator. Driving errors were measured in 

terms of number of running-off-the-road incidents (RORI) (out-of-bounds) and large 

speed deviations (maximum speed). The evolution of physiological vigilance level 

was evaluated using electroencephalography (EEG) recording. The experiment 

results show that, for young and middle-aged drivers, the deterioration of the 

vigilance level is associated with driving errors (RORI and speed variations). 

Research by Lemke et al. (1982) found that driving under monotonous conditions 

decreases the vigilance of the human controller and his performance of the driving 

task. Vehicle related signals (speed) were measured. The investigations were 

performed on a driving simulator. The experiment results show that the average 

speed correlates with mean eye blink durations and indicates the driver’s vigilance. 

This was explained by increased risk-acceptance at decreased performance or 

decreased vigilance. 

Research by Lemke et al., (1982) found that speed variability (average speed) has 

some correlation to driver drowsiness.  Lemke et al.’s studies found average speed to 

increase gradually when the drivers become drowsy. In this current study, maximum 

speed (MAXSP) and average speed (AVESP) have been measured as indicators of 

speed. The system is designed to check the speed every second and log the data 

every ten seconds.  The highest value in every ten seconds is recorded as the 

maximum speed (MAXSP). Figure 7-1 shows an example of recorded data for the 

maximum speed for participant 1 in the first five minutes of the simulator test. The 



Indrachapa Bandara, 2009, Chapter 7  162 

                                          

system records the average speed every ten seconds. The average is calculated by 

calculating the speed every second and averaging these values over a ten second 

period.  Equation 7-1 gives the calculation for average speed. Figure 7-2 shows an 

example of recorded data for average speed for the participant 1 in the first five 

minutes of the simulator test.      

∑
=

=
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i

iaAVESP          (7-1) 

Where i= 1,…..,10 and a= speed(every second)  

 

These measures are correlated with driver performance to investigate the effects of 

driver drowsiness.     
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Figure 7-1: Maximum speed in first five minutes (Participant 1) 
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Figure 7-2: Average speed in first five minutes (Participant 1) 



Indrachapa Bandara, 2009, Chapter 7  163 

                                          

7.2.4. Physiological Measures 

Eye Blink Durations and Frequency: Eyelid closure and related eye measures are, 

according to the literature, the most promising and reliable predictors of drowsiness 

and sleep onset (Du et al. 2008; Devi & Bajaj 2008; Johns et al. 2003). As a driver’s 

drowsiness increases, the eye movements slow down, sometimes accompanied by 

characteristic rolling movements. Eye blinking is also slower and more frequent with 

increasing levels of drowsiness (blink frequency increases with drowsiness). The 

most published and accepted indicator of drowsiness is average blink duration 

(Kircher et al., 2002).    Research by Hakkanen et al. (1999) focused on eye blink 

duration as a measure of sleepiness in on-road driving and on the driving 

performance of professional bus drivers. Ten bus drivers participated in the study. 

The Maintenance of Wakefulness Test (MWT) and a monotonous on-road driving 

task were completed. Eye blink duration and blink frequency and speed control were 

measured while driving. This study found eye blink duration correlated significantly 

with driving performance. However, no significant correlations were found between 

average blink frequency and driving performance. These results support the use of 

blink duration as an indicator of increased sleepiness and have important 

implications for those involved in the transport technological industry.  

The study by Caffier et al. (2003) found that eye blink duration is considered to be a 

suitable ocular indicator for drowsiness. To evaluate eye blink parameters as 

drowsiness indicators, a contact-free method for the measurement of spontaneous eye 

blinks was developed. In a series of sessions with 60 healthy adult participants, the 

validity of spontaneous blink parameters was investigated. The subjective state was 

determined by means of questionnaires immediately before the recording of eye 
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blinks. The results show that several parameters of the spontaneous eye blink can be 

used as indicators in drowsiness diagnostics. The average blink duration and average 

reopening time, in particular, change reliably with increasing drowsiness. 

Furthermore, the proportion of long closure duration blinks proves to be an 

informative parameter. The results demonstrate that the measurement of eye blink 

parameters provides reliable information about drowsiness/sleepiness, which may 

also be applied to the continuous monitoring of the tendency to fall asleep.  

The study by Akerstedt & Kecklund, (2001) found that driving in the early morning 

is associated with increased accident risk affecting not only professional drivers but 

also those who commute to work. Ten shift workers participated after a normal night 

shift and after a normal night sleep. The results showed that driving home from the 

night shift was associated with an increased number of incidents (decreased time to 

first accident), increased lateral deviation (AVEDEV), increased eye closure duration 

(average blink duration), and increased subjective sleepiness. The results indicate 

late night shift effects on sleepiness and driving performance. The study by Van den 

Berg et al., (2005) focused on eye activity measures used to model drowsiness 

related changes during a visual tracking task. Results suggest that information from 

multiple eye measures (eye blink duration and frequency) may be combined to 

produce accurate individualized real-time drowsiness detection. 

Previous studies’ results demonstrate that the measurement of eye blink parameters 

(blink frequency and blink duration) provides reliable information about 

drowsiness/sleepiness. In this PhD study, the standard deviation (SD) of the average 

blink duration (SD-AVEBLKDU) and the SD of the average blink frequency (SD-

AVEBLKFR) were selected. Previous studies have suggested that average blink 
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duration may be the most sleepiness-sensitive continuous performance measure 

(Arnedt et al., 2001; Skipper, et al., 1984; Ingre, et.al., 2006; Caffier et al., 2003). 

Therefore, the average eye blink duration (AVEBLKDU) and average frequency 

(AVEBLKFR) were measured in the current PhD study to evaluate driver 

drowsiness. In addition, the standard deviation of average blink duration and 

frequency (SD-AVEBLKDU & SD-AVEBLKFR) were used in the linear correlation 

model with performance measures with the aim of producing a more accurate 

drowsiness detection model. The calculation of standard deviation (SD) for average 

blink duration and average blink frequency has not been discussed in any previous 

studies. The advantage of SD calculation will be discussed in section 8.1.1.    

7.3. Experimental Design 

In order to determine the driving performance measures to be used in the present 

study, it was important to establish the driving performance measures that have 

previously been demonstrated to be related to drowsiness. Review of the previous 

literature related to driver performance measures have used advanced and simple 

driving simulators (Beach et al., 1998; Dinges et al., 1985; Fletcher et al., 2003; 

Rong-ben et al., 2003; Johns et al., 2003). Previous studies have used sleep 

deprivation as the predictor variables, and looked at average driving performance 

across different levels of deprivation. The simulator design used in the present study 

was a single track virtual reality design (for a detailed description, see section 6.1). 

The reasons for designing a simple simulator for this research were: i) flexibility of 

changing parameters according to research needs and ii) being able to conduct the 

research with a small fund (simulators available to hire for driver drowsiness 

detection are very expensive).  Every volunteered participant has to drive for 30-40 
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minutes in the simulator. Before starting their test, they have a 5-10 minutes practice 

session. All the procedures are given to the participants prior to the simulator test. To 

complete one track with average speed of 60 km/ph will take approximately two 

minutes. During the 30-40 minute test, participants were exposed to different 

elevations on road structure. There were separate colour light signal sequences of 

tasks for all the participants to respond to simultaneously with driving. The 

simulation time was selected with reference to previous driver drowsiness detection 

research (Dinges, et al., 1985). The simulator test was conducted in two sessions: a 

morning session (9:00 am to 12:00 pm) and an afternoon session (12:00 pm to 3:00 

pm). No self reporting measures were collected during the test because it may 

distract their driving. However sleepiness measures were conducted before and after 

a test. 

7.3.1. Participant Procedure 

Each participant who finished the questionnaire was asked to read the general 

instructions for the experiment and to read and sign an informed consent form. Any 

questions concerning the instructions, the informed consent form, or the experiment 

in general were answered. 

Each participant participated in 30-40 minutes driving session, either in the morning 

or in the afternoon. Participants are free to choose any session; there is no additional 

preparation before starting the test.  

The reaction time measuring equipment was placed beside the simulator screens and 

the participants in the simulator could clearly see the colour light changing screen. 

The participant was then given a five to ten minutes practice session. Once the 
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practice session was completed, the physiological monitoring equipment was fitted to 

the participant, the lights were controlled constant, and the data collection began. The 

participants performed the tasks on the simulator for the entire duration of the 

experiment. 

7.3.2. Experimental Task Procedures 

The experimental tasks that the participants were required to perform were to drive 

on the centre line of the road and to react to colour light changes. The road layout 

was designed with hills, slopes and bends; therefore extra concentration on 

controlling the speed is required. To complete a single track in simulation varied 

between 1 to 3 minutes with a maximum of 60 km/h. The reaction time measuring 

experiment was designed to assess reaction to colour light change. Participants have 

to concentrate on the display screen beside the simulator while driving when the 

‘Green’ light turns to ‘Red’ randomly and need to press the brake paddle to reset the 

‘Red’ light back to ‘Green’ (for reaction time experiment details, see chapter 6).     

7.4. Data Analysis Overview 

7.4.1. Variables to be analysed 

As justified in the previous section, twelve variables were collected during the 

experiment as follows: 

1. Eye blink durations (average eye blink duration) 

2. Eye blink frequency (average eye blink frequency) 

3. The absolute value of average deviations from road centre.     

4. The average reaction time for colour light changes. 
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5. Number of out of  bounds from road  

6. Maximum speed every one minute period  

7. Average speed every one minute period  

8. EPWORTH sleepiness scale vale  

9. Number of hours sleep during the previous 24 hour period.  

10. Age of participants 

11. Time of day that the test was taken 

12. Sleepiness scale before and after the simulation test (SLEPSCAL).   

The following measures were used for data analysis: 

Predictor Variables   

Physiological measures  

• AVEBLKDU: The average eye blink duration (total blink duration is a 

length of closing - remaining closed - reopening time), 

averaged over a one minute period. More details are given in 

Table 7-3. Standard deviation of average blink duration was 

calculated for the final linear correlation (SD-AVEBLKDU). 

• AVEBLKFR: The average blink frequency. A moving average filter was 

used on eye blink frequency signals to sample over a one 

minute interval. More details are given in Table 7-3. 

Standard deviation of average blink frequency was 

calculated for the final linear correlation (SD-AVEBLKFR). 

 

 

Speed related measures  
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• MAXSP: The maximum speed. The simulator speed is set for a 

maximum of 60 km/h. The simulator checks every second 

during the test if the participants reach this set speed and this 

is recorded. A moving average filter was used for recorded 

data to sample over a one minute interval.   

• AVESP: The average speed. The simulator records the average speed 

every second during the 40 minute test. A moving average 

filter was used to sample the AVESP data over a one minute 

interval.  

 

Self reported measures  

• EPWOSCL: The Epworth sleepiness scale. The Epworth questionnaire 

gives a numerical value of subjective drowsiness. The 

maximum score is 24 (from eight questions). If the 

participant’s total score is 11 or more will indicates that 

he/she is subjectively sleepy.  

• NOHS: The number of hours sleeps during the last 24 hours. 

• SLEPSCAL Sleepiness scale; all participants have to log their sleepiness 

level before and after the simulator test. Participants need to 

scale their sleepiness level from 1-7 (1=alert and 7=sleepy). 

• TODD: The time of the day, when the participants starts the 

simulation test.  

• AGE: Age is categorized according to two groups; younger drivers 

aged 20-29 years and older drivers aged 30-70 years. 
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Predicted Variables  

• AVEDEV: The average deviation from the centre (calculated as the 

vehicle deviation from centre line and by the average 

deviation every 1 second period). These values go through a 

five minute moving average filter. More details are given in 

Table 7-3. Standard deviation of average deviations was 

calculated for the final linear correlation (SD-AVEDEV).     

• AVEREATM: The average reaction time. Every participant has to respond 

to random colour light change runs simultaneously with the 

simulation test. Total reaction times during the 30-40 minute 

simulation test go through a moving average filter to sample 

over a one minute interval. Standard deviation of average 

reaction time was calculated for the final linear correlation 

(SD-AVEREATM).           

• OUTOFBON: The out of bounds. Each participant is required to drive on 

the centre line of the road. If they go out of the road limits, 

this records the time during which the participant has gone 

out of bounds. OUT-OF-BON indicates the sum of out of 

bounds in each one minute time interval during the 

simulation test.   

 

All measures were first computed over one-minute intervals. Data manipulation 

procedures were then undertaken to prepare data for statistical analysis. Initially, the 

first five minutes from all measures were deleted as discussed above. This was done 
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so that the data to be analyzed did not include the time when participants were 

suspected of “settling in” to the driving task. Even though all participants were given 

a practice driving session it was thought that, in the first five minutes of driving some 

participants demonstrated inconsistencies concerning their driving behaviour 

reactions, and physiological measures. 

All measures collected through time were averaged in one minute blocks. Then mean 

and standard deviations were calculated for minutes 1 to 5, 2 to 6, 3 to 7, etc, giving 

a five minute moving average filter. The first five minutes of the data had been 

deleted. 

After completion of the moving average procedure, all the data were arranged in 

five-minute intervals. Five or six-minute averages had been shown previously to 

have higher correlation values with driver performance measures than one-minute, 

two-minute, or four-minute averages (Wierwille, et al., 1994). As the results for five 

and six minute averages were close, the five minute filter was chosen, as being more 

convenient for data of 35 or 40 minutes duration. (See Table 7-3 for a pictorial 

overview of the data manipulation procedure.) The studies by Dinges et al. (1985) 

found that longer intervals were better in the detection and prediction of the danger 

state of drowsiness.  
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Table 7-3: Data manipulation procedure 

 

The data analysis for this research composed of two major parts. The first part of the 

analysis consisted of correlation analyses of all the data. The purpose of the analysis 

was to determine which of the variables could possibly predict impairment due to 

drowsiness. The second part of the analysis consisted of linear regression analyses. 

The purpose of the regression analysis was to find one or more variables that would 

best predict impairment resulting from drowsiness. Figure 7-3 shows the implicit 

model: variables change (predicted variables) because of drowsiness and variables 

exemplify drowsiness (predictor variables).      
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Figure 7-3: Implicit Model, Predicted and Predictor variables for drowsiness 

detection 

 

7.4.2. Regression and Correlation Analysis 

Regression and correlation analyses were performed on the collected physiological 

and speed related data with performance data to determine the best indicators of 

drowsiness. Correlations were performed between the collected physiological 

measures and the collected performance measures. For example, SD of average blink 

duration and SD of average blink frequency were analysed for correlation with each 

performance measure (i.e., the SD of average deviations, SD of average reaction 

time, etc). The main reason of speed related measures included under predictor 

variables and correlated with predicted variables was to see any influence to driver 

performance. The speed related measures do not directly associate with drowsiness 
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but it could influence to deprive driving performance (Peters, 2001). Figure 7-4 

shows the predictor variables and predicted variables used for regression and 

correlation analysis. Figure 7-5 summarizes the correlation analysis. Regression 

analyses were performed between physiological and speed related measures and 

performance measures to determine the best predictor variables as indicators of 

drowsiness.  

 

Figure 7-4: Predictor and Predicted variables analysis 

 

 
Figure 7-5: Stat model of correlation analysis 
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In regression analysis, the term predictor variable refers to a predictor variable, and 

the term predicted variable refers to a variable that is being predicted. There are three 

classes of predictor variables: i) physiological variables AVEBLKDU (average blink 

duration), AVEBLKFR (average blink frequency), ii) sleepiness EPWOSCL 

(Epworth Sleepiness Scale), sleep scale SLEPSCAL (before and after the test) and 

NOHS (number of hours sleep during 24 hr period), Age, Time of the day TOD 

(simulator test), and iii) speed measures AVESP (average speed) MAXSP (maximum 

speed). The predicted variables are driver performance measures: AVEDEV (average 

deviations), AVERATM (average reaction time), and OUTOFBON (out of bounds). 

The regression analysis for physiological measures was calculated individually for 

all participants.  In the same way the regression analysis for the speed related 

measures was calculated individually for all participants.  

7.4.3. The t-test analysis  

The t-test assesses whether the difference in means of two groups is statistically 

significant. The t-test has been commonly used by many driver drowsiness detection 

studies (Johns et al. 2003; Arnedt et al., 2001; Skipper et al., 1984; Ingre et.al., 2006; 

Caffier et al., 2003).  

In this study, the t-test was performed between driver performance measures for 

different groups of participants, according to their self-reported measures (see Figure 

7-6). For example, number of hours sleep (NOHS) is categorized into two groups: i) 

3 to 4 hours sleep and ii) 7 to 9 hours sleep. Then the driver performance measures 

were categorized to these two groups and the t-test was used to test the significance 

of differences in mean performance variables between the two groups. Box plots 
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were used to illustrate the variations of median values across all categories used for 

driver performance in the t-test analysis.      

7.4.4. Linkage between variables   

All twelve variables have been considered for drowsiness detection and categorized 

for analysis in various forms. The self reported measures and performance measures 

across individuals are analyzed for drowsy and non-drowsy participants using a t-test 

(see Figure 7-6). Physiological and speed related measures were correlated with 

driver performance measures for each individual to identify the most reliable 

predictors (see Figure 7-6).       

 

Figure 7-6: Linkage between collected drowsiness detection measures 

 



Indrachapa Bandara, 2009, Chapter 7  177 

                                          

EPWOSCL score, SLEPSCAL values and NOHS are compared with predicted 

variables to analyse their effect. TODD and AGE were considered to analyse any 

possible influence on driver performance. Regression analysis was used for the 

physiological and speed related measures with predicted variables to identify the best 

indicator of drowsiness.  

7.5. Summary 

The objective of this chapter was to investigate driver drowsiness detection 

methods and recommend reliable data analysis methods for detection of drowsiness 

and prediction of driver performance measure. The research literature helped to 

identify potentially sensitive indicators for drowsiness data analysis. The regression 

analyses performed in this study represent an attempt to relate physiological and 

speed related measures with driver performance measures.  

 

Driver performance measures: three different measures used in this category were 

AVEDEV, AVEREATM and OUTOFBON. Each performance measure will be 

considered individually in the data analysis process with predictor variables.  

 

Self reported measures: five different measures used in this category were 

EPWOSCL, SLEPSCAL, NOHS, AGE and TODD. The NOHS is the sleep duration 

before the simulation test and TODD is the time of the day when participants 

participated in the simulator test. The t-test analysis will be use for self reported 

measures and predicted variables to verify the relationship with drowsiness.     
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Speed related measures: two speed related measures used in this research were 

MAXSP and AVESP. Regression analysis will be use for both speed related 

measures with each predicted variables to identify the relationship of speed 

variations with driver performance.  

 

Physiological measures: two physiological measures used in this research were 

AVEBLKDU and AVEBLKFR. Regression analysis will be use to verify the 

relationship of physiological measures with predicted variables.  

   

The next chapter shows that there is a relation between the driver performance 

measures and eye blink related measures. The final model development is discussed 

in this chapter.  
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8. CHAPTER 8 

 

 

FINAL DATA ANALYSIS RESULTS: DEVELOPMENT OF 

DRIVER-DROWSINESS DETECTION MODEL 
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8.1.  Introduction  

  Eighteen participants who attended for at least one session, and had complete 

and analysable sets of data (i.e. two complete sessions for four participants and a 

single session for 14 participants) were available for driver drowsiness detection.  

The four complete data sets comprised the following:  

� Four participants provided complete driver performance data for the 

alert and drowsy conditions. The other fourteen participants 

completed the simulator test in a non-drowsy condition. From those 

fourteen participants, some of them showed lack of performance in 

the latter stage of the test.  

� Captured eye blink durations, blink frequency and eye open 

percentage for all eighteen participants has been converted from video 

formats to numerical formats for analysis.  

� Sleep condition (i.e. duration of sleep during the 24 hour period), age 

and time of the day were used to categorize the 18 participants for 

analysis.  

� The EPWORTH sleepiness score was calculated before the simulator 

test. The final question is self rating of sleepiness or tiredness level 

after the simulator test. Each participant had to log their sleepiness or 

tiredness level (see Appendix C2, for the questionnaire).  
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8.1.1. Standard Deviation (SD) Calculation  

Standard deviation (SD) was calculated for physiological measures and predicted 

variables. The correlation of SD of average values shows a slightly better correlation 

than the normal average values for all participants. Figure 8-1 shows, time plots of 

deviations, AVEDEV and SD-AVEDEV for participant number 1. The 5 minute 

moving average of SD values shows a clear difference in increase of deviations with 

time towards the end of the test. Comparing to the deviations and AVEDEV, the SD-

AVEDEV is more appropriate for driver performance analysis. The SD-

AVEREATM showed similar results when compared to the reaction time and 

AVEREATM.      

Table 8-1 shows the correlation coefficient comparison of SD of AVEBLKDU & 

AVEBLKFR with AVERBLKDU & AVEBLKFR for all participants. The 

correlation values show a small increment for the SD values.  The results of Table 8-

1 show correlation coefficients are slightly higher for SD of averages than for the 

averages themselves. Therefore SD of average values was calculated for 

physiological measures and predicted variables.  
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Figure 8-1: Difference between deviations, AVDEV and SD-AVEDEV 

 

 

SUB No: SUB1 SUB2 SUB3 SUB4 SUB5 SUB6 SUB7 SUB8 SUB9 

SD of AVEBLKDU & 
AVEBLKFR 

0.9691 0.992 0.89 0.96 0.809 0.794 0.964 0.918 0.96 

AVEBLKDU & 
AVEBLKFR 

0.967 0.99 0.884 0.957 0.806 0.731 0.959 0.915 0.956 

SUB No: SUB10 SUB11 SUB12 SUB13 SUB14 SUB15 SUB16 SUB17 SUB18 

SD of AVEBLKDU & 
AVEBLKFR 

0.84 0.806 0.89 0.680 0.968 0.911 0.915 0.797 0.975 

AVEBLKDU & 
AVEBLKFR 

0.837 0.801 0.884 0.667 0.964 0.907 0.909 0.791 0.971 

Table 8-1: Linear Correlation Comparison 
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Figure 8-2 (a) shows an example of a randomly selected participant’s linear 

correlation of SD-AVEBLKDU and SD-AVEBLKFR compared with linear 

correlation of AVDBLKDU and AVEBLKFR. Figure 8-2 (b) shows the linear 

correlation of SD- AVEBLKDU and SD-AVEDEV (average deviation) compared 

with correlation of AVEBLKDU and AVEDEV for a drowsy participant. Figure 8-2 

(c) shows the linear correlation of AVEREATM (average reaction time).   

 
(i) 

 

(ii) 

Figure 8-2(a): (i) Linear Correlation of AVEBLKDU and AVEBLKFR,            

(ii) Linear Correlation of SD-AVEBLKDU and SD-AVEBLKFR 
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(i) 

 

(ii) 

Figure 8-2(b): (i) Linear Correlation of AVEBLKDU and AVEDEV, (ii) Linear 

Correlation of SD-AVEBLKDU and SD-AVEDEV 
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(i) 

 

(ii) 

Figure 8-2(c): (i) Linear Correlation of AVEBLKDU and AVEREATM,           

(ii) Linear Correlation of SD-AVEBLKDU and SD-AVEREATM 

 

All the measures were averaged for one minute. After completion of the one minute 

average procedure, the five minute moving average was calculated. The five minute 

average is used to develop a new metric.  

Regression analyses were used for several reasons. First, it was possible to analyse 

any portion of the data using regressions. Also, by using regressions, the 

experimenters were able to gain valuable insight into which measures contributed 
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consistently to the prediction of driver impairment and the detection of drowsiness. A 

block diagram of the procedure is shown in Figure 8-3. The steps of this procedure 

are explained in the subsequent sections.  

 

Figure 8-3: Block Diagram of the Main Steps in the Drowsiness Metric 

Development Procedure 

8.1.2. Participants  

Eighteen participants volunteered to take part in the study and four participants 

volunteered for morning and afternoon sessions. The eighteen participants who 

attended at least one session comprised 14 males and 4 females, with average 35.6 

years (SD 12 years). Three participants were aged over 60 and eleven participants 

were aged between 30–40 years. All others were aged between 20-29 years. Ten 

participants participated in the morning session (9:00am to 12:00pm) and the others 

participated in the afternoon session (12:00pm to 3:00pm). Fifteen participants drive 
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their own vehicle and the average length of time that participants had held their 

license was 15.30 years. Five participants travel on a motorway daily.  

8.2. Self reported measures analysis  

The t-test comparisons were used to identify relationships between five self 

reported measures and the performance measures. Four t-tests were performed for 

EPWOSCL, NOHS, TODD and AGE across all participants with performance 

measures and one paired t-test was performed for the SLEPSCAL. 

8.2.1. EPWORTH Sleepiness Scale (EPWOSCL) 

All participants filled in a questionnaire with the Epworth sleepiness scale. The 

EPWORTH scale is used to determine the level of daytime sleepiness (Lundt, 2004). A 

score of 11 or more is considered sleepy. A score of 18 or more is very sleepy (Lundt, 

2004).  This scale helps to obtain a general indication of participants’ daytime 

sleepiness. Figure 8-4 shows the EPWORTH sleepiness scores for all eighteen 

participants.  

 
Figure 8-4: Epworth sleepiness score for each participant 
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Only two participants showed a high Epworth sleepiness score (ESS ≥ 11). The mean 

ESS for all eighteen participants is 7.2 and the standard deviation (SD) is 2.16. ESS 

results showed that 89% of participants who participated in the driving simulator test 

did not report any sleep deprivation problems at the time of the test. The Epworth 

scale helped to categorize the participants, with their sleep deprivation problem and 

normal condition. In the analysis, participants with ESS≥10 were considered as 

sleepy, because only two participants had high ESS across all 18 participants. In this 

study, the participants who had ESS≥11 and the participant who had ESS=10 showed 

similar performance results. Therefore, the ESS≥10 is considered as a high ESS 

value for further analysis.   

Figure 8-5 shows the ESS score arranged from smallest to largest score with SD of 

AVEDEV and SD of AVEREATM (converted to seconds).  
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Figure 8-5: SD of AVEDEV and SD of AVEREATM with ES score for all 

participants.   
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The Epworth sleepiness score is highly correlated with driver performance (Sallinen 

et al., 2004). Figure 8-6 shows the Boxplot of the ES scores and average deviations 

(AVEDEV) (categorized to two groups) for eighteen participants. It indicates that the 

three participants who have ES score greater than or equal to 10 have higher average 

deviations.  The median value (see Figure 8-6, Boxplot) shows a clear difference of 

alert and subjectively sleepy participants’ performance. The median values 

comparison is shown in Table 8-2.     

 
Figure 8-6: Boxplot of ES score and average deviations (AVEDEV). 

 

Figure 8-7 shows the Boxplot of the ES score and average reaction time 

(AVEREATM) for eighteen participants. It indicates that the three participants who 

have ES score greater than or equal to 10 have longer (slower) reaction times 

compared to participants who have ES scores less than or equal to 9. The 

AVEREATM is categorized by the Epworth score ESS≤9 and ESS≥10. The t-test 

gives the value t=0.83 (d.f=2), which is not significant (p>0.20), indicating that the 

differences in means between the two categories is not significantly different from 
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zero. The reasons for not detecting a significant difference between two categories 

were high variability of drowsy participants and the small sample. Further study is 

needed to clarify whether significant differences exist, with a large sample.  

 

Figure 8-7: Boxplot of ES Score and average reaction time (AVEREATM) 

 

Table 8-2 shows the ES Score and the median values of AVEDEV and AVEREATM 

for all participants. The ES Score is divided into two categories as before: ESS ≤ 9 

(Alert) and ESS ≥ 10 (Drowsy).  

 Epworth Score 

(EPWOSCL) 

Median 

value of 

AVEDEV 

Median value 

of AVEREATM 

Number of 

participants 

All participants ESS≤9 (alert) 18.27 0.0043 15 

All participants ESS≥10 (Drowsy) 24.32 0.0068 3 

Table 8-2: Epworth score compare with AVEDEV and AVEREATM for all 

participants 

 

The Out-of-Bounds did not show any correlation with the ES score. There were only 

3 drivers who went out-of-bounds, but the ESS score varied between 6 and 12 for 
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those three drivers. The correlation results across all participants for the 

OUTOFBON measure will be discussed in section 8.4.           

The AVEDEV is categorized by Epworth score ESS≤9 (subjectively alert 

participants) and ESS≥10 (subjectively sleepy). The difference in mean ESS score 

between the alert and subjectively sleepy categories is statistically significant (t(3) = 

-3.56; p<0.05). Thus, the results substantiate an increase in average deviation for 

high ESS participants.  

 

8.3. Effect of Sleep Duration on Driver Performance  

The average amount of time spent by all the participants in the simulator was 

34.1 minutes.  Every participant had to log their sleep durations (number of hours 

sleep, NOHS) in the 24 hour period before the test.  Figure 8-7 shows the Boxplot of 

sleep durations categorized to two groups, and SD of average deviations. It indicates 

a clear difference in median values between participants who had few hours sleep 

and those who had a good sleep during the 24 hour period before the test. The 

AVEDEV is categorized to two groups (3 to 4 hours sleep and 7 to 9 hours sleep) by 

the NOHS before the simulation test. The participants showed poorer driving 

performance if they had less sleep but the difference in AVEDEV between the two 

categories is not statistically significant t=1.05 (d.f=3), p>0.12. A possible reason for 

not detecting a significant difference was high variability in group one (3 to 4 hours 

sleep). Further research is needed, on large samples. 

Figure 8-8 shows the Boxplot of sleep duration and SD of AVEREATM categorized 

to two groups (3 to 4 hours sleep and 7 to 9 hours sleep). The median values show a 

clear difference between two groups (see Table 8-3). The t-test results were not 
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significant at 5%, but were significant at 10%, t=1.76 (d.f=3), p<0.1. As discussed 

above, the difference in mean of AVEDEV is not statistically significant, but the 

difference in mean value of AVEREATM is significant for two categories. 

Considering the results for both AVEDEV and AVEREATM with sleep durations 

indicates that sleep duration is potentially an important indicator for driver 

impairment.  

Sleep durations (during 24 
hours before the test) 

Median value of 
AVEDEV 

Number of 

participants 

Median value of 
AVEREATM 

Number of 

participants 

3 to 4 27.25 4 0.017 4 

7 to 9 20.55 14 0.0048 14 

Table 8-3: Sleep durations and median values of average deviations for all 

participants.  

 

 
Figure 8-7: Boxplot of sleep durations (two groups) and SD of AVEDEV  
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Figure 8-8: Boxplot of sleep durations and AVEREATM (during 24 hour 

period) 

8.3.1. Participants Who Participated in Sleep Deprived Condition  

In this section, we discuss the four participants who participated in a lack of sleep 

condition (sleep ≤ 4 hours during the 24 hour period) for the simulator test. Three 

participants had ES scores less than 10 and one participant had ESS = 12. Comparing 

their normal sleep condition results and lack of sleep condition results shows some 

large differences. Figures 8-9 (a) and (b) show a comparison of driving performance 

for participants in their alert condition and sleep deprivation condition (AVEDEV 

and AVEREATM). Results show that all four participants have higher average 

deviations (poor driving performance) in their sleep deprivation condition compared 

to their normal condition. This is particularly noticeable for the AVEREATM 

measure.      



Indrachapa Bandara, 2009, Chapter 8  195 

                                          

 

Figure 8-9(a): Comparison of average deviations (AVEDEV) of participants 

with their normal conditions and sleep deprivation condition. 

 

Figure 8-9(b): Comparison of average reaction time (AVEREATM) of 

participants with their normal conditions and sleep deprivation condition. 

 



Indrachapa Bandara, 2009, Chapter 8  196 

                                          

An initial analysis of the individual participants’ driving behaviour is important to 

develop new drowsiness scales (Lundt, 2004). A relationship between drowsiness 

and the standard deviation of average deviations SD-AVEDEV (steering error) can 

be detected for participants 1, 3, 9 and 14 (both from normal and sleepy conditions). 

These four participants are examples of drivers in their sleep deprivation condition 

that have higher amplitudes in the average deviation than other alert participants. The 

driver performance results show several participants have higher average deviations 

at the end of the simulator test, compared to their average deviations at the beginning 

of the test.    

Participant number 1 

The participant number one participated in both sleepy and sleep-deprived 

conditions. This participant’s results were selected of those people who participated 

in both conditions and are shown here for illustration purposes. Figures 8-10 (a) and 

(b) show driver performance (average deviations AVEDEV) and average blink 

durations (AVEBLKDU) changes for both sleepy and not-sleepy conditions. The 

data were averaged and logged at one minute intervals. During the 35 minutes of the 

simulator test, participant one shows clear variations in driver performance and 

increase of average blink durations compared to his not sleepy conditions. In the 

sleep deprivation condition, the participant’s performance starts to decline after the 

14th minute and AVEDEV shows a rapid increase up to 100 cm during three minutes 

and, at the same time AVEBLKDU increased gradually.  In the not-sleepy condition, 

the participant’s performance (AVEDEV) is stable during the first twenty-five 

minutes, with a slight increase in the last ten minutes.  Table 8-4 shows the variation 



Indrachapa Bandara, 2009, Chapter 8  197 

                                          

analysis results for sleepy and not-sleepy conditions during the 35 minutes of the 

simulator test. Variance for not-sleepy is 2.81 and for sleepy is 24.68. 

 SD of AVEDEV (Not Sleepy) SD of AVEDEV (Sleepy) 

Mean 9.957 13.562 

Variance 2.809 24.681 

Observations 34 34 

P(T<=t) one-tail 2.909 x 10
-6

  

t Critical one-tail 1.692  

P(T<=t) two-tail 5.817 x 10
-6

  

t Critical two-tail 2.0345  

 

Table 8-4: Variation analysis for SD of AVEDEV for sleepy and not sleepy 

conditions  

 

 

 
Figure 8-10(a): Average deviations and average blink durations for participant 

1: sleepy condition. 
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Figure 8-10(b): Average deviations and average blink durations for participant 

1: not-sleepy condition. 

 

Sleep Deprived Participants 

Figure 8-11 shows how SD-AVEDEV is affected for every five- minute period for 

alert and sleepy participants. The figure demonstrates that the participants with sleep 

deprivation condition have large peaks on the SD of AVEDEV values.  
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Figure 8-11: Standard deviation of average deviations (SD-AVEDEV) for four 

participants under sleepy (S1sl, S3sl, S9sl, S14sl) and not-sleepy (S1, S3, S9, S14) 

condition. 

 

The above results indicate there is a strong relation between sleepiness and the 

average deviations from the centre line (steering error). Sleep deprivation 

participants show higher average deviations (30 cm or above). The participants who 

participated under normal conditions have average deviations (AVEDEV) varying 

between 5 and 25 cm. Even some of the participants in the normal condition showed 

an increase in AVEDEV in the last few minutes of their simulation test.  

8.3.2. Sleepiness Scale (SLEPSCAL) 

SLEPSCAL is included in the questionnaire and each participant has to answer 

before and after the test. Participants were asked to rate how sleepy they felt after the 

forty minutes using the driving simulator and before the simulator test. The question 
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is a rating scale from 1 (not-sleepy) to 7 (extremely sleepy, can’t keep awake). This 

question was related to the Karolinska Sleepiness Scale (KSS), widely used in driver 

drowsiness detection research (Gillberg et al., 1994). As expected, participants 

reported feeling significantly sleepier at the end of the simulation test compared to 

the beginning of the test t= -15.93 (d.f=21), p<0.05) (see Figure 8-10). The mean 

values of the sleepiness rating before and after the test are 1.81 (Before) and 3.77 

(After).  Figure 8-12 shows the Boxplot of SLEPSCAL before and after the 

simulation test.  

 

 
Figure 8-12: Boxplot of SLEPSCL score before and after the simulation test for 

all participants. 

 

The SLEPSCAL results also clearly indicates that participants showed some 

deprived driving condition at the end of the simulation test, because participants 

become tired or bored while driving for 30-40 minutes on a single track virtual 

driving simulation. The results indicate that the driver performance declines towards 

the end of the test.  
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8.3.3. Age (AGE) and Time of the day (TODD) 

The simulation test was conducted in the two sessions, the morning session (9:00am 

to 11:30am) and the afternoon session (12:30pm to 3:00pm). The study by Wylie et 

al. (1996) concluded that time of the day is a good predictor of decreased driving 

performance. Night driving is more associated with drowsiness related accidents than 

day driving (Akerstedt & Kecklund, 2001). Considering the participants’ availability 

and other factors, the simulator test was conducted in the day time. In this PhD 

research, TODD and AGE is included under self reported measures in the main 

predictor variables category. These two measures were analyzed to identify any 

relationship with performance measures. Ten participants participated in the 

afternoon session and eight in the morning session. Sleep deprived participants are 

not included in this study, because their sleepiness conditions are independent of 

time of the day or age.  

The study by Clarke et al. (2006) found young novice drivers (18-24 years old) have 

a crash rate that is more than four times higher than that of experienced drivers (30-

59 years old). The rate of young males is even more than six times higher. The main 

causes are a lack of experience and the age itself. In the current research, age is 

categorized into two groups (20–29 years old and 30-70 years old) and analyzed for 

time of the day with performance measures. Figure 8-13 shows the two age groups 

who participated in morning and evening sessions and their median values of driving 

performance measures. It is clear that young drivers (20-29 years old) show poorer 

driving performance in the mid afternoon session compared to 30-70 years old 

drivers. The two age groups comparison of SD-AVEDEV is statistically significant, 

t=1.84(d.f=8), p<0.05. This compares with SD-AVEREATM which is not significant 
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at 5%, but it is significant at 10%, t=1.75(d.f=3), p=0.088. In the morning session, 

30-70 years old drivers showed some poorer performance according to SD-

AVEDEV and the difference is statistically significant t=-1.93(d.f=6), p<0.05. The 

difference with SD-AVEREATM is not significant for these two groups in the 

morning session.     

   

         
Figure 8-13: Boxplot of performance; participants participated in two sessions 
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8.3.4. Conclusions of the self reported measures  

The results from this study indicate there is a good degree of consistency among the 

self reported measures and performance measures. The SLEPSCAL results showed 

most of the participants are feeling sleepy or tired after the test and the difference in 

sleepiness is statically significant. The analysis of Epworth score (EPWOSCL) and 

the number of hours sleep (NOHS) has shown a significant relationship with 

performance measures. The age and time of the day results showed young drivers 

feel sleepy in the mid afternoon session and the middle age drivers showed poor 

driving performance in the morning session. Table 8-5 summarizes the advantages 

and disadvantages of self reported measures.   

Measure Advantages Disadvantages 

Epworth Score 

- EPWOSCL 

A measure that may be an 

indicator of drowsiness. Help 

to driver drowsiness detection.   

Large test sample needed to clarify the 

significant differences of driver performance.    

Number of 

hours - NOHS 

A measure that may be directly 

associated with drowsiness. 

Individual performance variability is high with 

same NOHS. Difficult to see significant 

differences between tired and alert with small 

test sample  

Sleep scale - 

SLEPSCAL 

A measure that is directly 

associated with drowsiness 
 

Age- AGE 

A measure that  shows some 

association with accidents 

(literature)  

Difficult to relate to driver drowsiness with a 

small test sample 

Time of the 

day- TODD 

A measure that shows some 

association with drowsiness 

Difficult to see significant differences between 

tired and alert with small test sample  

Table 8-5: The advantages and disadvantages of self reported measures 
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8.4. Correlation of physiological & speed related measures with 

performance measures  

In this PhD research, physiological and speed related measures are important 

predictor variables to predict driver impairment. Table 8-6 shows the different sets of 

measures that were used in the regression analyses.  

 

Table 8-6: Sets of measures used in Regression Analyses for each predicted 

variables. 

 

An examination of the average R scores across all sets of predictor variables for each 

of the three predicted variables gives an indication of the strength of the linear 

relationship. The results of the average R-score analysis seen below were obtained by 

averaging the R values for all eighteen participants and four participants with sleep 

deprivation condition (see Table 8-7). 

 

 

 



Indrachapa Bandara, 2009, Chapter 8  205 

                                          

 

Alert participant (participant 1) R value 

 

Drowsy Participant (participant 1) R value 

 

Table 8-7: Table of Regression Analyses Results Showing R Values for single 

participant (Alert/Drowsy) 

 

An examination of the average R scores across all predicted variables, for each of the 

four predictor variables, gives a preliminary indication of the relative predictive 

strengths of the predictor variables. The results showed that two predictor variables 
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(AVEBLKDU & AVEBLKFR), for all participants and for just sleep-deprived 

participants, are strongly correlated to the predicted variables.     

• AVEBLKDU: Average R = 0.9401 across 18 participants. 

• AVEBLKFR: Average R = 0.9351 across 18 participants 

• AVEBLKDU: Average R = 0.8646 across 4 sleep deprivation condition 

participants 

• AVEBLKFR: Average R = 0.9139 across 4 sleep deprivation condition     

participants 

• AVESP: Average R = 0.227 across 18 participants 

• MAXSP: Average R = 0.238 across 18 participants 

• AVESP: Average R = 0.087 across 4 sleep deprivation condition participants 

• MAXSP: Average R = 0.138 across 4 sleep deprivation condition participants 

 

The predicted variable ‘OUTOFBON’ did not show high correlation with predictor 

variables, but in drowsy participants it showed a clear difference. The OUTOFBON 

measure was very hard to predict, because only three people went out of bounds in 

the experiment. This was the main reason to drop OUTOFBON from further 

analyses. Average R-scores for ‘OUTOFBON’ for all eighteen participants and four 

drowsy participants are shown below.  

• OUTOFBON: Average R = 0.3214 across 18 participants 

• OUTOFBON: Average R = 0.4952 across 4 sleep deprivation condition 

participants. 

 



Indrachapa Bandara, 2009, Chapter 8  207 

                                          

8.4.1. Final regression model of predictor and predicted variables  

Development of the final regression model considered all physiological, speed 

related and self rating measures with performance measures. The statistical methods 

have been used for selecting the final regression model variables. The average ‘R’ 

values discussed in the previous section show the most significant variables to be 

used for further analysis. Four measures have been selected for the final data 

analysis. The two variables from predictor variables and the two variables from 

predicted variables have been finalized. Figure 8-14 shows the final regression 

model.      

 

Figure 8-14: Final regression analysis model 
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8.5. The duration of eye blinks and blink frequency changes with 

drowsiness 

 The increased duration of spontaneous blinks has been suggested as an early 

indicator of the drowsy state (Wijesuriya et al., 2007). Figure 8-15 shows the 

standard deviation of average blink durations and average blink frequency changes 

during the simulation test for participants 1, 3, 9, 14 in the alert and sleep deprived 

conditions. The Figure clearly illustrates the SD of AVEBLKDU and AVEBLKFR 

(standard deviation of average blink durations and frequency) in an alert condition 

are significantly lower (p<0.001) compared to the sleep deprived condition.  

 

Participant: 1 
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Participant: 3 

 
Participant: 9 
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Participant: 14 

Figure 8-15: SD of AVEBLKDU and AVEBLKFR variations for participants 1, 

3, 9 and 14 in alert and sleepy conditions 

 

Figure 8-16 shows the mean values of SDAVEBLKDU and SDAVEBLKFR for 

eighteen participants and the participants who participated in sleep deprivation 

conditions (see Appendix C2 for further details). Figure 8-16 illustrates the averages 

over every 5 minutes for all participants. All eighteen participants participated in 

their normal conditions but participant No 5 showed poor driving performance in the 

test (participant 5 had a high ESS score of 11).  The participant No 5 was added to 

the sleep deprivation condition category, leaving seventeen participants in the alert 

category. The mean values of SD of AVEBLKDU for alert participants were 

significantly lower compared to sleep deprivation participants (average for alert 

participants = 0.00062 sec and drowsy participants = 0.012 sec) (p<0.001) (see Fig. 

8-11). The SD of AVEBLKFR is significantly lower (average for alert participants = 
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0.022 seconds and drowsy participants = 0.034 seconds) (p<0.001) for alert 

participants compared to sleep deprivation participants. In alert participants, the SD 

of average blink duration was very small (variation 2x10
-3

 sec), but this increased 

markedly to 17.8x10
-3

 sec
 
variation and was highly variable in the drowsy state (see 

Appendix C2 for 5 minute average data for all participants). The SD of blink 

frequency in participants when alert (variation 8.2x10
-3

 sec) also increased 

significantly after sleep deprivation (variation 29x10
-3

 sec, p<0.001).  

 
 

 
 

Figure 8-16: The mean values of SDAVEBLKDU and SDAVEBLKFR for 

eighteen participants and the four participants participated in sleep deprivation 

conditions 
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8.6. Final correlation analysis model 

The final correlation model was designed having taken into account all twelve 

measures and having considered the statistical significances of these measures. The 

self rating measures have provided good background in predicting driver impairment 

according to the reported driver characteristics. Possible reasons for not seeing a 

relation of MAXSP and AVESP with driving performance is that the speed was 

limited to 60 km/h. Potential effects on driving performance beyond that speed have 

not been observed. Figure 8-17 shows the final drowsiness prediction model and the 

statistical stability of all measures.  

 

Figure 8-17: Final correlation analysis model and the drowsiness prediction 

model 
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8.7. Correlation analysis for SD of average blink duration and 

average blink frequency.  

Data were available for 720 minutes from 18 participants in an alert state and 

another 160 minutes from four drowsy participants. The test results illustrate that SD 

of average blink frequency and average blink duration increases significantly 

(p<0.001) for sleep deprivation participants.  Correlation analysis was performed for 

standard deviation of eye blink (blink frequency and duration) and driver 

performance measures (deviations and reaction time).  Table 8-8 shows the 

correlation coefficients for alert and sleep deprivation participants (Participant No: 1, 

3, 9 and 14).        

Table 8-8: Correlation results for alert and drowsy participants 

Note:  SD-DU; Standard deviation of average blink duration (SD-AVEBLKDU) 

SD-FR; Standard deviation of average blink frequency (SD-AVEBLKFR) 

SD-DE; Standard deviation of average deviations (SD-AVEDEV) 

SD-RE: Standard deviation of average reaction time (SD-AVEREATM) 

Standard deviation of average blink duration and frequency correlate with average reaction time 

Alert        Alert       Alert       Alert     

SB-1 SD-

DU 

SD-

FR 

  SB-3 SD-

DU 

SD-

FR 

  SB-9 SD-

DU 

SD-

FR 

  SB-14 SD-

DU 

SD-

FR 

SD-
RE 

0.698 0.522   SD-RE 0.54 0.004   SD-RE 0.201 0.212   SD-RE 0.271 0.304 

                              

Drowsy      Drowsy       Drowsy       Drowsy     

SB-1 SD-

DU 

SD-

FR 

  SB-3 SD-

DU 

SD-

FR 

  SB-9 SD-

DU 

SD-

FR 

  SB-14 SD-

DU 

SD-

FR 

SD-
RE 

0.954 0.718   SD-RE 0.961 0.914   SD-RE 0.89 0.993   SD-RE 0.916 0.904 

 

Standard deviation of average blink duration and frequency correlate with average deviation 

Alert     Alert    Alert    Alert   

SB-1 SD-DU SD-

FR 

 SB-3 SD-

DU 

SD-

FR 

 SB-9 SD-

DU 

SD-

FR 

 SB-14 SD-

DU 

SD-

FR 

SD-
DE 

0.3999 0.228  SD-DE 0.055 0.021  SD-DE 0.697 0.3372  SD-DE 0.0281 0.0903 

               

Drowsy    Drowsy    Drowsy    Drowsy   

SB-1 SD-DU SD-

FR 

 SB-3 SD-

DU 

SD-

FR 

 SB-9 SD-

DU 

SD-

FR 

 SB-14 SD-

DU 

SD-

FR 

SD-
DE 

0.954 0.968  SD-DE 0.946 0.903  SD-DE 0.984 0.9902  SD-DE 0.7848 0.9265 



Indrachapa Bandara, 2009, Chapter 8  214 

                                          

Correlation results show that the SD of Average Deviations is highly correlated with 

SD of average blink duration and average blink frequency for drowsy conditions. 

The correlation coefficient for SD of average blink duration and frequency for alert 

participants are very low compared to drowsy participants. 

All Alert participants (18) 

SUB -1      SUB -2 

                
 

SUB -3     SUB -4 

       
 

SUB -7      SUB -8 
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SUB -9      SUB -10 

    
SUB -11     SUB -12 

  
SUB -13     SUB -14 

  
SUB -15     SUB -16 
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SUB -17     SUB -18 

  
Drowsy Participant (4) 

SUB-1 Drowsy    SUB-3 Drowsy 

  
SUB-9 Drowsy    SUB-14 Drowsy 

  
 

Participants showed deprived driving performance at the end of the test 
SUB-1       First 5 minutes (slope ‘m’= 46.2)           Last 5 minutes (slope ‘m’= 35.5) 
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SUB-2         First 5 minutes (slope ‘m’= 50.9)         Last 5 minutes (slope ‘m’= 29.2) 

  
 

SUB-7      First 5 minutes (slope ‘m’= 36.8)         Last 5 minutes (slope ‘m’= 27.5) 

  
 

SUB-8       First 5 minutes (slope ‘m’= 38.8)         Last 5 minutes (slope ‘m’= 25.5) 

     
 

Participants got high ESS score 
SUB-5       First 5 minutes (slope ‘m’= 25.5)         Last 5 minutes (slope ‘m’= 2.3) 
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SUB-6       First 5 minutes (slope ‘m’= 46.1)         Last 5 minutes (slope ‘m’= 7.4) 

  
 

Figure 8-18: Correlation analysis: measure of linear relationship strength 

between SDAVEBLKDU and SDAVEBLKFR for all alert and drowsy 

participants 

8.7.1. Alert participants  

The correlation results of SD of average blink duration and average blink frequency 

in alert participants are shown in Figure 8-18 (Alert) (see Appendix C2 for all 

participants). Each point represents a five minute average of blink duration and 

frequency (each point equals 300 data points). These two variables are very highly 

correlated for both drowsy and alert participants (Pearson’s r = 0.98, n = 7, p<0.001). 

Table 8-9 shows the correlation coefficients (Pearson’s r) for two variables for all 

alert and drowsy participants.  The comparable correlation between SDAVEBLKDU 

and SDAVEBLKFR for the alert state (Fig. 8-18) was almost as high (r =0.97, n = 7, 

p<0.001) but with a different regression slope.  
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Table 8-9: Correlation coefficients of SDAVEBLKDU and SDAVEBLKFR for 

all alert and drowsy participants 

SUB No: 
(Alert) 

1 2 3 4 5 6 7 8 9 

 0.96 0.99 0.89 0.96 0.81 0.79 0.96 0.92 0.91 

SUB No: 
(Drowsy) 

1  3      9 

 0.99  0.93      0.94 

SUB No: 
(Alert) 

10 11 12 13 14 15 16 17 18 

 0.84 0.81 0.89 0.75 0.97 0.91 0.92 0.8 0.98 

SUB No: 
(Drowsy) 

    14     

     0.99     

 

The slope of linear regression is higher in alert participants compared to sleep 

deprived participants or drowsy participants (slope range for alert participants, m= 18 

to 140). The statistical model used for linear regression is: y = mx +b. 

In this particular equation, the constant ‘m’ determines the ‘slope’ or gradient of that 

line. Example below shows the slope for linear regression for participant 1 in alert 

and sleep deprivation condition.  

 

SB 1 Alert:    m = 41.10    SB 1 Drowsy:  m = 2.012 

  b = -0.00053          b = = 0.0099 

8.7.2. Drowsy participants  

The relationship between the SD of AVEBLKDU and SD of AVEBLKFR in the 

drowsy state is shown in Fig. 8-18 (Drowsy). There were very low slopes for drowsy 

participants, m= 0.05 to 2.0, compared to slopes of m=18 to 140 for alert 

participants.  i.e., the blink duration and frequency was high and more variable for 

most participants in the sleep deprivation state than in the alert state (see Appendix 

C2, SD of AVEBLKDU & FR change with AVEDEV and AVEREATM for alert 

and drowsy state). 
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8.8. A New Scale of Drowsiness Based on Multiple Characteristics 

of Blinks.   

The above correlation results focused on the development of an operational 

definition of drowsiness based on a combination of SD of blink duration and SD of 

blink frequency. Although blink duration is a very accurate operational definition of 

drowsiness (Johns, 2003), no previous research has looked at the form of the 

relationship between the variables of eye blink duration and frequency as a possible 

predictor of drowsiness. This is examined in this section. 

8.8.1. Evaluating the Goodness of Fit  

The linear relationship between SD of blink duration and frequency was evaluated 

for its goodness of fit. The residual plots are used to test the goodness of fit. The 

residuals from a fitted model are defined as the differences between the response data 

and the fit to the response data at each predictor value.  

 residual = data – fit 

Figure 8-19 shows the residual plot for participant 1 in an alert condition with 

predicted SD-AVEBLKDU. The results show the residuals appear randomly 

scattered around zero indicating that the model describes the data well.  

 

Figure 8-19: The residual plot for participant 1 in alert condition 
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Most of the alert participants showed some increase in their blink duration and 

frequency in the last few minutes of the simulator test. The reason for this behaviour 

suggested that they were not fully concentrating on the driving, or were bored. The 

primary limitation of the slow eyelid closure measures (PERCLOS and Johns’ 

drowsiness scale) is that drivers may not exhibit this behaviour until they are 

severely drowsy and/or impaired. The advantage of this eye blink correlation method 

is it can identify the drowsiness at the very early onset of drowsiness or drowsiness.    

8.8.2. Calculating Slope (m) for all alert and drowsy participants 

All available eye blink data from alert participants (630 min from 18 participants), 

and all data (140 min from 4 participants) from sleep deprivation participants’ SD of 

average blink duration and SD of average blink frequency were correlated and the 

linear regression coefficient and slope (m) recorded. Table 8-10 shows the slope ‘m’ 

(SD-AVEBLKDU vs SD-AVEBLKFR) for all participants and their performance 

data (alert and sleep deprived conditions). 
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Participan

t No: Age 
Epwort
h Score  

Sleep time 
 During 
24hrs AVGDEV 

SD-
AVEREAT
M 

Slope 
(m)  

1 35 6 9 9.96 0.00361 41.096 

2 36 6 8 20.59 0.00425 18.921 

3 65 12 7 24.32 0.00679 20.352 

4 27 7 7 17.97 0.00731 13.181 

5 32 11 9 23.3 0.00312 13.906 

6 30 10 7 28.73 0.00818 27.781 

7 25 6 8 19.5 0.00422 140.41 

8 31 5 7 16.75 0.00381 115.65 

9 31 7 8 17.5 0.00401 42.052 

10 60 8 9 14.56 0.00489 18.851 

11 40 9 8 17.89 0.00397 27.033 

12 38 6 9 22.56 0.00579 71.533 

13 51 7 7 18.27 0.00478 17.034 

14 22 5 8 17.21 0.00349 19.217 

15 26 9 7 21.82 0.00593 29.029 

16 30 7 8 21.85 0.00576 27.396 

17 24 6 7 20.52 0.00531 22.335 

18 38 9 7 23.7 0.00421 29.344 
 

Participants participated in alert condition 

       

Participan

t No: Age 
Epwort
h Score  

Sleep time 
During 
24hrs AVGDEV 

SD-
AVEREAT
M 

Slope 
(m) 

1 35 6 3 13.17 0.0117 2.0181 

9 31 7 3 28.14 0.0124 1.3033 

3 65 12 4 31.32 0.067 1.2336 

14 22 5 3 26.37 0.022 0.78114 

participants participated in sleep deprived condition 

Table 8-10: Participants’ data with linear regression m (slope) values 

8.8.3. Logarithm of Slope (m) values and ranking 

The correlation coefficient (r) was calculated for all 18 and 4 drowsy participants. 

The correlation coefficient (r) values do not exhibit a clear difference of value 

between the two states of alertness and drowsiness. The slope (m) values were 

converted to ‘ln’ (natural logarithm) transformation to produce a matrix for the 

detection method (see Table 8-11). Rank ordering the slope (m) and taking the 

logarithm of these values, showed clear partitioning in the values.  

 



Indrachapa Bandara, 2009, Chapter 8  223 

                                          

Participant 
No 

Slope 
(m) 

participant 

Rank Descending Ln Categ Range 

1 41.096 5 140.41 4.944 10 Alert 

2 18.921 14 115.65 4.750 10 Alert 

3 20.352 12 71.533 4.270 9 Alert 

4 13.181 18 42.052 3.738 8 Alert 

5 13.906 17 41.096 3.716 8 Alert 

6 27.781 8 29.344 3.379 7 Alert 

7 140.41 1 29.029 3.368 7 Alert 

8 115.65 2 27.781 3.324 7 Alert 

9 42.052 4 27.396 3.310 7 Alert 

10 18.851 15 27.033 3.297 7 Alert 

11 27.033 10 22.335 3.106 7 Alert 

12 71.533 3 20.352 3.013 6 Alert 

13 17.034 16 19.217 2.955 6 Alert 

14 19.217 13 18.921 2.940 6 Alert 

15 29.029 7 18.851 2.936 6 Alert 

16 27.396 9 17.034 2.835 6 Alert 

17 22.335 11 13.906 2.632 5 2.57 Ques’ble 

18 29.344 6 13.181 2.578 5 2.57 Ques’ble 

1SLP-19 2.0181 19 2.0181 0.702 2 Drowsy 

3SLP-20 1.3033 20 1.3033 0.264 1 Drowsy 

9SLP-21 1.2336 21 1.2336 0.209 1 Drowsy 

14SLP-22 0.78114 22 0.78114 -0.247 1 Drowsy 

Table 8-11: The slope (m) values, ‘ln’ (natural logarithm) values and rank 

order. 

 

The values ranged from 4.94 at the highest to around zero at the bottom end. The 

participants on ln range 4.94 to 2.57 were very alert. The next range (2.57 to 1.5) was 

the questionable range in this study, where it is difficult to detect whether the 

participant is drowsy or alert. Most of the participants in the questionable range 

showed some deprived driving performance in the last 5 to 10 minutes of the test.   

Dividing these values into partitions was then important to understand the range of 

alertness. The logarithm value range from 0 to 5 is easily divided into 10 divisions 

that can clearly identify this range.  
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8.8.4. Categorization of New Scale 

Table 8-11 shows the ‘logarithm’ transformation values of slope categorized to range 

0-10 for quantifying subjective drowsy level. The range 0-10 (see Table 8-12) is a 

score based on linear correlation from standard deviation of blink duration and 

frequency on alert and drowsy conditions (coded 0 and 10) from the ocular variables, 

minute by minute. The natural logarithm values range from 4.9 to 0.2 (Alert - to - 

Drowsy). The rank ordering divides the slope (m) values into three categories. The 

sleep deprived participants showed this lower slope (m) values and the drowsy range 

categorized to 0.0 to 1.5.  The values lower than 2.6 and above 1.5 are categorized as 

the questionable category. In the questionable category range, participants showed 

some poor driving performance in the last 10-15 minutes of their driving test. The 

values above the 2.6 are categorized as alert range. In this range (2.6 – 4.95) 

participants did not show any poor driving performance.    

Category 10 9 8 7 6 5 4 3 2 1 

logarithm 
values of 
slope(m) 

4.6 - 

5.0 

4.1 - 

4.5 

3.6 - 

4.0 

3.1 - 

3.5 

2.6 - 

3.0 

2.1 - 

2.5 

1.6 - 

2.0 

1.1 - 

1.5 

0.6 - 

1.0 

0 - 

0.5 

Table 8-12: Categorization of Drowsiness Scale 

 

8.9. Validation of new drowsiness scale  

The driving performance data collected during the simulation session were 

compared to the new drowsiness scale to investigate the relationship between 

drowsiness and driving performance, in terms of average deviation from centre line, 

and average reaction time. Because the raw data have already been summarised as 

per-minute measurements, the scatter plot is not a suitable way to illustrate this 
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relationship between drowsiness and the driving performance. Instead, the 

continuous slopes (m) were categorized to scale range from 1 to 10 (see Table 8-12).  

8.9.1. Relationship between driving performance and new drowsiness 

scale (NDS) 

The driving performance data collected during the simulation session were 

categorized to the new drowsiness scale to investigate the relationship between 

drowsiness and driving performance, in terms of SD of average deviations and 

average reaction time. Figure 8-20 shows the standard deviation (SD) of average 

deviation (AVEDEV) across categories of New Drowsiness Scale (NDS) for the 

entire alert and sleep deprived participants. The SD-AVEDEV is categorized by the 

new drowsiness scale NDS (1-5, Drowsy and Questionable) and NDS (6-10, Alert), 

the t-test gives the value t=5.95, which is significant (p<0.05), indicating that the 

differences between two categories were greater than zero for drowsy participants.     

 
Figure 8-20: SD of AVEDEV across new drowsiness scale for all participants 
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8.9.2. Variability in lane position (SD-AVEDEV)  

Figure 8-21 shows the average SD-AVEDEV value for the each NDS category for all 

alert and sleep-deprived participants (22 participants). As drowsiness increases, the 

SD-AVEDEV increases. This relationship appears to vary according to whether the 

driver is sleep-deprived or not; for NDS categories of 3 and below, there is a trend 

for the standard deviation of average deviations to be greater in the sleep-deprived 

sessions than the alert session for any given NDS (NDS category, 1=very drowsy and 

10=very alert).  Table 8-13 shows the SD-AVEDEV averaged to NDS categories and 

the logarithm values of slope (m) for all alert and sleep-deprived participants.     

 

ln of Slope(m) NDS SDAVEDEV(cm) 

0 - 0.5 1 28.61 

0.6 - 1.0 2 27.58 

1.1 - 1.5 3 26.55 

1.6 - 2.0 4 24.50 

2.1 - 2.5 5 22.43 

2.6 - 3.0 6 20.37 

3.1 - 3.5 7 19.09 

3.6 - 4.0 8 17.82 

4.1 - 4.5 9 16.55 

4.6 - 5.0 10 15.28 

Table 8-13: SD-AVEDEV averaged to NDS categories and ln of slope (m) 
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Figure 8-21: SD-AVEDEV and NDS categories for all alert and sleep-deprived 

participants 

 

Figures 8-22 (a), (b), (c) and (d) show four sleep-deprived participants’ SD-

AVEDEV changes compared with NDS (1 to 10). Figure 8-22 (a) shows the 

participant 1’s SD-AVEDEV changes and it is clearly indicates that in the first 20 

minutes, participant 1 showed an alert condition. For the 40 minute simulation, the 

poor driving performance started after 20 minutes of driving.  The driver is thus 

becoming drowsy or inattentive to driving towards the end of the test. The NDS 

drops from 10 to 1 in the last 15 minutes of the test. All sleep deprived participants 

and some alert participants showed poor driving performance in the last 20 minutes 

of the test. The SD-AVEDEV is categorized by simulation time (first 20 minutes and 

last 20 minutes). The difference between first 20 minutes and the last 20 minutes of 

SD-AVEDEV is statistically significant, t=-8.73(d.f=15) and p<0.05.  
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Figure 8-22(a): Participant 1’s SD-AVEDEV changes during 35 minutes and 

NDS 

 

Figure 8-22(b): Participant 9’s SD-AVEDEV changes during 35 minutes and 

NDS 
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Figure 8-22(c): Participant 14’s SD-AVEDEV changes during 35 minutes and 

NDS 

 

Figure 8-22(d): Participant 3’s SD-AVEDEV changes during 35 minutes and 

NDS 
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Figure 8-23 shows the participant 9’s SD-AVEDEV changes during the 35 minutes 

and NDS changes. The SD-AVEDEV is categorized by simulation time (first 15 

minutes and last 20 minutes) for the participant 9’s data on alert condition. The 

difference between first 20 minutes and the last 20 minutes of SD-AVEDEV is 

statistically significant, t=-9.26(d.f=23) and p<0.05.  

 

 

Figure 8-23: Participant 9’s SD-AVEDEV changes during 35 minutes and NDS 

(alert) 
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Figure 8-24: NDS categories across SD-AVEDEV for the SUB -5 (high ESS). 

 

Figure 8-24 shows participant 5 (questionable condition) and how logarithm values 

of the new drowsiness scale and SD-AVEDEV change during the test. In this 

example, participant 5 showed some drowsy conditions after 15 minutes of simulator 

test. The ‘ln’ values of average deviations increase after 15 minutes and slope (m) 

values start decreasing from that point. In this situation, participant 5’s slope (m) 

value decreases from 4 to 2.3. Reference to Table 8-13, the NDS categories 

according to slope (m) values for participant 5’s varies from NDS 9 to 5. The NDS 

category 5 is in the questionable range and participant 5’s driving performance 

decreases gradually with time. Figure 8-25 shows the bar graph of the participant -5 

drowsiness scale variation. Figure 8-25 clearly indicates that the increase of average 

deviations during the 35 minutes of the simulator test is accompanied by a decrease 

in the drowsiness scales. Increase of average deviations illustrates the deprived 

driving performance caused by the lack of concentration or drowsiness. The 
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participant 5 had high ES (Epworth Score=11) and he was naturally drowsy when 

driving.      

 
Figure 8-25: Drowsiness scale and Average deiviation dring 35minute simualtor 

test for Participant 5 

 
Figure 8-26: Drowsiness scale (ln of slope) variations of AVEDVE for alert 

participant -1 
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Figure 8-27:  The average reaction time (AVEREATM) changes with 

drowsiness scale (logarithm values of slope (m)) participant 9 

 

Figure 8-27 shows the participant 9’s SD-AVEDEV changes during the 35 minutes 

and NDS changes. The SD-AVEDEV is categorized by simulation time (first 15 

minutes and last 20 minutes) for the participant 9’s data in an alert condition. The 

difference between first 15 minutes and the last 20 minutes of SD-AVEDEV is 

statistically significant, t=-9.26 and p<0.05.       

8.10. Summary  

The driving session data was divided into 5 minute periods in the analysis. Some 

of the alert participants showed some drowsiness in the last few minutes in the 

simulation test. This was clearly identified by the new drowsiness scale. In the alert 

participants, the SD of average blink durations and average blink frequency did not 

demonstrate any correlation with driving performance (average deviations, average 
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reaction time). However, the new drowsiness scale clearly indicates the driver 

performance variations are related to physiological properties of eye blink.   

The correlations between eye blink frequency/duration and driver performance were 

quite low with alert participants. The blink duration was only moderately correlated 

with that driver performance in alert participants, and the correlation coefficient for 

all alert participants was r = 0.32, (p<0.001). In drowsy participants, the blink 

duration was highly correlated with the blink frequency, with a correlation 

coefficient for all participants (Pearson’s r of 0.97, with p<0.001). The results 

indicate that the increases of drowsiness can be detected from the physiological 

properties of eye blink. Low values on the new scale indicate that participants are 

more likely to reach dangerous levels of drowsiness.  

The questionable range (Drowsiness scale 4-5) in the drowsiness scale is the most 

difficult to segment to evaluate the drowsiness level. This range appears in the last 10 

minutes in the simulator test for some participants. These participants showed 

deprived driving performance during that period, possibly because of lack of 

concentration or tiredness. Sleep deprived participants showed very low logarithm 

values of slope (Drowsiness scale 0.01-1.5).   

The accuracy of capturing eye blink data was discussed in Chapter 5 and 3% of data 

was lost during the capturing process. In the driving simulator and performance 

measures, 2% of data were lost.   The main task of this research was to determine if 

physiological measures, used in conjunction with SD of average blink durations and 

SD of average blink frequency, could be used to create an enhanced definition of 

drowsiness. The end results show that the logarithm of the slope of the linear 
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relationship between eye blink frequency and blink durations provides a clear 

identification of drowsiness.    
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9.1. Discussion  

Driver drowsiness is a major, though elusive, cause of traffic crashes. Drowsy 

drivers cause about 30% of all highway crashes, and this may be even higher for 

heavy vehicles. Research has shown that drowsiness impairs a person’s abilities and 

awareness of situations. This makes it difficult for drivers to assess their risk. Too 

often, a driver only recognises drowsiness in hindsight. It requires only a few 

seconds in a drowsy state to veer off the road and collide with a roadside object or 

another vehicle. Drowsy crashes are serious in their consequences because they often 

occur at full speed, with no evasive action being taken. “Think of it this way: Drivers 

often close their eyes for up to three seconds at a time as drowsiness approaches. At 

70 miles an hour, that’s like driving the length of a football field with your eyes 

closed” (Nerad, 2004). 

Driver state monitoring is an ongoing research topic concerning the development of 

driver support systems to prevent car accidents resulting from sleep. There are 

several criteria to predict driver drowsiness; most of them are related to the eye blink 

behaviour of the driver that leads to prolonged eyelid closure.   

Research and experimentation has shown that eye blink behaviour is an important 

factor in identifying driver sleepiness. The development of a reliable method for 

detecting drowsiness at the wheel is a major challenge in the field of accident 

avoidance systems. Because of the hazard that drowsiness presents on the road, 

methods need to be developed for counteracting its effects. Scientific support for the 

feasibility of this countermeasure concept is provided by research showing that:  
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• Drowsy drivers typically do not “drop off’ instantaneously. Instead, there is a 

preceding period of measurable performance decrement with associated 

psycho physiological signs. 

• Drowsiness can be detected with reasonable accuracy using driving 

performance measures such as lane deviation, steering error and reaction 

time. 

• The use of direct, unobtrusive driver physiological monitoring (e.g., of eye 

blink) could potentially enhance drowsiness detection significantly. 

This research study has focused on reliable detection of driver drowsiness. A number 

of investigations were carried out during the period of study. It should be 

remembered that all of the results obtained are for research conducted in a virtual 

reality simulator using ordinary people in a state of normal and sleep deprivation 

conditions. These results are believed to be indicative of actual driving under similar 

on-the-road conditions.  

The aim of driver drowsiness warning devices is to provide information to the driver 

that their alertness is below a level compatible with safe operation of a vehicle. There 

is evidence that such warnings are useful to drivers who may be aware that 

drowsiness is increasing, but not aware of the impact of the drowsiness on their 

driving capacity. If the warning occurs early enough in the development of 

drowsiness, such devices could enhance driver alertness sufficiently to avoid a 

collision, although many of the devices currently under development, especially the 

driver state measures, will be detecting later stage drowsiness, which is unlikely to be 

overcome by a short period of stimulation such as a warning signal. 
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The present literature review served to explore possibilities to predict and detect 

drowsiness based on driver performance variables such as lateral position variability, 

as well as physiological variables such as eye blink. While physiological variables 

reveal the physical consequences of drowsiness, driving performance variables point 

to the effect of driving in a drowsy state, namely dangerous driving behaviour. It 

should be noted also that a useful and acceptable method has to be reliable and 

robust.  

The literature survey clearly indicates that no single variable, besides possibly eye 

related measures, is sufficient for the established goal, even though various single 

variables show association to drowsiness. A combination of different measures is 

recommended for drowsiness prediction. Furthermore, it should be noted that so far 

there is no commercial system available that provides a sufficiently reliable method 

that detects drowsiness to overcome the serious problems with drowsiness related 

accidents. This clearly indicates the complexity of the problem of detecting or 

predicting drowsiness induced impaired driving behaviour.  

According to the literature, both Electrooculogram (EOG) and 

Electroencephalography (EEG) are valid indicators of drowsiness. Drowsiness is 

characterized by increased blink detection, decreased blink amplitude and increased 

blink frequency and EOG can be used to measure changes in these parameters. The 

majority of drowsiness detection method literature indicated eye blink and movement 

related measures are generally consistent for detection of drowsiness.  According to 

Hargutt (2000), different eye blink parameters can be used for classifying different 

stages of drowsiness and four different stages can be distinguished. Increased blink 

frequency indicates reduced vigilance, which is the first stage in the drowsiness 
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process, and the blink duration and blink amplitude indicate increased drowsiness. 

Drowsiness was in many cases not found in the EEG even though a change in the eye 

parameters was detected. It could thus be assumed that the eye parameters were 

better than EEG for an early detection of drowsiness. 

All of these systems focus on providing information to drivers that will facilitate 

their driving and warn them of threats to driving safety (Parkes, et al., 2006). These 

systems will also, therefore, function as devices that should respond to the effects of 

drowsy driving in the same way as the measures of driver performance designed 

specifically for driver drowsiness discussed in chapter 2.  

Some of the problems with the drowsiness detection devices currently under 

development include the stage of drowsiness that is being detected. A significant 

issue is the timing and nature of the warnings used. The following summarizes the 

main findings of the review related to current research.     

9.1.1. Eyelid closure  

Eyelid closure and related eye measures are, according to the literature, the most 

promising and reliable predictors of drowsiness and sleep onset.  The problem with 

these methods is the eye tracking and monitoring technology needed to record the 

eye parameters of the driver. Varying light conditions, diversity of drivers’ facial 

features and usage of glasses constitute substantial difficulties that have to be 

overcome by the developers of unobtrusive eyelid sensors. PERCLOS (percentage of 

eyelid closure) and the JDS (John’s drowsiness scale) are the current methods used to 

detect drowsiness from eyelid closure speed.   
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9.1.2. Driving performance measures  

Driving performance measures, such as lane-position measures (lane deviation, 

standard deviation of the lane position, the mean square of lane deviation) and 

steering wheel related measures are treated as drowsiness indicators in the literature. 

A drowsy driver shows worse sensitivity to small movements and, as a result, the 

number of micro-wheel adjustments decreases and lane keeping becomes poorer with 

increasing drowsiness. This type of measure seems to be promising and should be 

further explored. It also has an advantage in that it is possible to use existing sensors 

in the vehicle. However, longitudinal velocity related measures, such as speed of 

vehicle, were not found capable of detecting drowsiness.       

9.2. Research Conclusions 

9.2.1. The Methodology 

The method for monitoring eye blink duration and frequency is unique. The eye 

blink capturing system described in this thesis measures the eye blink duration and 

frequency. It is different from the more widely used infrared light (IR) reflection 

method of (Johns et al., 2003). The new head mounted capturing system uses low 

emitting light from green LEDs positioned to the side of the eye, housed in a frame 

such as would be used for headphones; Fig.9-1 shows the eye blink capturing device 

setup, driving simulator setup and the system development process. The ‘headset’ 

weighs only 150 gm, which is similar to the weight of normal spectacles. The video 

system is capable of capturing eye blink at a frequency of about 30 Hz. The total 

light reflected back from the eye sclera region is detected by a CCD camera sensor. 
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The level of environmental light changes are minimized using the green light 

reflection method, which removes the unwanted effect of environmental light, even 

in changing conditions. The proposed system captures eye blink from sides of the 

eye and measures the eye blink durations and frequency.  

 

 

 

Figure 9-1: Eye blink capturing device setup and system development process. 

 

Three specfic goals were identified when developing the driving simulator;. 

Goal 1:   Replicate real driver behaviour and performance. 

Goal 2:  Make driving simulator studies easy to conduct. 

Goal 3. Do not harm participants.  
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The main objective of designing the driving simulator for this research is to develop 

reproducible and flexible methods for studying the relationships between 

physiological driver states and driver performance in a virtual driving environment. 

Health and safety issues were considered in the design of the laboratory based 

driving simulator. The Epworth Sleepiness Scale (ESS) and the subjective sleepiness 

condition were included in the questionnaire. This data helped categorize the 

participants’ results from their sleep deprivation condition and quality of sleep before 

the simulator test.  Initial experiments were conducted with 18 healthy male and 

female participants aged 20 to 70 in carefully controlled conditions. Five different 

performance measures were collected during a 40 minute simulator test. The reaction 

time measurements system is an additional feature that added to the driving simulator 

to improve the quality of performance measures.  

9.3. Research Results  

The eye blink correlation classification matrices and corresponding linear 

regression values based on alert and drowsy data illustrates very clear classification 

of alert and drowsy conditions. The linear regression results indicated that the 

regression slopes were quite low for the sleep deprivation participants and high for 

alert participants. The driver performance data (deviation from centre line, reaction 

time, maximum and average speed) showed very high correlation with eye blink data 

when the participants were in sleep deprivation conditions.   
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9.3.1. Main Findings  

9.3.1.1. Drowsiness detection  

1. A new metric has been identified and for validating driver drowsiness. This 

metric relates to the correlation of standard deviation of average blink 

duration and average blink frequency, consisting of the standardized values 

for detecting sleepiness for drivers when drowsy. 

2. The new metric is based on the logarithm values of slope, in linear regression 

of standard deviation of average blink duration and blink frequency. The 

logarithm values are categorized 1 to 10 according to the driver performance 

measures related to subjective sleep conditions. Figure 9-2 shows the new 

metric categorization.  

Category Alert Questionable Drowsy 

Category 10 9 8 7 6 5 4 3 2 1 

ln values of 
linear (slope) 

4.6 - 
5.0 

4.1 - 
4.5 

3.6 - 
4.0 

3.1 - 
3.5 

2.6 - 
3.0 

2.1 - 
2.5 

1.6 - 
2.0 

1.1 - 
1.5 

0.6 - 
1.0 

0 - 
0.5 

Figure 9-2: Categorization of Drowsiness Scale 

 

3. Drowsiness causes a loosening of the normally tight controls of blink 

durations and frequency, and the results of that loosening vary with time and 

differ between participants. 

4. In the drowsy state or sleep deprived condition, the blink frequency increases 

noticeably with steady increase of duration. This variably is highly correlated 

with driver performance. During the forty minute simulation test, some 
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participants showed lack of concentration in the last quarter of the session 

and showed the same blink variations as in drowsy condition.   

5. Linear correlation shows the best fit for the eye blink variables. The relative 

predictive strengths of the two definitional measures of drowsiness used in 

this study varied somewhat with four different predictor variables 

(AVEBLKDU, AVEBLKFR, MAXSP and AVESP) and three predicted 

variables (AVEDEV, AVEREATM and OUTBON). Epworth Sleepiness 

Scale (ESS), age (AGE) and the sleep duration (NOHS) were also considered. 

The regression analysis found the optimized correlation of variables that best 

predicted “drowsiness” during the driving sessions. 

9.3.1.2. Eye blink detection 

1. Environmental light changes were the main obstruction in the video based 

detection methods. The second most important finding in this research is the 

green light illumination system. This system can be used in situations with 

varied illumination conditions. Figure 9-3 shows the green light illumination 

system.   

 
Figure 9-3: Green light illumination system 
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2. Eye sclera region analysis for blink detection was new and does not disturb 

the participant. Averaging the eye sclera area for eighteen participants 

(different ethnic, different sex, different ages) indicates the very low variation 

in area of individual eye sclera regions. This assisted the determination of a 

common threshold level for eye sclera area calculation and blink duration 

detection.  

3. Detecting eye blink from the side of the head using a head mounted detection 

system minimizes the complexity of detection algorithm. Furthermore the 

side detection is safer than front eye detection techniques.     

9.4. Recommendations 

Efforts are currently being undertaken to develop a reliable system for drowsy-

driver detection. The first phase focuses on the effectiveness of wireless headphone 

mounted warning systems. The purpose of the warning system should be to alert the 

driver that he or she is becoming drowsy. The system would also be used as a means 

of arousing the driver. The other practical implications of this system are in the 

aviation industry (e.g. pilots), rail (e.g. rail drivers), nuclear industry (e.g. scientists 

and operator working in the nuclear reactors), mining industry and medical research 

(human sleep related research).   

An effective warning must get the attention of a driver even if he or she is drowsy. 

However, warnings for a drowsy-driver detection device must not be so intrusive and 

jarring that they startle the driver. Another consideration pertaining to the 

intrusiveness of the warning is the degree of driver annoyance. However, the 
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warning must not be so conservative that it fails to result in the desired effect of 

alerting or arousing a driver. 

Maximum speed did not contribute any major influence to be related to driver 

performance, and speed control displayed a complex relationship that was not 

investigated further. The out of bounds measure showed some relation when the 

drivers are in drowsy condition, but in the driver performance analysis not many 

drivers went out of bounds in the test.     

One of the objectives of the further development of the research will be to determine 

the validity of detection algorithm to be used for the initial warning of drowsiness.  

9.5. Limitations of the study and further research and analysis 

By assessing the state of the driver, their driving performance and their 

perceptions, this PhD study has contributed towards knowledge of how to design a 

video based eye blink detection system for drowsy drivers. However, more work 

needs to be done to investigate the issue of the questionable range in the NDS to 

warn the driver in good time before they get into the danger level of drowsiness. This 

study does not address the Out-of-Bound measure as a highly contributing factor to 

detect driver performance, but this measure showed some variation in alert and 

drowsy condition.  Further research might find some relation to drowsiness.     

Not all participants attended for both the alert and sleep-deprived sessions, and hence 

not all data sets were complete. In future studies, all experimental sessions could be 

extended until every driver experiences both drowsy and non-drowsy periods. 

However, this could lead to experimental sessions being quite prolonged, and 

different participants would need to drive for different lengths of time.  
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The results presented in the current research focused mainly on the comparison of 

driving performance and physiological measures (blink duration and frequency). The 

relationship between the NDS and driving performance, in terms of lane position and 

reaction time was only investigated descriptively within the study. Complex time 

series analysis and Fourier transformation methods could be used, however this 

would also need to be analyzed separately for each participant and each session. 

However a successful analysis of this type could lead to empirically derived NDS 

levels and correct time to warn the driver before they get into danger level of 

drowsiness could be validated in future research.     
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14. Appendix – B1, Driver Performance Data 

The code measures deviation 75 times per second and reports a simple average of 

that every 10 seconds. 

 

Data logging  

Example of all performance data collected from simulator  

e.g. Maximum Speed (max speed, kph = km/h), Average Speed (avg speed, kph = 

km/h), Out of boun (Out of bounds), Average deviations (avg deviations)  

 
 

 

Cross-correlation:  

 

The calculation of two-dimensional cross-correlation of two input matrices equation. 

Assume that matrix A has dimensions (Ma, Na) and matrix B has dimensions (Mb,  
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Nb). When the block calculates the full output size, the equation for the two-

dimensional discrete cross-correlation is 

 
 

 

Calculating eye sclera area 

In calculating the eye sclera area, the long-axis ‘a’ and short-axis ‘b’ of the ellipse 

with following equations (Horn, 1986).  

a = ( ) 





 −+++

2
26 rpqrp        

    

b =  ( ) 





 −+−+

2
26 rpqrp        
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Where 00M , 20M  and 02M  are the second order moment, which is calculated from 

the image intensity I (x, y) as following. 

( )∑∑=
x y

yxIM .00  ( )∑∑=
x y

yxxIM .10  ( )∑∑=
x y

yxyIM .01    

Likely, the second order moment is calculated by the following equations.  

 ( )∑∑=
x y

yxIxM .2

20  ( )∑∑=
x y

yxIyM ,2

02                          
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15. Appendix – B2, Eye Sclera Region Calculation 

Introduction to Matlab 

Software:  MATLAB is a high-performance, interactive numeric computation 

and visualization environment that combines the advantages of programmable and 

has the same logical, relational, conditional, and loop structures as other 

programming languages, such as Fortran, C, BASIC, and Pascal. Because the 

flexible MATLAB language is matrix-oriented, it is the natural language for 

technical problem solving, allowing customizing and extending MATLAB and 

adding new functions as needed. MATLAB handles numerical calculations and high-

quality graphics, provides a convenient interface to built-in state-of-the-art 

subroutine libraries, and incorporates a high-level programming language (Matlab 

2005).  

Recently, high-level languages such as MATLAB have become popular in 

prototyping algorithms in domains such as video and image processing. The Eyelink 

toolbox supports the measurement of eye movements. The toolbox provides an 

interface between a high-level interpreted language (MATLAB), a visual display 

programming toolbox (Psychophysics Toolbox), and a video-based eye tracker 

(Eyelink). The eye blink detection algorithm proposed in this chapter used some 

tools from Eyelink toolbox. 
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Light Reflections from Human Skin 

Skin is composed of a thin surface layer, the ‘epidermis’, and the ‘dermis’, which is a 

thicker layer placed under the epidermis. Interface reflection of skin takes place at 

the epidermis surface (Storring, et al., 2000). It is approximately 5% of the incident 

light independent of its wavelength and the human race (Storring, et al., 2000). The 

rest of the incident light (95%) is entering the skin where it is absorbed and scattered 

within the two skin layers (body reflectance). The epidermis mainly absorbs light; it 

has the properties of an optical filter. The light is transmitted depending on its 

wavelength and the epidermis. Testing with camera properties, increase of RGB 

value for blue light (low reflective light from skin, Storring, et al., 2000) does not 

make any different to the skin region and the eye sclera region according to 

environmental light changes.   

 
Spectral reflectance curves (SCE): (a) Caucasian; (b) Asian; and (c) Negroid 

complexions; (d) average curves for each group (Wyzecki and Stiles, 2000). 
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16. Appendix – C1, Morphological Operations 

 

Opening technique;  

In erosion process, structuring element over an image, finds the local minima 

(minimum value), and creates the output matrix from these minimum values. If the 

neighbourhood or structuring element has a centre element, the block places the 

minima in created neighbourhood window, if input matrix does not have centre 

element then the block has a bias toward the upper left corner and places the minima 

there. For example; sets A and B in 2Z  the erosion of A by B, denoted BAθ , is 

defined as 

    ( )








⊆= ABzBA zθ   (Gonzalez & Woods, 2002)                                        

2Z is called Cartesian product of image matrix on xy  plane convert into grid, with 

the coordinates of the centre of each grid being a pair element from Cartesian 

product. Z is real integers (Gonzalez & Woods, 2002). The neighbourhood parameter 

is defined by entering a vector of ones and zeros and specifies a structuring element 

with the ‘strel’ function from the Image Processing Toolbox (Matlab Simulink). 

‘SE = strel (shape, parameters)’, creates a structuring element, SE, of the type 

specified by shape. The function then modified to ‘SE = strel('square',5)’ creates a 

square structuring element whose width is 5 pixels. If the structuring element is 

decomposable into smaller elements, the block executes at higher speeds due to the 

use of a more efficient algorithm. 

Matrix C-1; shows the structuring element. 

SE = strel (‘square’, w) 

SE = [ ]

11111

11111

11111

11111

11111

                w = 5 (5x5) and [1] is the Origin 

Matrix C-1: Modified structuring element for Erosion. 
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For example; with A and B as sets in 2Z , the dilation   of A by B, denoted BA⊕ , is 

defined as  









≠∩







=⊕

∧

φABzBA
z

  (Gonzalez & Woods, 2002)                                    

Same shape is used to structural element, SE, of dilation and slightly bigger 

matrix used to parameter matrix. Dilation function; ‘SE = strel(‘square’, 7)’ fills the 

eye lashes gap to create complete eye sclera shape.   

The ‘max’ command computes the maximum value in each column of the 144-by-

176 input matrix u,  

 

[val,idx] = max(u)       % Equivalent MATLAB code    

 

and outputs the sample-based 1-by-176 index vector, idx. Each value in idx is an 

integer in the range [1 144] indexing the maximum value in the corresponding 

column of u. The inputs to the 2D maxima block are double-precision values and the 

output index values also double-precision values. The blink detection process use 

‘single’ data type, therefore data type conversion is used to convert double-precision 

to single-precision by; 

 

I = im2single(Idx)  % Equivalent MATLAB code              

The background estimation and template matching outputs are used for tracking 

process. 
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Appendix – C2, Predictor and predicted Variables Data 

Subject No, age, Epworth score (ESS), sleep duration during 24hrs before the 

simulator test, average value of centre line deviations (40 minutes simulation) and 

average value of reaction time (40 minutes simulation).  

Subject No Age 
Epworth 

Score(ESS) 
Sleep time 

(during 24hrs) AVGDEV (cm) 

SD-
AVEREATM 

(s) 

1 35 6 9 9.9604898 0.00361 

2 36 6 8 20.59 0.00425 

3 65 12 7 24.32 0.00679 

4 27 7 7 17.97 0.00731 

5 32 11 9 23.3 0.00312 

6 30 10 7 28.73 0.00818 

7 25 6 8 19.5 0.00422 

8 31 5 7 16.75 0.00381 

9 31 7 8 17.5 0.00401 

10 60 8 9 14.56 0.00489 

11 40 9 8 17.89 0.00397 

12 38 6 9 22.56 0.00579 

13 51 7 7 18.27 0.00478 

14 22 5 8 17.21 0.00349 

15 26 9 7 21.82 0.00593 

16 30 7 8 21.85 0.00576 

17 24 6 7 20.52 0.00531 

18 38 9 7 23.7 0.00421 

 

Subjects participated in sleep deprivation condition  

Subject No Age 
Epworth 

Score(ESS) 
Sleep time 

(during 24hrs) AVGDEV (cm) 

SD-
AVEREATM 

(s) 

1 35 6 3 13.17 0.0117 

9 31 7 3 28.14 0.0124 

3 65 12 4 31.32 0.067 

14 22 5 3 26.37 0.022 
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SD- AVEBLKDU:  Standard deviation of average blink durations 

SD- AVEBLKFR:  Standard deviation of average blinks frequency 

SD- AVEREATM:  Standard deviation of average reaction time 

SD- AVEDEV:   Standard deviation of average deviations  

Example of all predictor variables measured. 
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SUB-1 IB-Mor AGE=35 EPWSCL=6 SLPDU=9 
SLPSCAL Before &After 
=1,4  

SD-
AVEBLKDU 

Mean-
AVEBLKDU 

SD-
AVEBLKFR 

Mean-
AVEBLKFR 

SD-
AVEDEV 

Mean-
AVEDEV 

SD-
AVEREATM 

Mean-
AVEREATM 

0.000225 0.001722 0.00981 0.075056 7.671967 58.41694 0.002595 0.019933 

0.000233 0.001712 0.009494 0.072167 7.602645 59.10139 0.002449 0.019042 

0.000286 0.002002 0.011057 0.078333 7.511989 57.31683 0.002475 0.019321 

0.000319 0.002051 0.012881 0.081333 7.471469 58.085 0.002832 0.021554 

0.000498 0.002956 0.021958 0.121778 7.675211 58.50672 0.002816 0.021985 

0.00056 0.003697 0.024346 0.155722 7.247554 54.27944 0.002948 0.022958 

0.000624 0.004688 0.02544 0.195167 7.692455 59.95617 0.00303 0.02364 

0.000633 0.004919 0.026652 0.206222 9.601212 67.543 0.003116 0.024304 

0.000693 0.005266 0.02865 0.219 9.364242 72.23789 0.004176 0.029204 

0.000642 0.004526 0.027754 0.186056 9.85143 76.40039 0.00372 0.029029 

0.000548 0.004059 0.02196 0.162667 10.25678 78.42478 0.003673 0.028682 

0.000496 0.003681 0.02155 0.156389 9.441036 72.72494 0.003756 0.029302 

0.000543 0.004007 0.022133 0.169111 9.661969 69.97761 0.003756 0.029333 

0.000599 0.004292 0.025637 0.182167 9.040877 67.15322 0.003641 0.022882 

0.000669 0.004946 0.028248 0.2095 9.433837 71.10378 0.002901 0.022653 

0.000709 0.005285 0.03131 0.231611 10.06648 77.27756 0.002862 0.022347 

0.000738 0.005737 0.031371 0.243278 10.31617 78.07356 0.002947 0.022964 

0.000787 0.00609 0.033904 0.260111 10.68297 80.63978 0.002945 0.023 

0.000801 0.006239 0.033695 0.259444 11.51961 86.16861 0.00313 0.024267 

0.000802 0.005961 0.032611 0.242556 10.19466 79.33083 0.003076 0.024014 

0.000752 0.0051 0.031602 0.201333 9.638887 71.60406 0.003115 0.024319 

0.000553 0.003983 0.021665 0.155611 9.836221 72.68078 0.002978 0.023067 

0.000518 0.003025 0.020288 0.1155 9.063974 69.81617 0.003032 0.023633 

0.000327 0.002069 0.012009 0.082111 9.827293 71.98439 0.002893 0.0224 

0.000242 0.001862 0.009753 0.074056 10.02651 73.22478 0.002901 0.022653 

0.000262 0.001929 0.009403 0.072278 10.71056 80.65583 0.002862 0.022347 

0.00029 0.002226 0.01063 0.080611 12.58592 96.452 0.002946 0.022969 

0.000488 0.002506 0.017689 0.091 12.56189 97.33517 0.002804 0.021729 

0.000533 0.003749 0.019169 0.136833 12.19533 94.15639 0.002909 0.022618 

0.000738 0.004752 0.027558 0.173444 13.69226 103.983 0.002862 0.022347 

0.000722 0.005565 0.02616 0.201056 12.92262 100.2362 0.002901 0.022653 

0.000767 0.00582 0.027919 0.211611 11.2926 86.65261 0.002826 0.022031 

0.000808 0.005805 0.029129 0.212611 11.26886 86.87133 0.002903 0.022638 

0.000625 0.004763 0.022913 0.172889 10.61628 82.39556 0.002762 0.021396 

0.000582 0.004405 0.02106 0.157333 10.07338 77.86044 0.002818 0.021971 
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