## MAXIMAL AND SUBMAXIMAL CARDIOPULMONARY RESPONSES TO WHOLE-BODY SIMULATED SWIMMING

M. Konstantaki<sup>1</sup>, I.L. Swaine<sup>1</sup>, E.M. Winter<sup>2</sup>

<sup>1</sup>Physiology of Exercise, School of P.E., Sport and Leisure, De Montfort University, Bedford, UK and <sup>2</sup>Sports Science Research Institute, Sheffield Hallam University, Sheffield, UK

The purpose of this study was to explore the relationship between oxygen uptake and heart rate in response to whole-body simulated swimming.

Nine club swimmers (mean  $\pm$  SD; age: 20  $\pm$  4 years, stature: 1.68  $\pm$  11 m, mass: 63  $\pm$  12 kg) signed an informed consent and participated in the study. All subjects performed a simulated front crawl combined arm-pulling and leg-kicking incremental exercise test to exhaustion using a swim bench and a leg-kicking ergometer. Oxygen uptake ( $\dot{V}O_2$ ) and heart rate (HR) were recorded at 15 s intervals and at exhaustion ( $\dot{V}O_{2peak}$ ; HR<sub>peak</sub>). The HR at ventilatory threshold (VT) was determined (VT<sub>HR</sub>) and the  $\dot{V}O_2$ /HR relationship explored.

The mean  $\pm$  SD for  $\dot{VO}_{2peak}$  and HR<sub>peak</sub> values were 3.3  $\pm$  0.4 L·min<sup>-1</sup> and 174  $\pm$  8 b·min<sup>-1</sup> respectively, whereas VT<sub>HR</sub> occurred at 162  $\pm$  5 b·min<sup>-1</sup> at a predicted  $\dot{VO}_2$  of 2.4  $\pm$  0.4 L·min<sup>-1</sup>. The relationship between  $\dot{VO}_2$  and HR was shown to be linear in all subjects (r=0.94; P<0.05).

Previously published data have demonstrated linear relationships between HR/EI and  $\dot{VO}_2$ /EI (r=0.99 and r=0.98 respectively; P<0.05) for simulated arm-pulling exercise. The peak values for simulated front-crawl arm-pulling and leg-kicking exercise were: 2.85 ± 0.26 L·min<sup>-1</sup>, 171 ± 3 b·min<sup>-1</sup> and 3.1 L·min<sup>-1</sup>, 170 ± 3 b·min<sup>-1</sup>, respectively. Our results suggest that the  $\dot{VO}_2$  and HR responses to full-stroke simulated swimming are higher than the respective responses to arm-pulling or leg-kicking separately. This type of whole-body ergometry might be useful for assessing maximal and submaximal cardiopulmonary responses to exercise in swimmers.



Figure 1.  $\dot{V}O_2$  and HR in response to full stroke simulated swimming

## REFERENCES

Reybrouck T., Heigenhauser G.F., Faulkner J.A. (1975). J Appl Physiol 38: 774-779. Swaine I.L., Zanker C.L. (1996). Int J Sports Med 17(2): 140-144.