RBFNN-based Minimum Entropy Filtering for a Class of Stochastic Nonlinear Systems
Yin, X., Zhang, Qichun, Wang, H. and Ding, Z. (2020) RBFNN-based Minimum Entropy Filtering for a Class of Stochastic Nonlinear Systems.
Full text not available from this repository. (Request a copy)
Access this via: https://doi.org/10.1109/TAC.2019.2914257
Item Type: | Article |
---|---|
Additional Information: | This paper presents a novel minimum entropy filter design for a class of stochastic nonlinear systems which are subjected to non-Gaussian noises. Motivated by stochastic distribution control, an output entropy model is developed using RBF neural network while the parameters of the model can be identified by the collected data. Based upon the presented model, the filtering problem has been investigated while the system dynamics have been represented. As the model output is the entropy of the estimation error, the optimal nonlinear filter is obtained based on the Lyapunov design which makes the model output minimum. Moreover, the entropy assignment problem has been discussed as an extension of the presented approach. To verify the presented design procedure, a numerical example is given which illustrates the effectiveness of the presented algorithm. The contributions of this paper can be included as 1) an output entropy model is presented using neural network; 2) a nonlinear filter design algorithm is developed as the main result and 3) a solution of entropy assignment problem is obtained which is an extension of the presented framework. |
Depositing User: | RED Unit Admin |
Date Deposited: | 18 Dec 2024 12:13 |
Last Modified: | 18 Dec 2024 12:13 |
URI: | https://bnu.repository.guildhe.ac.uk/id/eprint/19533 |
Actions (login required)
Edit Item |